| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449 | /* * Changes by Gunnar Ritter, Freiburg i. Br., Germany, February 2004. * * Sccsid @(#)blast.c	1.2 (gritter) 2/17/04 *//* blast.c * Copyright (C) 2003 Mark Adler * For conditions of distribution and use, see copyright notice in blast.h * version 1.1, 16 Feb 2003 * * blast.c decompresses data compressed by the PKWare Compression Library. * This function provides functionality similar to the explode() function of * the PKWare library, hence the name "blast". * * This decompressor is based on the excellent format description provided by * Ben Rudiak-Gould in comp.compression on August 13, 2001.  Interestingly, the * example Ben provided in the post is incorrect.  The distance 110001 should * instead be 111000.  When corrected, the example byte stream becomes: * *    00 04 82 24 25 8f 80 7f * * which decompresses to "AIAIAIAIAIAIA" (without the quotes). *//* * Change history: * * 1.0  12 Feb 2003     - First version * 1.1  16 Feb 2003     - Fixed distance check for > 4 GB uncompressed data */#include <setjmp.h>             /* for setjmp(), longjmp(), and jmp_buf */#include "blast.h"              /* prototype for blast() */#define local static            /* for local function definitions */#define MAXBITS 13              /* maximum code length */#define MAXWIN 4096             /* maximum window size *//* input and output state */struct state {    /* input state */    blast_in infun;             /* input function provided by user */    void *inhow;                /* opaque information passed to infun() */    unsigned char *in;          /* next input location */    unsigned left;              /* available input at in */    int bitbuf;                 /* bit buffer */    int bitcnt;                 /* number of bits in bit buffer */    /* input limit error return state for bits() and decode() */    jmp_buf env;    /* output state */    blast_out outfun;           /* output function provided by user */    void *outhow;               /* opaque information passed to outfun() */    unsigned next;              /* index of next write location in out[] */    int first;                  /* true to check distances (for first 4K) */    unsigned char out[MAXWIN];  /* output buffer and sliding window */};/* * Return need bits from the input stream.  This always leaves less than * eight bits in the buffer.  bits() works properly for need == 0. * * Format notes: * * - Bits are stored in bytes from the least significant bit to the most *   significant bit.  Therefore bits are dropped from the bottom of the bit *   buffer, using shift right, and new bytes are appended to the top of the *   bit buffer, using shift left. */local int bits(struct state *s, int need){    int val;            /* bit accumulator */    /* load at least need bits into val */    val = s->bitbuf;    while (s->bitcnt < need) {        if (s->left == 0) {            s->left = s->infun(s->inhow, &(s->in));            if (s->left == 0) longjmp(s->env, 1);       /* out of input */        }        val |= (int)(*(s->in)++) << s->bitcnt;          /* load eight bits */        s->left--;        s->bitcnt += 8;    }    /* drop need bits and update buffer, always zero to seven bits left */    s->bitbuf = val >> need;    s->bitcnt -= need;    /* return need bits, zeroing the bits above that */    return val & ((1 << need) - 1);}/* * Huffman code decoding tables.  count[1..MAXBITS] is the number of symbols of * each length, which for a canonical code are stepped through in order. * symbol[] are the symbol values in canonical order, where the number of * entries is the sum of the counts in count[].  The decoding process can be * seen in the function decode() below. */struct huffman {    short *count;       /* number of symbols of each length */    short *symbol;      /* canonically ordered symbols */};/* * Decode a code from the stream s using huffman table h.  Return the symbol or * a negative value if there is an error.  If all of the lengths are zero, i.e. * an empty code, or if the code is incomplete and an invalid code is received, * then -9 is returned after reading MAXBITS bits. * * Format notes: * * - The codes as stored in the compressed data are bit-reversed relative to *   a simple integer ordering of codes of the same lengths.  Hence below the *   bits are pulled from the compressed data one at a time and used to *   build the code value reversed from what is in the stream in order to *   permit simple integer comparisons for decoding. * * - The first code for the shortest length is all ones.  Subsequent codes of *   the same length are simply integer decrements of the previous code.  When *   moving up a length, a one bit is appended to the code.  For a complete *   code, the last code of the longest length will be all zeros.  To support *   this ordering, the bits pulled during decoding are inverted to apply the *   more "natural" ordering starting with all zeros and incrementing. */local int decode(struct state *s, struct huffman *h){    int len;            /* current number of bits in code */    int code;           /* len bits being decoded */    int first;          /* first code of length len */    int count;          /* number of codes of length len */    int index;          /* index of first code of length len in symbol table */    int bitbuf;         /* bits from stream */    int left;           /* bits left in next or left to process */    short *next;        /* next number of codes */    bitbuf = s->bitbuf;    left = s->bitcnt;    code = first = index = 0;    len = 1;    next = h->count + 1;    while (1) {        while (left--) {            code |= (bitbuf & 1) ^ 1;   /* invert code */            bitbuf >>= 1;            count = *next++;            if (code < first + count) { /* if length len, return symbol */                s->bitbuf = bitbuf;                s->bitcnt = (s->bitcnt - len) & 7;                return h->symbol[index + (code - first)];            }            index += count;             /* else update for next length */            first += count;            first <<= 1;            code <<= 1;            len++;        }        left = (MAXBITS+1) - len;        if (left == 0) break;        if (s->left == 0) {            s->left = s->infun(s->inhow, &(s->in));            if (s->left == 0) longjmp(s->env, 1);       /* out of input */        }        bitbuf = *(s->in)++;        s->left--;        if (left > 8) left = 8;    }    return -9;                          /* ran out of codes */}/* * Given a list of repeated code lengths rep[0..n-1], where each byte is a * count (high four bits + 1) and a code length (low four bits), generate the * list of code lengths.  This compaction reduces the size of the object code. * Then given the list of code lengths length[0..n-1] representing a canonical * Huffman code for n symbols, construct the tables required to decode those * codes.  Those tables are the number of codes of each length, and the symbols * sorted by length, retaining their original order within each length.  The * return value is zero for a complete code set, negative for an over- * subscribed code set, and positive for an incomplete code set.  The tables * can be used if the return value is zero or positive, but they cannot be used * if the return value is negative.  If the return value is zero, it is not * possible for decode() using that table to return an error--any stream of * enough bits will resolve to a symbol.  If the return value is positive, then * it is possible for decode() using that table to return an error for received * codes past the end of the incomplete lengths. */local int construct(struct huffman *h, const unsigned char *rep, int n){    int symbol;         /* current symbol when stepping through length[] */    int len;            /* current length when stepping through h->count[] */    int left;           /* number of possible codes left of current length */    short offs[MAXBITS+1];      /* offsets in symbol table for each length */    short length[256];  /* code lengths */    /* convert compact repeat counts into symbol bit length list */    symbol = 0;    do {        len = *rep++;        left = (len >> 4) + 1;        len &= 15;        do {            length[symbol++] = len;        } while (--left);    } while (--n);    n = symbol;    /* count number of codes of each length */    for (len = 0; len <= MAXBITS; len++)        h->count[len] = 0;    for (symbol = 0; symbol < n; symbol++)        (h->count[length[symbol]])++;   /* assumes lengths are within bounds */    if (h->count[0] == n)               /* no codes! */        return 0;                       /* complete, but decode() will fail */    /* check for an over-subscribed or incomplete set of lengths */    left = 1;                           /* one possible code of zero length */    for (len = 1; len <= MAXBITS; len++) {        left <<= 1;                     /* one more bit, double codes left */        left -= h->count[len];          /* deduct count from possible codes */        if (left < 0) return left;      /* over-subscribed--return negative */    }                                   /* left > 0 means incomplete */    /* generate offsets into symbol table for each length for sorting */    offs[1] = 0;    for (len = 1; len < MAXBITS; len++)        offs[len + 1] = offs[len] + h->count[len];    /*     * put symbols in table sorted by length, by symbol order within each     * length     */    for (symbol = 0; symbol < n; symbol++)        if (length[symbol] != 0)            h->symbol[offs[length[symbol]]++] = symbol;    /* return zero for complete set, positive for incomplete set */    return left;}/* * Decode PKWare Compression Library stream. * * Format notes: * * - First byte is 0 if literals are uncoded or 1 if they are coded.  Second *   byte is 4, 5, or 6 for the number of extra bits in the distance code. *   This is the base-2 logarithm of the dictionary size minus six. * * - Compressed data is a combination of literals and length/distance pairs *   terminated by an end code.  Literals are either Huffman coded or *   uncoded bytes.  A length/distance pair is a coded length followed by a *   coded distance to represent a string that occurs earlier in the *   uncompressed data that occurs again at the current location. * * - A bit preceding a literal or length/distance pair indicates which comes *   next, 0 for literals, 1 for length/distance. * * - If literals are uncoded, then the next eight bits are the literal, in the *   normal bit order in th stream, i.e. no bit-reversal is needed. Similarly, *   no bit reversal is needed for either the length extra bits or the distance *   extra bits. * * - Literal bytes are simply written to the output.  A length/distance pair is *   an instruction to copy previously uncompressed bytes to the output.  The *   copy is from distance bytes back in the output stream, copying for length *   bytes. * * - Distances pointing before the beginning of the output data are not *   permitted. * * - Overlapped copies, where the length is greater than the distance, are *   allowed and common.  For example, a distance of one and a length of 518 *   simply copies the last byte 518 times.  A distance of four and a length of *   twelve copies the last four bytes three times.  A simple forward copy *   ignoring whether the length is greater than the distance or not implements *   this correctly. */local int decomp(struct state *s){    int lit;            /* true if literals are coded */    int dict;           /* log2(dictionary size) - 6 */    int symbol;         /* decoded symbol, extra bits for distance */    int len;            /* length for copy */    int dist;           /* distance for copy */    int copy;           /* copy counter */    unsigned char *from, *to;   /* copy pointers */    static int virgin = 1;                              /* build tables once */    static short litcnt[MAXBITS+1], litsym[256];        /* litcode memory */    static short lencnt[MAXBITS+1], lensym[16];         /* lencode memory */    static short distcnt[MAXBITS+1], distsym[64];       /* distcode memory */    static struct huffman litcode = {litcnt, litsym};   /* length code */    static struct huffman lencode = {lencnt, lensym};   /* length code */    static struct huffman distcode = {distcnt, distsym};/* distance code */        /* bit lengths of literal codes */    static const unsigned char litlen[] = {        11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,        9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,        7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,        8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,        44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,        44, 173};        /* bit lengths of length codes 0..15 */    static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};        /* bit lengths of distance codes 0..63 */    static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};    static const short base[16] = {     /* base for length codes */        3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};    static const char extra[16] = {     /* extra bits for length codes */        0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};    /* set up decoding tables (once--might not be thread-safe) */    if (virgin) {        construct(&litcode, litlen, sizeof(litlen));        construct(&lencode, lenlen, sizeof(lenlen));        construct(&distcode, distlen, sizeof(distlen));        virgin = 0;    }    /* read header */    lit = bits(s, 8);    if (lit > 1) return -1;    dict = bits(s, 8);    if (dict < 4 || dict > 6) return -2;    /* decode literals and length/distance pairs */    do {        if (bits(s, 1)) {            /* get length */            symbol = decode(s, &lencode);            len = base[symbol] + bits(s, extra[symbol]);            if (len == 519) break;              /* end code */            /* get distance */            symbol = len == 2 ? 2 : dict;            dist = decode(s, &distcode) << symbol;            dist += bits(s, symbol);            dist++;            if (s->first && dist > s->next)                return -3;              /* distance too far back */            /* copy length bytes from distance bytes back */            do {                to = s->out + s->next;                from = to - dist;                copy = MAXWIN;                if (s->next < dist) {                    from += copy;                    copy = dist;                }                copy -= s->next;                if (copy > len) copy = len;                len -= copy;                s->next += copy;                do {                    *to++ = *from++;                } while (--copy);                if (s->next == MAXWIN) {                    if (s->outfun(s->outhow, s->out, s->next)) return 1;                    s->next = 0;                    s->first = 0;                }            } while (len != 0);        }        else {            /* get literal and write it */            symbol = lit ? decode(s, &litcode) : bits(s, 8);            s->out[s->next++] = symbol;            if (s->next == MAXWIN) {                if (s->outfun(s->outhow, s->out, s->next)) return 1;                s->next = 0;                s->first = 0;            }        }    } while (1);    return 0;}/* See comments in blast.h */int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow){    struct state s;             /* input/output state */    int err;                    /* return value */    /* initialize input state */    s.infun = infun;    s.inhow = inhow;    s.left = 0;    s.bitbuf = 0;    s.bitcnt = 0;    /* initialize output state */    s.outfun = outfun;    s.outhow = outhow;    s.next = 0;    s.first = 1;    /* return if bits() or decode() tries to read past available input */    if (setjmp(s.env) != 0)             /* if came back here via longjmp(), */        err = 2;                        /*  then skip decomp(), return error */    else        err = decomp(&s);               /* decompress */    /* write any leftover output and update the error code if needed */    if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)        err = 1;    return err;}#ifdef TEST/* Example of how to use blast() */#include <stdio.h>#include <stdlib.h>#define CHUNK 16384local unsigned inf(void *how, unsigned char **buf){    static unsigned char hold[CHUNK];    *buf = hold;    return fread(hold, 1, CHUNK, (FILE *)how);}local int outf(void *how, unsigned char *buf, unsigned len){    return fwrite(buf, 1, len, (FILE *)how) != len;}/* Decompress a PKWare Compression Library stream from stdin to stdout */int main(void){    int ret, n;    /* decompress to stdout */    ret = blast(inf, stdin, outf, stdout);    if (ret != 0) fprintf(stderr, "blast error: %d\n", ret);    /* see if there are any leftover bytes */    n = 0;    while (getchar() != EOF) n++;    if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n);    /* return blast() error code */    return ret;}#endif
 |