|
@@ -1,3385 +0,0 @@
|
|
|
---- mozilla-release.orig/media/webrtc/trunk/webrtc/system_wrappers/source/spreadsortlib/spreadsort.hpp 2013-12-05 17:07:50.000000000 +0100
|
|
|
-+++ mozilla-release/media/webrtc/trunk/webrtc/system_wrappers/source/spreadsortlib/spreadsort.hpp 2014-02-05 09:52:11.000000000 +0100
|
|
|
-@@ -1,1688 +1,1694 @@
|
|
|
--//Templated spread_sort library
|
|
|
--
|
|
|
--// Copyright Steven J. Ross 2001 - 2009.
|
|
|
--// Distributed under the Boost Software License, Version 1.0.
|
|
|
--// (See accompanying file LICENSE_1_0.txt or copy at
|
|
|
--// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
--
|
|
|
--// See http://www.boost.org/ for updates, documentation, and revision history.
|
|
|
--
|
|
|
--/*
|
|
|
--Some improvements suggested by:
|
|
|
--Phil Endecott and Frank Gennari
|
|
|
--Cygwin fix provided by:
|
|
|
--Scott McMurray
|
|
|
--*/
|
|
|
--
|
|
|
--#ifndef BOOST_SPREAD_SORT_H
|
|
|
--#define BOOST_SPREAD_SORT_H
|
|
|
--#include <algorithm>
|
|
|
--#include <cstring>
|
|
|
--#include <vector>
|
|
|
--#include "webrtc/system_wrappers/source/spreadsortlib/constants.hpp"
|
|
|
--
|
|
|
--namespace boost {
|
|
|
-- namespace detail {
|
|
|
-- //This only works on unsigned data types
|
|
|
-- template <typename T>
|
|
|
-- inline unsigned
|
|
|
-- rough_log_2_size(const T& input)
|
|
|
-- {
|
|
|
-- unsigned result = 0;
|
|
|
-- //The && is necessary on some compilers to avoid infinite loops; it doesn't significantly impair performance
|
|
|
-- while((input >> result) && (result < (8*sizeof(T)))) ++result;
|
|
|
-- return result;
|
|
|
-- }
|
|
|
--
|
|
|
-- //Gets the maximum size which we'll call spread_sort on to control worst-case performance
|
|
|
-- //Maintains both a minimum size to recurse and a check of distribution size versus count
|
|
|
-- //This is called for a set of bins, instead of bin-by-bin, to avoid performance overhead
|
|
|
-- inline size_t
|
|
|
-- get_max_count(unsigned log_range, size_t count)
|
|
|
-- {
|
|
|
-- unsigned divisor = rough_log_2_size(count);
|
|
|
-- //Making sure the divisor is positive
|
|
|
-- if(divisor > LOG_MEAN_BIN_SIZE)
|
|
|
-- divisor -= LOG_MEAN_BIN_SIZE;
|
|
|
-- else
|
|
|
-- divisor = 1;
|
|
|
-- unsigned relative_width = (LOG_CONST * log_range)/((divisor > MAX_SPLITS) ? MAX_SPLITS : divisor);
|
|
|
-- //Don't try to bitshift more than the size of an element
|
|
|
-- if((8*sizeof(size_t)) <= relative_width)
|
|
|
-- relative_width = (8*sizeof(size_t)) - 1;
|
|
|
-- return (size_t)1 << ((relative_width < (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT)) ?
|
|
|
-- (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT) : relative_width);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Find the minimum and maximum using <
|
|
|
-- template <class RandomAccessIter>
|
|
|
-- inline void
|
|
|
-- find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min)
|
|
|
-- {
|
|
|
-- min = max = current;
|
|
|
-- //Start from the second item, as max and min are initialized to the first
|
|
|
-- while(++current < last) {
|
|
|
-- if(*max < *current)
|
|
|
-- max = current;
|
|
|
-- else if(*current < *min)
|
|
|
-- min = current;
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Uses a user-defined comparison operator to find minimum and maximum
|
|
|
-- template <class RandomAccessIter, class compare>
|
|
|
-- inline void
|
|
|
-- find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min, compare comp)
|
|
|
-- {
|
|
|
-- min = max = current;
|
|
|
-- while(++current < last) {
|
|
|
-- if(comp(*max, *current))
|
|
|
-- max = current;
|
|
|
-- else if(comp(*current, *min))
|
|
|
-- min = current;
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Gets a non-negative right bit shift to operate as a logarithmic divisor
|
|
|
-- inline int
|
|
|
-- get_log_divisor(size_t count, unsigned log_range)
|
|
|
-- {
|
|
|
-- int log_divisor;
|
|
|
-- //If we can finish in one iteration without exceeding either (2 to the MAX_SPLITS) or n bins, do so
|
|
|
-- if((log_divisor = log_range - rough_log_2_size(count)) <= 0 && log_range < MAX_SPLITS)
|
|
|
-- log_divisor = 0;
|
|
|
-- else {
|
|
|
-- //otherwise divide the data into an optimized number of pieces
|
|
|
-- log_divisor += LOG_MEAN_BIN_SIZE;
|
|
|
-- if(log_divisor < 0)
|
|
|
-- log_divisor = 0;
|
|
|
-- //Cannot exceed MAX_SPLITS or cache misses slow down bin lookups dramatically
|
|
|
-- if((log_range - log_divisor) > MAX_SPLITS)
|
|
|
-- log_divisor = log_range - MAX_SPLITS;
|
|
|
-- }
|
|
|
-- return log_divisor;
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter>
|
|
|
-- inline RandomAccessIter *
|
|
|
-- size_bins(std::vector<size_t> &bin_sizes, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset, unsigned &cache_end, unsigned bin_count)
|
|
|
-- {
|
|
|
-- //Assure space for the size of each bin, followed by initializing sizes
|
|
|
-- if(bin_count > bin_sizes.size())
|
|
|
-- bin_sizes.resize(bin_count);
|
|
|
-- for(size_t u = 0; u < bin_count; u++)
|
|
|
-- bin_sizes[u] = 0;
|
|
|
-- //Make sure there is space for the bins
|
|
|
-- cache_end = cache_offset + bin_count;
|
|
|
-- if(cache_end > bin_cache.size())
|
|
|
-- bin_cache.resize(cache_end);
|
|
|
-- return &(bin_cache[cache_offset]);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Implementation for recursive integer sorting
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-- inline void
|
|
|
-- spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes)
|
|
|
-- {
|
|
|
-- //This step is roughly 10% of runtime, but it helps avoid worst-case behavior and improve behavior with real data
|
|
|
-- //If you know the maximum and minimum ahead of time, you can pass those values in and skip this step for the first iteration
|
|
|
-- RandomAccessIter max, min;
|
|
|
-- find_extremes(first, last, max, min);
|
|
|
-- //max and min will be the same (the first item) iff all values are equivalent
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- RandomAccessIter * target_bin;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(*max >> 0) - (*min >> 0)));
|
|
|
-- div_type div_min = *min >> log_divisor;
|
|
|
-- div_type div_max = *max >> log_divisor;
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[(*(current++) >> log_divisor) - div_min]++;
|
|
|
-- //Assign the bin positions
|
|
|
-- bins[0] = first;
|
|
|
-- for(unsigned u = 0; u < bin_count - 1; u++)
|
|
|
-- bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- for(unsigned u = 0; u < bin_count - 1; ++u) {
|
|
|
-- RandomAccessIter * local_bin = bins + u;
|
|
|
-- nextbinstart += bin_sizes[u];
|
|
|
-- //Iterating over each element in this bin
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-- for(target_bin = (bins + ((*current >> log_divisor) - div_min)); target_bin != local_bin;
|
|
|
-- target_bin = bins + ((*current >> log_divisor) - div_min)) {
|
|
|
-- //3-way swap; this is about 1% faster than a 2-way swap with integers
|
|
|
-- //The main advantage is less copies are involved per item put in the correct place
|
|
|
-- data_type tmp;
|
|
|
-- RandomAccessIter b = (*target_bin)++;
|
|
|
-- RandomAccessIter * b_bin = bins + ((*b >> log_divisor) - div_min);
|
|
|
-- if (b_bin != local_bin) {
|
|
|
-- RandomAccessIter c = (*b_bin)++;
|
|
|
-- tmp = *c;
|
|
|
-- *c = *b;
|
|
|
-- }
|
|
|
-- else
|
|
|
-- tmp = *b;
|
|
|
-- *b = *current;
|
|
|
-- *current = tmp;
|
|
|
-- }
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- }
|
|
|
-- bins[bin_count - 1] = last;
|
|
|
--
|
|
|
-- //If we've bucketsorted, the array is sorted and we should skip recursion
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Recursing; log_divisor is the remaining range
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- //don't sort unless there are at least two items to compare
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- //using std::sort if its worst-case is better
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[u]);
|
|
|
-- else
|
|
|
-- spread_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Generic bitshift-based 3-way swapping code
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-- inline void inner_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift
|
|
|
-- , const unsigned log_divisor, const div_type div_min)
|
|
|
-- {
|
|
|
-- RandomAccessIter * local_bin = bins + ii;
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- for(RandomAccessIter * target_bin = (bins + (shift(*current, log_divisor) - div_min)); target_bin != local_bin;
|
|
|
-- target_bin = bins + (shift(*current, log_divisor) - div_min)) {
|
|
|
-- data_type tmp;
|
|
|
-- RandomAccessIter b = (*target_bin)++;
|
|
|
-- RandomAccessIter * b_bin = bins + (shift(*b, log_divisor) - div_min);
|
|
|
-- //Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs
|
|
|
-- if (b_bin != local_bin) {
|
|
|
-- RandomAccessIter c = (*b_bin)++;
|
|
|
-- tmp = *c;
|
|
|
-- *c = *b;
|
|
|
-- }
|
|
|
-- //Note: we could increment current once the swap is done in this case, but that seems to impair performance
|
|
|
-- else
|
|
|
-- tmp = *b;
|
|
|
-- *b = *current;
|
|
|
-- *current = tmp;
|
|
|
-- }
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- }
|
|
|
--
|
|
|
-- //Standard swapping wrapper for ascending values
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-- inline void swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift
|
|
|
-- , const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min)
|
|
|
-- {
|
|
|
-- nextbinstart += bin_sizes[ii];
|
|
|
-- inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, log_divisor, div_min);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Functor implementation for recursive sorting
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-- inline void
|
|
|
-- spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
|
-- {
|
|
|
-- RandomAccessIter max, min;
|
|
|
-- find_extremes(first, last, max, min, comp);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0))));
|
|
|
-- div_type div_min = shift(*min, log_divisor);
|
|
|
-- div_type div_max = shift(*max, log_divisor);
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-- bins[0] = first;
|
|
|
-- for(unsigned u = 0; u < bin_count - 1; u++)
|
|
|
-- bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- for(unsigned u = 0; u < bin_count - 1; ++u)
|
|
|
-- swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, bin_sizes, log_divisor, div_min);
|
|
|
-- bins[bin_count - 1] = last;
|
|
|
--
|
|
|
-- //If we've bucketsorted, the array is sorted and we should skip recursion
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Recursing
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[u], comp);
|
|
|
-- else
|
|
|
-- spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Functor implementation for recursive sorting with only Shift overridden
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-- inline void
|
|
|
-- spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes, right_shift shift)
|
|
|
-- {
|
|
|
-- RandomAccessIter max, min;
|
|
|
-- find_extremes(first, last, max, min);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0))));
|
|
|
-- div_type div_min = shift(*min, log_divisor);
|
|
|
-- div_type div_max = shift(*max, log_divisor);
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-- bins[0] = first;
|
|
|
-- for(unsigned u = 0; u < bin_count - 1; u++)
|
|
|
-- bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- for(unsigned ii = 0; ii < bin_count - 1; ++ii)
|
|
|
-- swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
|
-- bins[bin_count - 1] = last;
|
|
|
--
|
|
|
-- //If we've bucketsorted, the array is sorted and we should skip recursion
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Recursing
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[u]);
|
|
|
-- else
|
|
|
-- spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Holds the bin vector and makes the initial recursive call
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-- inline void
|
|
|
-- spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- spread_sort_rec<RandomAccessIter, div_type, data_type>(first, last, bin_cache, 0, bin_sizes);
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-- inline void
|
|
|
-- spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(first, last, bin_cache, 0, bin_sizes, shift, comp);
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-- inline void
|
|
|
-- spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Top-level sorting call for integers
|
|
|
-- template <class RandomAccessIter>
|
|
|
-- inline void integer_sort(RandomAccessIter first, RandomAccessIter last)
|
|
|
-- {
|
|
|
-- //Don't sort if it's too small to optimize
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last);
|
|
|
-- else
|
|
|
-- detail::spread_sort(first, last, *first >> 0, *first);
|
|
|
-- }
|
|
|
--
|
|
|
-- //integer_sort with functors
|
|
|
-- template <class RandomAccessIter, class right_shift, class compare>
|
|
|
-- inline void integer_sort(RandomAccessIter first, RandomAccessIter last,
|
|
|
-- right_shift shift, compare comp) {
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last, comp);
|
|
|
-- else
|
|
|
-- detail::spread_sort(first, last, shift(*first, 0), *first, shift, comp);
|
|
|
-- }
|
|
|
--
|
|
|
-- //integer_sort with right_shift functor
|
|
|
-- template <class RandomAccessIter, class right_shift>
|
|
|
-- inline void integer_sort(RandomAccessIter first, RandomAccessIter last,
|
|
|
-- right_shift shift) {
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last);
|
|
|
-- else
|
|
|
-- detail::spread_sort(first, last, shift(*first, 0), *first, shift);
|
|
|
-- }
|
|
|
--
|
|
|
-- //------------------------------------------------------ float_sort source --------------------------------------
|
|
|
-- //Casts a RandomAccessIter to the specified data type
|
|
|
-- template<class cast_type, class RandomAccessIter>
|
|
|
-- inline cast_type
|
|
|
-- cast_float_iter(const RandomAccessIter & floatiter)
|
|
|
-- {
|
|
|
-- cast_type result;
|
|
|
-- std::memcpy(&result, &(*floatiter), sizeof(cast_type));
|
|
|
-- return result;
|
|
|
-- }
|
|
|
--
|
|
|
-- //Casts a data element to the specified datinner_float_a type
|
|
|
-- template<class data_type, class cast_type>
|
|
|
-- inline cast_type
|
|
|
-- mem_cast(const data_type & data)
|
|
|
-- {
|
|
|
-- cast_type result;
|
|
|
-- std::memcpy(&result, &data, sizeof(cast_type));
|
|
|
-- return result;
|
|
|
-- }
|
|
|
--
|
|
|
-- namespace detail {
|
|
|
-- template <class RandomAccessIter, class div_type, class right_shift>
|
|
|
-- inline void
|
|
|
-- find_extremes(RandomAccessIter current, RandomAccessIter last, div_type & max, div_type & min, right_shift shift)
|
|
|
-- {
|
|
|
-- min = max = shift(*current, 0);
|
|
|
-- while(++current < last) {
|
|
|
-- div_type value = shift(*current, 0);
|
|
|
-- if(max < value)
|
|
|
-- max = value;
|
|
|
-- else if(value < min)
|
|
|
-- min = value;
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Specialized swap loops for floating-point casting
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-- inline void inner_float_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii
|
|
|
-- , const unsigned log_divisor, const div_type div_min)
|
|
|
-- {
|
|
|
-- RandomAccessIter * local_bin = bins + ii;
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- for(RandomAccessIter * target_bin = (bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)); target_bin != local_bin;
|
|
|
-- target_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)) {
|
|
|
-- data_type tmp;
|
|
|
-- RandomAccessIter b = (*target_bin)++;
|
|
|
-- RandomAccessIter * b_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(b) >> log_divisor) - div_min);
|
|
|
-- //Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs
|
|
|
-- if (b_bin != local_bin) {
|
|
|
-- RandomAccessIter c = (*b_bin)++;
|
|
|
-- tmp = *c;
|
|
|
-- *c = *b;
|
|
|
-- }
|
|
|
-- else
|
|
|
-- tmp = *b;
|
|
|
-- *b = *current;
|
|
|
-- *current = tmp;
|
|
|
-- }
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-- inline void float_swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii
|
|
|
-- , const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min)
|
|
|
-- {
|
|
|
-- nextbinstart += bin_sizes[ii];
|
|
|
-- inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, log_divisor, div_min);
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class cast_type>
|
|
|
-- inline void
|
|
|
-- find_extremes(RandomAccessIter current, RandomAccessIter last, cast_type & max, cast_type & min)
|
|
|
-- {
|
|
|
-- min = max = cast_float_iter<cast_type, RandomAccessIter>(current);
|
|
|
-- while(++current < last) {
|
|
|
-- cast_type value = cast_float_iter<cast_type, RandomAccessIter>(current);
|
|
|
-- if(max < value)
|
|
|
-- max = value;
|
|
|
-- else if(value < min)
|
|
|
-- min = value;
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Special-case sorting of positive floats with casting instead of a right_shift
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-- inline void
|
|
|
-- positive_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes)
|
|
|
-- {
|
|
|
-- div_type max, min;
|
|
|
-- find_extremes(first, last, max, min);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-- div_type div_min = min >> log_divisor;
|
|
|
-- div_type div_max = max >> log_divisor;
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
|
-- bins[0] = first;
|
|
|
-- for(unsigned u = 0; u < bin_count - 1; u++)
|
|
|
-- bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- for(unsigned u = 0; u < bin_count - 1; ++u)
|
|
|
-- float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, bin_sizes, log_divisor, div_min);
|
|
|
-- bins[bin_count - 1] = last;
|
|
|
--
|
|
|
-- //Return if we've completed bucketsorting
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Recursing
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[u]);
|
|
|
-- else
|
|
|
-- positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Sorting negative_ float_s
|
|
|
-- //Note that bins are iterated in reverse order because max_neg_float = min_neg_int
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-- inline void
|
|
|
-- negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes)
|
|
|
-- {
|
|
|
-- div_type max, min;
|
|
|
-- find_extremes(first, last, max, min);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-- div_type div_min = min >> log_divisor;
|
|
|
-- div_type div_max = max >> log_divisor;
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
|
-- bins[bin_count - 1] = first;
|
|
|
-- for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
|
-- bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- //The last bin will always have the correct elements in it
|
|
|
-- for(int ii = bin_count - 1; ii > 0; --ii)
|
|
|
-- float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, bin_sizes, log_divisor, div_min);
|
|
|
-- //Since we don't process the last bin, we need to update its end position
|
|
|
-- bin_cache[cache_offset] = last;
|
|
|
--
|
|
|
-- //Return if we've completed bucketsorting
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Recursing
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
|
-- size_t count = bin_cache[ii] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[ii]);
|
|
|
-- else
|
|
|
-- negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Sorting negative_ float_s
|
|
|
-- //Note that bins are iterated in reverse order because max_neg_float = min_neg_int
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-- inline void
|
|
|
-- negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes, right_shift shift)
|
|
|
-- {
|
|
|
-- div_type max, min;
|
|
|
-- find_extremes(first, last, max, min, shift);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-- div_type div_min = min >> log_divisor;
|
|
|
-- div_type div_max = max >> log_divisor;
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-- bins[bin_count - 1] = first;
|
|
|
-- for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
|
-- bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- //The last bin will always have the correct elements in it
|
|
|
-- for(int ii = bin_count - 1; ii > 0; --ii)
|
|
|
-- swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
|
-- //Since we don't process the last bin, we need to update its end position
|
|
|
-- bin_cache[cache_offset] = last;
|
|
|
--
|
|
|
-- //Return if we've completed bucketsorting
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Recursing
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
|
-- size_t count = bin_cache[ii] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[ii]);
|
|
|
-- else
|
|
|
-- negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-- inline void
|
|
|
-- negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
|
-- {
|
|
|
-- div_type max, min;
|
|
|
-- find_extremes(first, last, max, min, shift);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-- div_type div_min = min >> log_divisor;
|
|
|
-- div_type div_max = max >> log_divisor;
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-- bins[bin_count - 1] = first;
|
|
|
-- for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
|
-- bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- //The last bin will always have the correct elements in it
|
|
|
-- for(int ii = bin_count - 1; ii > 0; --ii)
|
|
|
-- swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
|
-- //Since we don't process the last bin, we need to update its end position
|
|
|
-- bin_cache[cache_offset] = last;
|
|
|
--
|
|
|
-- //Return if we've completed bucketsorting
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Recursing
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
|
-- size_t count = bin_cache[ii] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[ii], comp);
|
|
|
-- else
|
|
|
-- negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Casting special-case for floating-point sorting
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-- inline void
|
|
|
-- float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes)
|
|
|
-- {
|
|
|
-- div_type max, min;
|
|
|
-- find_extremes(first, last, max, min);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-- div_type div_min = min >> log_divisor;
|
|
|
-- div_type div_max = max >> log_divisor;
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
|
-- //The index of the first positive bin
|
|
|
-- div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
|
-- //Resetting if all bins are negative
|
|
|
-- if(cache_offset + first_positive > cache_end)
|
|
|
-- first_positive = cache_end - cache_offset;
|
|
|
-- //Reversing the order of the negative bins
|
|
|
-- //Note that because of the negative/positive ordering direction flip
|
|
|
-- //We can not depend upon bin order and positions matching up
|
|
|
-- //so bin_sizes must be reused to contain the end of the bin
|
|
|
-- if(first_positive > 0) {
|
|
|
-- bins[first_positive - 1] = first;
|
|
|
-- for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
|
-- bins[ii] = first + bin_sizes[ii + 1];
|
|
|
-- bin_sizes[ii] += bin_sizes[ii + 1];
|
|
|
-- }
|
|
|
-- //Handling positives following negatives
|
|
|
-- if((unsigned)first_positive < bin_count) {
|
|
|
-- bins[first_positive] = first + bin_sizes[0];
|
|
|
-- bin_sizes[first_positive] += bin_sizes[0];
|
|
|
-- }
|
|
|
-- }
|
|
|
-- else
|
|
|
-- bins[0] = first;
|
|
|
-- for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
|
-- bins[u + 1] = first + bin_sizes[u];
|
|
|
-- bin_sizes[u + 1] += bin_sizes[u];
|
|
|
-- }
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- for(unsigned u = 0; u < bin_count; ++u) {
|
|
|
-- nextbinstart = first + bin_sizes[u];
|
|
|
-- inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, log_divisor, div_min);
|
|
|
-- }
|
|
|
--
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Handling negative values first
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
|
-- size_t count = bin_cache[ii] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[ii]);
|
|
|
-- //sort negative values using reversed-bin spread_sort
|
|
|
-- else
|
|
|
-- negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
|
|
|
-- }
|
|
|
--
|
|
|
-- for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[u]);
|
|
|
-- //sort positive values using normal spread_sort
|
|
|
-- else
|
|
|
-- positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Functor implementation for recursive sorting
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-- inline void
|
|
|
-- float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes, right_shift shift)
|
|
|
-- {
|
|
|
-- div_type max, min;
|
|
|
-- find_extremes(first, last, max, min, shift);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-- div_type div_min = min >> log_divisor;
|
|
|
-- div_type div_max = max >> log_divisor;
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-- //The index of the first positive bin
|
|
|
-- div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
|
-- //Resetting if all bins are negative
|
|
|
-- if(cache_offset + first_positive > cache_end)
|
|
|
-- first_positive = cache_end - cache_offset;
|
|
|
-- //Reversing the order of the negative bins
|
|
|
-- //Note that because of the negative/positive ordering direction flip
|
|
|
-- //We can not depend upon bin order and positions matching up
|
|
|
-- //so bin_sizes must be reused to contain the end of the bin
|
|
|
-- if(first_positive > 0) {
|
|
|
-- bins[first_positive - 1] = first;
|
|
|
-- for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
|
-- bins[ii] = first + bin_sizes[ii + 1];
|
|
|
-- bin_sizes[ii] += bin_sizes[ii + 1];
|
|
|
-- }
|
|
|
-- //Handling positives following negatives
|
|
|
-- if((unsigned)first_positive < bin_count) {
|
|
|
-- bins[first_positive] = first + bin_sizes[0];
|
|
|
-- bin_sizes[first_positive] += bin_sizes[0];
|
|
|
-- }
|
|
|
-- }
|
|
|
-- else
|
|
|
-- bins[0] = first;
|
|
|
-- for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
|
-- bins[u + 1] = first + bin_sizes[u];
|
|
|
-- bin_sizes[u + 1] += bin_sizes[u];
|
|
|
-- }
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- for(unsigned u = 0; u < bin_count; ++u) {
|
|
|
-- nextbinstart = first + bin_sizes[u];
|
|
|
-- inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Return if we've completed bucketsorting
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Handling negative values first
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
|
-- size_t count = bin_cache[ii] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[ii]);
|
|
|
-- //sort negative values using reversed-bin spread_sort
|
|
|
-- else
|
|
|
-- negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift);
|
|
|
-- }
|
|
|
--
|
|
|
-- for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[u]);
|
|
|
-- //sort positive values using normal spread_sort
|
|
|
-- else
|
|
|
-- spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-- inline void
|
|
|
-- float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-- , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
|
-- {
|
|
|
-- div_type max, min;
|
|
|
-- find_extremes(first, last, max, min, shift);
|
|
|
-- if(max == min)
|
|
|
-- return;
|
|
|
-- unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-- div_type div_min = min >> log_divisor;
|
|
|
-- div_type div_max = max >> log_divisor;
|
|
|
-- unsigned bin_count = div_max - div_min + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
--
|
|
|
-- //Calculating the size of each bin
|
|
|
-- for (RandomAccessIter current = first; current != last;)
|
|
|
-- bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-- //The index of the first positive bin
|
|
|
-- div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
|
-- //Resetting if all bins are negative
|
|
|
-- if(cache_offset + first_positive > cache_end)
|
|
|
-- first_positive = cache_end - cache_offset;
|
|
|
-- //Reversing the order of the negative bins
|
|
|
-- //Note that because of the negative/positive ordering direction flip
|
|
|
-- //We can not depend upon bin order and positions matching up
|
|
|
-- //so bin_sizes must be reused to contain the end of the bin
|
|
|
-- if(first_positive > 0) {
|
|
|
-- bins[first_positive - 1] = first;
|
|
|
-- for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
|
-- bins[ii] = first + bin_sizes[ii + 1];
|
|
|
-- bin_sizes[ii] += bin_sizes[ii + 1];
|
|
|
-- }
|
|
|
-- //Handling positives following negatives
|
|
|
-- if((unsigned)first_positive < bin_count) {
|
|
|
-- bins[first_positive] = first + bin_sizes[0];
|
|
|
-- bin_sizes[first_positive] += bin_sizes[0];
|
|
|
-- }
|
|
|
-- }
|
|
|
-- else
|
|
|
-- bins[0] = first;
|
|
|
-- for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
|
-- bins[u + 1] = first + bin_sizes[u];
|
|
|
-- bin_sizes[u + 1] += bin_sizes[u];
|
|
|
-- }
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- for(unsigned u = 0; u < bin_count; ++u) {
|
|
|
-- nextbinstart = first + bin_sizes[u];
|
|
|
-- inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Return if we've completed bucketsorting
|
|
|
-- if(!log_divisor)
|
|
|
-- return;
|
|
|
--
|
|
|
-- //Handling negative values first
|
|
|
-- size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
|
-- size_t count = bin_cache[ii] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[ii]);
|
|
|
-- //sort negative values using reversed-bin spread_sort
|
|
|
-- else
|
|
|
-- negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
|
-- }
|
|
|
--
|
|
|
-- for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- if(count < max_count)
|
|
|
-- std::sort(lastPos, bin_cache[u]);
|
|
|
-- //sort positive values using normal spread_sort
|
|
|
-- else
|
|
|
-- spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class cast_type, class data_type>
|
|
|
-- inline void
|
|
|
-- float_Sort(RandomAccessIter first, RandomAccessIter last, cast_type, data_type)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- float_sort_rec<RandomAccessIter, cast_type, data_type>(first, last, bin_cache, 0, bin_sizes);
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-- inline void
|
|
|
-- float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift);
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-- inline void
|
|
|
-- float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift, comp);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //float_sort with casting
|
|
|
-- //The cast_type must be equal in size to the data type, and must be a signed integer
|
|
|
-- template <class RandomAccessIter, class cast_type>
|
|
|
-- inline void float_sort_cast(RandomAccessIter first, RandomAccessIter last, cast_type cVal)
|
|
|
-- {
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last);
|
|
|
-- else
|
|
|
-- detail::float_Sort(first, last, cVal, *first);
|
|
|
-- }
|
|
|
--
|
|
|
-- //float_sort with casting to an int
|
|
|
-- //Only use this with IEEE floating-point numbers
|
|
|
-- template <class RandomAccessIter>
|
|
|
-- inline void float_sort_cast_to_int(RandomAccessIter first, RandomAccessIter last)
|
|
|
-- {
|
|
|
-- int cVal = 0;
|
|
|
-- float_sort_cast(first, last, cVal);
|
|
|
-- }
|
|
|
--
|
|
|
-- //float_sort with functors
|
|
|
-- template <class RandomAccessIter, class right_shift>
|
|
|
-- inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift)
|
|
|
-- {
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last);
|
|
|
-- else
|
|
|
-- detail::float_Sort(first, last, shift(*first, 0), *first, shift);
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class right_shift, class compare>
|
|
|
-- inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift, compare comp)
|
|
|
-- {
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last, comp);
|
|
|
-- else
|
|
|
-- detail::float_Sort(first, last, shift(*first, 0), *first, shift, comp);
|
|
|
-- }
|
|
|
--
|
|
|
-- //------------------------------------------------- string_sort source ---------------------------------------------
|
|
|
-- namespace detail {
|
|
|
-- //Offsetting on identical characters. This function works a character at a time for optimal worst-case performance.
|
|
|
-- template<class RandomAccessIter>
|
|
|
-- inline void
|
|
|
-- update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset)
|
|
|
-- {
|
|
|
-- unsigned nextOffset = char_offset;
|
|
|
-- bool done = false;
|
|
|
-- while(!done) {
|
|
|
-- RandomAccessIter curr = first;
|
|
|
-- do {
|
|
|
-- //ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character
|
|
|
-- if((*curr).size() > char_offset && ((*curr).size() <= (nextOffset + 1) || (*curr)[nextOffset] != (*first)[nextOffset])) {
|
|
|
-- done = true;
|
|
|
-- break;
|
|
|
-- }
|
|
|
-- } while(++curr != finish);
|
|
|
-- if(!done)
|
|
|
-- ++nextOffset;
|
|
|
-- }
|
|
|
-- char_offset = nextOffset;
|
|
|
-- }
|
|
|
--
|
|
|
-- //Offsetting on identical characters. This function works a character at a time for optimal worst-case performance.
|
|
|
-- template<class RandomAccessIter, class get_char, class get_length>
|
|
|
-- inline void
|
|
|
-- update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset, get_char getchar, get_length length)
|
|
|
-- {
|
|
|
-- unsigned nextOffset = char_offset;
|
|
|
-- bool done = false;
|
|
|
-- while(!done) {
|
|
|
-- RandomAccessIter curr = first;
|
|
|
-- do {
|
|
|
-- //ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character
|
|
|
-- if(length(*curr) > char_offset && (length(*curr) <= (nextOffset + 1) || getchar((*curr), nextOffset) != getchar((*first), nextOffset))) {
|
|
|
-- done = true;
|
|
|
-- break;
|
|
|
-- }
|
|
|
-- } while(++curr != finish);
|
|
|
-- if(!done)
|
|
|
-- ++nextOffset;
|
|
|
-- }
|
|
|
-- char_offset = nextOffset;
|
|
|
-- }
|
|
|
--
|
|
|
-- //A comparison functor for strings that assumes they are identical up to char_offset
|
|
|
-- template<class data_type, class unsignedchar_type>
|
|
|
-- struct offset_lessthan {
|
|
|
-- offset_lessthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
|
-- inline bool operator()(const data_type &x, const data_type &y) const
|
|
|
-- {
|
|
|
-- unsigned minSize = std::min(x.size(), y.size());
|
|
|
-- for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
|
-- if(static_cast<unsignedchar_type>(x[u]) < static_cast<unsignedchar_type>(y[u]))
|
|
|
-- return true;
|
|
|
-- else if(static_cast<unsignedchar_type>(y[u]) < static_cast<unsignedchar_type>(x[u]))
|
|
|
-- return false;
|
|
|
-- }
|
|
|
-- return x.size() < y.size();
|
|
|
-- }
|
|
|
-- unsigned fchar_offset;
|
|
|
-- };
|
|
|
--
|
|
|
-- //A comparison functor for strings that assumes they are identical up to char_offset
|
|
|
-- template<class data_type, class unsignedchar_type>
|
|
|
-- struct offset_greaterthan {
|
|
|
-- offset_greaterthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
|
-- inline bool operator()(const data_type &x, const data_type &y) const
|
|
|
-- {
|
|
|
-- unsigned minSize = std::min(x.size(), y.size());
|
|
|
-- for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
|
-- if(static_cast<unsignedchar_type>(x[u]) > static_cast<unsignedchar_type>(y[u]))
|
|
|
-- return true;
|
|
|
-- else if(static_cast<unsignedchar_type>(y[u]) > static_cast<unsignedchar_type>(x[u]))
|
|
|
-- return false;
|
|
|
-- }
|
|
|
-- return x.size() > y.size();
|
|
|
-- }
|
|
|
-- unsigned fchar_offset;
|
|
|
-- };
|
|
|
--
|
|
|
-- //A comparison functor for strings that assumes they are identical up to char_offset
|
|
|
-- template<class data_type, class get_char, class get_length>
|
|
|
-- struct offset_char_lessthan {
|
|
|
-- offset_char_lessthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
|
-- inline bool operator()(const data_type &x, const data_type &y) const
|
|
|
-- {
|
|
|
-- unsigned minSize = std::min(length(x), length(y));
|
|
|
-- for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
|
-- if(getchar(x, u) < getchar(y, u))
|
|
|
-- return true;
|
|
|
-- else if(getchar(y, u) < getchar(x, u))
|
|
|
-- return false;
|
|
|
-- }
|
|
|
-- return length(x) < length(y);
|
|
|
-- }
|
|
|
-- unsigned fchar_offset;
|
|
|
-- get_char getchar;
|
|
|
-- get_length length;
|
|
|
-- };
|
|
|
--
|
|
|
-- //String sorting recursive implementation
|
|
|
-- template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
|
-- inline void
|
|
|
-- string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-- , unsigned cache_offset, std::vector<size_t> &bin_sizes)
|
|
|
-- {
|
|
|
-- //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-- //Iterate to the end of the empties. If all empty, return
|
|
|
-- while((*first).size() <= char_offset) {
|
|
|
-- if(++first == last)
|
|
|
-- return;
|
|
|
-- }
|
|
|
-- RandomAccessIter finish = last - 1;
|
|
|
-- //Getting the last non-empty
|
|
|
-- for(;(*finish).size() <= char_offset; --finish) { }
|
|
|
-- ++finish;
|
|
|
-- //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
|
-- update_offset(first, finish, char_offset);
|
|
|
--
|
|
|
-- const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-- //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-- const unsigned max_size = bin_count;
|
|
|
-- const unsigned membin_count = bin_count + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
--
|
|
|
-- //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-- for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-- if((*current).size() <= char_offset) {
|
|
|
-- bin_sizes[0]++;
|
|
|
-- }
|
|
|
-- else
|
|
|
-- bin_sizes[static_cast<unsignedchar_type>((*current)[char_offset]) + 1]++;
|
|
|
-- }
|
|
|
-- //Assign the bin positions
|
|
|
-- bin_cache[cache_offset] = first;
|
|
|
-- for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-- bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- //handling empty bins
|
|
|
-- RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
|
-- nextbinstart += bin_sizes[0];
|
|
|
-- RandomAccessIter * target_bin;
|
|
|
-- //Iterating over each element in the bin of empties
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //empties belong in this bin
|
|
|
-- while((*current).size() > char_offset) {
|
|
|
-- target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]);
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-- unsigned last_bin = bin_count - 1;
|
|
|
-- for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
|
-- //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-- for(unsigned u = 0; u < last_bin; ++u) {
|
|
|
-- local_bin = bins + u;
|
|
|
-- nextbinstart += bin_sizes[u + 1];
|
|
|
-- //Iterating over each element in this bin
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-- for(target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin;
|
|
|
-- target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]))
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- }
|
|
|
-- bins[last_bin] = last;
|
|
|
-- //Recursing
|
|
|
-- RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
|
-- //Skip this loop for empties
|
|
|
-- for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- //don't sort unless there are at least two items to compare
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- //using std::sort if its worst-case is better
|
|
|
-- if(count < max_size)
|
|
|
-- std::sort(lastPos, bin_cache[u], offset_lessthan<data_type, unsignedchar_type>(char_offset + 1));
|
|
|
-- else
|
|
|
-- string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Sorts strings in reverse order, with empties at the end
|
|
|
-- template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
|
-- inline void
|
|
|
-- reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-- , unsigned cache_offset, std::vector<size_t> &bin_sizes)
|
|
|
-- {
|
|
|
-- //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-- RandomAccessIter curr = first;
|
|
|
-- //Iterate to the end of the empties. If all empty, return
|
|
|
-- while((*curr).size() <= char_offset) {
|
|
|
-- if(++curr == last)
|
|
|
-- return;
|
|
|
-- }
|
|
|
-- //Getting the last non-empty
|
|
|
-- while((*(--last)).size() <= char_offset) { }
|
|
|
-- ++last;
|
|
|
-- //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
|
-- update_offset(curr, last, char_offset);
|
|
|
-- RandomAccessIter * target_bin;
|
|
|
--
|
|
|
-- const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-- //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-- const unsigned max_size = bin_count;
|
|
|
-- const unsigned membin_count = bin_count + 1;
|
|
|
-- const unsigned max_bin = bin_count - 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count);
|
|
|
-- RandomAccessIter * end_bin = &(bin_cache[cache_offset + max_bin]);
|
|
|
--
|
|
|
-- //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-- for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-- if((*current).size() <= char_offset) {
|
|
|
-- bin_sizes[bin_count]++;
|
|
|
-- }
|
|
|
-- else
|
|
|
-- bin_sizes[max_bin - static_cast<unsignedchar_type>((*current)[char_offset])]++;
|
|
|
-- }
|
|
|
-- //Assign the bin positions
|
|
|
-- bin_cache[cache_offset] = first;
|
|
|
-- for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-- bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = last;
|
|
|
-- //handling empty bins
|
|
|
-- RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]);
|
|
|
-- RandomAccessIter lastFull = *local_bin;
|
|
|
-- //Iterating over each element in the bin of empties
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //empties belong in this bin
|
|
|
-- while((*current).size() > char_offset) {
|
|
|
-- target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]);
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- nextbinstart = first;
|
|
|
-- //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-- unsigned last_bin = max_bin;
|
|
|
-- for(; last_bin && !bin_sizes[last_bin]; --last_bin) { }
|
|
|
-- //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-- for(unsigned u = 0; u < last_bin; ++u) {
|
|
|
-- local_bin = bins + u;
|
|
|
-- nextbinstart += bin_sizes[u];
|
|
|
-- //Iterating over each element in this bin
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-- for(target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin;
|
|
|
-- target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]))
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- }
|
|
|
-- bins[last_bin] = lastFull;
|
|
|
-- //Recursing
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- //Skip this loop for empties
|
|
|
-- for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- //don't sort unless there are at least two items to compare
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- //using std::sort if its worst-case is better
|
|
|
-- if(count < max_size)
|
|
|
-- std::sort(lastPos, bin_cache[u], offset_greaterthan<data_type, unsignedchar_type>(char_offset + 1));
|
|
|
-- else
|
|
|
-- reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //String sorting recursive implementation
|
|
|
-- template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length>
|
|
|
-- inline void
|
|
|
-- string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-- , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length)
|
|
|
-- {
|
|
|
-- //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-- //Iterate to the end of the empties. If all empty, return
|
|
|
-- while(length(*first) <= char_offset) {
|
|
|
-- if(++first == last)
|
|
|
-- return;
|
|
|
-- }
|
|
|
-- RandomAccessIter finish = last - 1;
|
|
|
-- //Getting the last non-empty
|
|
|
-- for(;length(*finish) <= char_offset; --finish) { }
|
|
|
-- ++finish;
|
|
|
-- update_offset(first, finish, char_offset, getchar, length);
|
|
|
--
|
|
|
-- const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-- //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-- const unsigned max_size = bin_count;
|
|
|
-- const unsigned membin_count = bin_count + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
--
|
|
|
-- //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-- for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-- if(length(*current) <= char_offset) {
|
|
|
-- bin_sizes[0]++;
|
|
|
-- }
|
|
|
-- else
|
|
|
-- bin_sizes[getchar((*current), char_offset) + 1]++;
|
|
|
-- }
|
|
|
-- //Assign the bin positions
|
|
|
-- bin_cache[cache_offset] = first;
|
|
|
-- for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-- bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- //handling empty bins
|
|
|
-- RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
|
-- nextbinstart += bin_sizes[0];
|
|
|
-- RandomAccessIter * target_bin;
|
|
|
-- //Iterating over each element in the bin of empties
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //empties belong in this bin
|
|
|
-- while(length(*current) > char_offset) {
|
|
|
-- target_bin = bins + getchar((*current), char_offset);
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-- unsigned last_bin = bin_count - 1;
|
|
|
-- for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
|
-- //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-- for(unsigned ii = 0; ii < last_bin; ++ii) {
|
|
|
-- local_bin = bins + ii;
|
|
|
-- nextbinstart += bin_sizes[ii + 1];
|
|
|
-- //Iterating over each element in this bin
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-- for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin;
|
|
|
-- target_bin = bins + getchar((*current), char_offset))
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- }
|
|
|
-- bins[last_bin] = last;
|
|
|
--
|
|
|
-- //Recursing
|
|
|
-- RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
|
-- //Skip this loop for empties
|
|
|
-- for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- //don't sort unless there are at least two items to compare
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- //using std::sort if its worst-case is better
|
|
|
-- if(count < max_size)
|
|
|
-- std::sort(lastPos, bin_cache[u], offset_char_lessthan<data_type, get_char, get_length>(char_offset + 1));
|
|
|
-- else
|
|
|
-- string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //String sorting recursive implementation
|
|
|
-- template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare>
|
|
|
-- inline void
|
|
|
-- string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-- , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp)
|
|
|
-- {
|
|
|
-- //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-- //Iterate to the end of the empties. If all empty, return
|
|
|
-- while(length(*first) <= char_offset) {
|
|
|
-- if(++first == last)
|
|
|
-- return;
|
|
|
-- }
|
|
|
-- RandomAccessIter finish = last - 1;
|
|
|
-- //Getting the last non-empty
|
|
|
-- for(;length(*finish) <= char_offset; --finish) { }
|
|
|
-- ++finish;
|
|
|
-- update_offset(first, finish, char_offset, getchar, length);
|
|
|
--
|
|
|
-- const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-- //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-- const unsigned max_size = bin_count;
|
|
|
-- const unsigned membin_count = bin_count + 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
--
|
|
|
-- //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-- for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-- if(length(*current) <= char_offset) {
|
|
|
-- bin_sizes[0]++;
|
|
|
-- }
|
|
|
-- else
|
|
|
-- bin_sizes[getchar((*current), char_offset) + 1]++;
|
|
|
-- }
|
|
|
-- //Assign the bin positions
|
|
|
-- bin_cache[cache_offset] = first;
|
|
|
-- for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-- bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = first;
|
|
|
-- //handling empty bins
|
|
|
-- RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
|
-- nextbinstart += bin_sizes[0];
|
|
|
-- RandomAccessIter * target_bin;
|
|
|
-- //Iterating over each element in the bin of empties
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //empties belong in this bin
|
|
|
-- while(length(*current) > char_offset) {
|
|
|
-- target_bin = bins + getchar((*current), char_offset);
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-- unsigned last_bin = bin_count - 1;
|
|
|
-- for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
|
-- //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-- for(unsigned u = 0; u < last_bin; ++u) {
|
|
|
-- local_bin = bins + u;
|
|
|
-- nextbinstart += bin_sizes[u + 1];
|
|
|
-- //Iterating over each element in this bin
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-- for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin;
|
|
|
-- target_bin = bins + getchar((*current), char_offset))
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- }
|
|
|
-- bins[last_bin] = last;
|
|
|
--
|
|
|
-- //Recursing
|
|
|
-- RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
|
-- //Skip this loop for empties
|
|
|
-- for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- //don't sort unless there are at least two items to compare
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- //using std::sort if its worst-case is better
|
|
|
-- if(count < max_size)
|
|
|
-- std::sort(lastPos, bin_cache[u], comp);
|
|
|
-- else
|
|
|
-- string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos
|
|
|
-- , bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Sorts strings in reverse order, with empties at the end
|
|
|
-- template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare>
|
|
|
-- inline void
|
|
|
-- reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-- , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp)
|
|
|
-- {
|
|
|
-- //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-- RandomAccessIter curr = first;
|
|
|
-- //Iterate to the end of the empties. If all empty, return
|
|
|
-- while(length(*curr) <= char_offset) {
|
|
|
-- if(++curr == last)
|
|
|
-- return;
|
|
|
-- }
|
|
|
-- //Getting the last non-empty
|
|
|
-- while(length(*(--last)) <= char_offset) { }
|
|
|
-- ++last;
|
|
|
-- //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
|
-- update_offset(first, last, char_offset, getchar, length);
|
|
|
--
|
|
|
-- const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-- //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-- const unsigned max_size = bin_count;
|
|
|
-- const unsigned membin_count = bin_count + 1;
|
|
|
-- const unsigned max_bin = bin_count - 1;
|
|
|
-- unsigned cache_end;
|
|
|
-- RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count);
|
|
|
-- RandomAccessIter *end_bin = &(bin_cache[cache_offset + max_bin]);
|
|
|
--
|
|
|
-- //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-- for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-- if(length(*current) <= char_offset) {
|
|
|
-- bin_sizes[bin_count]++;
|
|
|
-- }
|
|
|
-- else
|
|
|
-- bin_sizes[max_bin - getchar((*current), char_offset)]++;
|
|
|
-- }
|
|
|
-- //Assign the bin positions
|
|
|
-- bin_cache[cache_offset] = first;
|
|
|
-- for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-- bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
--
|
|
|
-- //Swap into place
|
|
|
-- RandomAccessIter nextbinstart = last;
|
|
|
-- //handling empty bins
|
|
|
-- RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]);
|
|
|
-- RandomAccessIter lastFull = *local_bin;
|
|
|
-- RandomAccessIter * target_bin;
|
|
|
-- //Iterating over each element in the bin of empties
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //empties belong in this bin
|
|
|
-- while(length(*current) > char_offset) {
|
|
|
-- target_bin = end_bin - getchar((*current), char_offset);
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- nextbinstart = first;
|
|
|
-- //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-- unsigned last_bin = max_bin;
|
|
|
-- for(; last_bin && !bin_sizes[last_bin]; --last_bin) { }
|
|
|
-- //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-- for(unsigned u = 0; u < last_bin; ++u) {
|
|
|
-- local_bin = bins + u;
|
|
|
-- nextbinstart += bin_sizes[u];
|
|
|
-- //Iterating over each element in this bin
|
|
|
-- for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-- //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-- for(target_bin = end_bin - getchar((*current), char_offset); target_bin != local_bin;
|
|
|
-- target_bin = end_bin - getchar((*current), char_offset))
|
|
|
-- iter_swap(current, (*target_bin)++);
|
|
|
-- }
|
|
|
-- *local_bin = nextbinstart;
|
|
|
-- }
|
|
|
-- bins[last_bin] = lastFull;
|
|
|
-- //Recursing
|
|
|
-- RandomAccessIter lastPos = first;
|
|
|
-- //Skip this loop for empties
|
|
|
-- for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) {
|
|
|
-- size_t count = bin_cache[u] - lastPos;
|
|
|
-- //don't sort unless there are at least two items to compare
|
|
|
-- if(count < 2)
|
|
|
-- continue;
|
|
|
-- //using std::sort if its worst-case is better
|
|
|
-- if(count < max_size)
|
|
|
-- std::sort(lastPos, bin_cache[u], comp);
|
|
|
-- else
|
|
|
-- reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos
|
|
|
-- , bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Holds the bin vector and makes the initial recursive call
|
|
|
-- template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
|
-- inline void
|
|
|
-- string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Holds the bin vector and makes the initial recursive call
|
|
|
-- template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
|
-- inline void
|
|
|
-- reverse_string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Holds the bin vector and makes the initial recursive call
|
|
|
-- template <class RandomAccessIter, class get_char, class get_length, class data_type, class unsignedchar_type>
|
|
|
-- inline void
|
|
|
-- string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, data_type, unsignedchar_type)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Holds the bin vector and makes the initial recursive call
|
|
|
-- template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type>
|
|
|
-- inline void
|
|
|
-- string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Holds the bin vector and makes the initial recursive call
|
|
|
-- template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type>
|
|
|
-- inline void
|
|
|
-- reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type)
|
|
|
-- {
|
|
|
-- std::vector<size_t> bin_sizes;
|
|
|
-- std::vector<RandomAccessIter> bin_cache;
|
|
|
-- reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp);
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- //Allows character-type overloads
|
|
|
-- template <class RandomAccessIter, class unsignedchar_type>
|
|
|
-- inline void string_sort(RandomAccessIter first, RandomAccessIter last, unsignedchar_type unused)
|
|
|
-- {
|
|
|
-- //Don't sort if it's too small to optimize
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last);
|
|
|
-- else
|
|
|
-- detail::string_sort(first, last, *first, unused);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Top-level sorting call; wraps using default of unsigned char
|
|
|
-- template <class RandomAccessIter>
|
|
|
-- inline void string_sort(RandomAccessIter first, RandomAccessIter last)
|
|
|
-- {
|
|
|
-- unsigned char unused = '\0';
|
|
|
-- string_sort(first, last, unused);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Allows character-type overloads
|
|
|
-- template <class RandomAccessIter, class compare, class unsignedchar_type>
|
|
|
-- inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp, unsignedchar_type unused)
|
|
|
-- {
|
|
|
-- //Don't sort if it's too small to optimize
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last, comp);
|
|
|
-- else
|
|
|
-- detail::reverse_string_sort(first, last, *first, unused);
|
|
|
-- }
|
|
|
--
|
|
|
-- //Top-level sorting call; wraps using default of unsigned char
|
|
|
-- template <class RandomAccessIter, class compare>
|
|
|
-- inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp)
|
|
|
-- {
|
|
|
-- unsigned char unused = '\0';
|
|
|
-- reverse_string_sort(first, last, comp, unused);
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class get_char, class get_length>
|
|
|
-- inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length)
|
|
|
-- {
|
|
|
-- //Don't sort if it's too small to optimize
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last);
|
|
|
-- else {
|
|
|
-- //skipping past empties at the beginning, which allows us to get the character type
|
|
|
-- //.empty() is not used so as not to require a user declaration of it
|
|
|
-- while(!length(*first)) {
|
|
|
-- if(++first == last)
|
|
|
-- return;
|
|
|
-- }
|
|
|
-- detail::string_sort(first, last, getchar, length, *first, getchar((*first), 0));
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class get_char, class get_length, class compare>
|
|
|
-- inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp)
|
|
|
-- {
|
|
|
-- //Don't sort if it's too small to optimize
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last, comp);
|
|
|
-- else {
|
|
|
-- //skipping past empties at the beginning, which allows us to get the character type
|
|
|
-- //.empty() is not used so as not to require a user declaration of it
|
|
|
-- while(!length(*first)) {
|
|
|
-- if(++first == last)
|
|
|
-- return;
|
|
|
-- }
|
|
|
-- detail::string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0));
|
|
|
-- }
|
|
|
-- }
|
|
|
--
|
|
|
-- template <class RandomAccessIter, class get_char, class get_length, class compare>
|
|
|
-- inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp)
|
|
|
-- {
|
|
|
-- //Don't sort if it's too small to optimize
|
|
|
-- if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-- std::sort(first, last, comp);
|
|
|
-- else {
|
|
|
-- //skipping past empties at the beginning, which allows us to get the character type
|
|
|
-- //.empty() is not used so as not to require a user declaration of it
|
|
|
-- while(!length(*(--last))) {
|
|
|
-- //Note: if there is just one non-empty, and it's at the beginning, then it's already in sorted order
|
|
|
-- if(first == last)
|
|
|
-- return;
|
|
|
-- }
|
|
|
-- //making last just after the end of the non-empty part of the array
|
|
|
-- ++last;
|
|
|
-- detail::reverse_string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0));
|
|
|
-- }
|
|
|
-- }
|
|
|
--}
|
|
|
--
|
|
|
--#endif
|
|
|
-+//Templated spread_sort library
|
|
|
-+
|
|
|
-+// Copyright Steven J. Ross 2001 - 2009.
|
|
|
-+// Distributed under the Boost Software License, Version 1.0.
|
|
|
-+// (See accompanying file LICENSE_1_0.txt or copy at
|
|
|
-+// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
-+
|
|
|
-+// See http://www.boost.org/ for updates, documentation, and revision history.
|
|
|
-+
|
|
|
-+/*
|
|
|
-+Some improvements suggested by:
|
|
|
-+Phil Endecott and Frank Gennari
|
|
|
-+Cygwin fix provided by:
|
|
|
-+Scott McMurray
|
|
|
-+*/
|
|
|
-+
|
|
|
-+#ifndef BOOST_SPREAD_SORT_H
|
|
|
-+#define BOOST_SPREAD_SORT_H
|
|
|
-+#include <algorithm>
|
|
|
-+#include <cstring>
|
|
|
-+#include <vector>
|
|
|
-+#include "webrtc/system_wrappers/source/spreadsortlib/constants.hpp"
|
|
|
-+
|
|
|
-+#include <features.h>
|
|
|
-+#if defined(__UCLIBC__)
|
|
|
-+#undef getchar
|
|
|
-+#endif
|
|
|
-+
|
|
|
-+
|
|
|
-+namespace boost {
|
|
|
-+ namespace detail {
|
|
|
-+ //This only works on unsigned data types
|
|
|
-+ template <typename T>
|
|
|
-+ inline unsigned
|
|
|
-+ rough_log_2_size(const T& input)
|
|
|
-+ {
|
|
|
-+ unsigned result = 0;
|
|
|
-+ //The && is necessary on some compilers to avoid infinite loops; it doesn't significantly impair performance
|
|
|
-+ while((input >> result) && (result < (8*sizeof(T)))) ++result;
|
|
|
-+ return result;
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Gets the maximum size which we'll call spread_sort on to control worst-case performance
|
|
|
-+ //Maintains both a minimum size to recurse and a check of distribution size versus count
|
|
|
-+ //This is called for a set of bins, instead of bin-by-bin, to avoid performance overhead
|
|
|
-+ inline size_t
|
|
|
-+ get_max_count(unsigned log_range, size_t count)
|
|
|
-+ {
|
|
|
-+ unsigned divisor = rough_log_2_size(count);
|
|
|
-+ //Making sure the divisor is positive
|
|
|
-+ if(divisor > LOG_MEAN_BIN_SIZE)
|
|
|
-+ divisor -= LOG_MEAN_BIN_SIZE;
|
|
|
-+ else
|
|
|
-+ divisor = 1;
|
|
|
-+ unsigned relative_width = (LOG_CONST * log_range)/((divisor > MAX_SPLITS) ? MAX_SPLITS : divisor);
|
|
|
-+ //Don't try to bitshift more than the size of an element
|
|
|
-+ if((8*sizeof(size_t)) <= relative_width)
|
|
|
-+ relative_width = (8*sizeof(size_t)) - 1;
|
|
|
-+ return (size_t)1 << ((relative_width < (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT)) ?
|
|
|
-+ (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT) : relative_width);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Find the minimum and maximum using <
|
|
|
-+ template <class RandomAccessIter>
|
|
|
-+ inline void
|
|
|
-+ find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min)
|
|
|
-+ {
|
|
|
-+ min = max = current;
|
|
|
-+ //Start from the second item, as max and min are initialized to the first
|
|
|
-+ while(++current < last) {
|
|
|
-+ if(*max < *current)
|
|
|
-+ max = current;
|
|
|
-+ else if(*current < *min)
|
|
|
-+ min = current;
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Uses a user-defined comparison operator to find minimum and maximum
|
|
|
-+ template <class RandomAccessIter, class compare>
|
|
|
-+ inline void
|
|
|
-+ find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min, compare comp)
|
|
|
-+ {
|
|
|
-+ min = max = current;
|
|
|
-+ while(++current < last) {
|
|
|
-+ if(comp(*max, *current))
|
|
|
-+ max = current;
|
|
|
-+ else if(comp(*current, *min))
|
|
|
-+ min = current;
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Gets a non-negative right bit shift to operate as a logarithmic divisor
|
|
|
-+ inline int
|
|
|
-+ get_log_divisor(size_t count, unsigned log_range)
|
|
|
-+ {
|
|
|
-+ int log_divisor;
|
|
|
-+ //If we can finish in one iteration without exceeding either (2 to the MAX_SPLITS) or n bins, do so
|
|
|
-+ if((log_divisor = log_range - rough_log_2_size(count)) <= 0 && log_range < MAX_SPLITS)
|
|
|
-+ log_divisor = 0;
|
|
|
-+ else {
|
|
|
-+ //otherwise divide the data into an optimized number of pieces
|
|
|
-+ log_divisor += LOG_MEAN_BIN_SIZE;
|
|
|
-+ if(log_divisor < 0)
|
|
|
-+ log_divisor = 0;
|
|
|
-+ //Cannot exceed MAX_SPLITS or cache misses slow down bin lookups dramatically
|
|
|
-+ if((log_range - log_divisor) > MAX_SPLITS)
|
|
|
-+ log_divisor = log_range - MAX_SPLITS;
|
|
|
-+ }
|
|
|
-+ return log_divisor;
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter>
|
|
|
-+ inline RandomAccessIter *
|
|
|
-+ size_bins(std::vector<size_t> &bin_sizes, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset, unsigned &cache_end, unsigned bin_count)
|
|
|
-+ {
|
|
|
-+ //Assure space for the size of each bin, followed by initializing sizes
|
|
|
-+ if(bin_count > bin_sizes.size())
|
|
|
-+ bin_sizes.resize(bin_count);
|
|
|
-+ for(size_t u = 0; u < bin_count; u++)
|
|
|
-+ bin_sizes[u] = 0;
|
|
|
-+ //Make sure there is space for the bins
|
|
|
-+ cache_end = cache_offset + bin_count;
|
|
|
-+ if(cache_end > bin_cache.size())
|
|
|
-+ bin_cache.resize(cache_end);
|
|
|
-+ return &(bin_cache[cache_offset]);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Implementation for recursive integer sorting
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-+ inline void
|
|
|
-+ spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes)
|
|
|
-+ {
|
|
|
-+ //This step is roughly 10% of runtime, but it helps avoid worst-case behavior and improve behavior with real data
|
|
|
-+ //If you know the maximum and minimum ahead of time, you can pass those values in and skip this step for the first iteration
|
|
|
-+ RandomAccessIter max, min;
|
|
|
-+ find_extremes(first, last, max, min);
|
|
|
-+ //max and min will be the same (the first item) iff all values are equivalent
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ RandomAccessIter * target_bin;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(*max >> 0) - (*min >> 0)));
|
|
|
-+ div_type div_min = *min >> log_divisor;
|
|
|
-+ div_type div_max = *max >> log_divisor;
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[(*(current++) >> log_divisor) - div_min]++;
|
|
|
-+ //Assign the bin positions
|
|
|
-+ bins[0] = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count - 1; u++)
|
|
|
-+ bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count - 1; ++u) {
|
|
|
-+ RandomAccessIter * local_bin = bins + u;
|
|
|
-+ nextbinstart += bin_sizes[u];
|
|
|
-+ //Iterating over each element in this bin
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-+ for(target_bin = (bins + ((*current >> log_divisor) - div_min)); target_bin != local_bin;
|
|
|
-+ target_bin = bins + ((*current >> log_divisor) - div_min)) {
|
|
|
-+ //3-way swap; this is about 1% faster than a 2-way swap with integers
|
|
|
-+ //The main advantage is less copies are involved per item put in the correct place
|
|
|
-+ data_type tmp;
|
|
|
-+ RandomAccessIter b = (*target_bin)++;
|
|
|
-+ RandomAccessIter * b_bin = bins + ((*b >> log_divisor) - div_min);
|
|
|
-+ if (b_bin != local_bin) {
|
|
|
-+ RandomAccessIter c = (*b_bin)++;
|
|
|
-+ tmp = *c;
|
|
|
-+ *c = *b;
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ tmp = *b;
|
|
|
-+ *b = *current;
|
|
|
-+ *current = tmp;
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ }
|
|
|
-+ bins[bin_count - 1] = last;
|
|
|
-+
|
|
|
-+ //If we've bucketsorted, the array is sorted and we should skip recursion
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Recursing; log_divisor is the remaining range
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ //don't sort unless there are at least two items to compare
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ //using std::sort if its worst-case is better
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[u]);
|
|
|
-+ else
|
|
|
-+ spread_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Generic bitshift-based 3-way swapping code
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-+ inline void inner_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift
|
|
|
-+ , const unsigned log_divisor, const div_type div_min)
|
|
|
-+ {
|
|
|
-+ RandomAccessIter * local_bin = bins + ii;
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ for(RandomAccessIter * target_bin = (bins + (shift(*current, log_divisor) - div_min)); target_bin != local_bin;
|
|
|
-+ target_bin = bins + (shift(*current, log_divisor) - div_min)) {
|
|
|
-+ data_type tmp;
|
|
|
-+ RandomAccessIter b = (*target_bin)++;
|
|
|
-+ RandomAccessIter * b_bin = bins + (shift(*b, log_divisor) - div_min);
|
|
|
-+ //Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs
|
|
|
-+ if (b_bin != local_bin) {
|
|
|
-+ RandomAccessIter c = (*b_bin)++;
|
|
|
-+ tmp = *c;
|
|
|
-+ *c = *b;
|
|
|
-+ }
|
|
|
-+ //Note: we could increment current once the swap is done in this case, but that seems to impair performance
|
|
|
-+ else
|
|
|
-+ tmp = *b;
|
|
|
-+ *b = *current;
|
|
|
-+ *current = tmp;
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Standard swapping wrapper for ascending values
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-+ inline void swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift
|
|
|
-+ , const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min)
|
|
|
-+ {
|
|
|
-+ nextbinstart += bin_sizes[ii];
|
|
|
-+ inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, log_divisor, div_min);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Functor implementation for recursive sorting
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-+ inline void
|
|
|
-+ spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
|
-+ {
|
|
|
-+ RandomAccessIter max, min;
|
|
|
-+ find_extremes(first, last, max, min, comp);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0))));
|
|
|
-+ div_type div_min = shift(*min, log_divisor);
|
|
|
-+ div_type div_max = shift(*max, log_divisor);
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-+ bins[0] = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count - 1; u++)
|
|
|
-+ bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count - 1; ++u)
|
|
|
-+ swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, bin_sizes, log_divisor, div_min);
|
|
|
-+ bins[bin_count - 1] = last;
|
|
|
-+
|
|
|
-+ //If we've bucketsorted, the array is sorted and we should skip recursion
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Recursing
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[u], comp);
|
|
|
-+ else
|
|
|
-+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Functor implementation for recursive sorting with only Shift overridden
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-+ inline void
|
|
|
-+ spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes, right_shift shift)
|
|
|
-+ {
|
|
|
-+ RandomAccessIter max, min;
|
|
|
-+ find_extremes(first, last, max, min);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0))));
|
|
|
-+ div_type div_min = shift(*min, log_divisor);
|
|
|
-+ div_type div_max = shift(*max, log_divisor);
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-+ bins[0] = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count - 1; u++)
|
|
|
-+ bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ for(unsigned ii = 0; ii < bin_count - 1; ++ii)
|
|
|
-+ swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
|
-+ bins[bin_count - 1] = last;
|
|
|
-+
|
|
|
-+ //If we've bucketsorted, the array is sorted and we should skip recursion
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Recursing
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[u]);
|
|
|
-+ else
|
|
|
-+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Holds the bin vector and makes the initial recursive call
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-+ inline void
|
|
|
-+ spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ spread_sort_rec<RandomAccessIter, div_type, data_type>(first, last, bin_cache, 0, bin_sizes);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-+ inline void
|
|
|
-+ spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(first, last, bin_cache, 0, bin_sizes, shift, comp);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-+ inline void
|
|
|
-+ spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Top-level sorting call for integers
|
|
|
-+ template <class RandomAccessIter>
|
|
|
-+ inline void integer_sort(RandomAccessIter first, RandomAccessIter last)
|
|
|
-+ {
|
|
|
-+ //Don't sort if it's too small to optimize
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last);
|
|
|
-+ else
|
|
|
-+ detail::spread_sort(first, last, *first >> 0, *first);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //integer_sort with functors
|
|
|
-+ template <class RandomAccessIter, class right_shift, class compare>
|
|
|
-+ inline void integer_sort(RandomAccessIter first, RandomAccessIter last,
|
|
|
-+ right_shift shift, compare comp) {
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last, comp);
|
|
|
-+ else
|
|
|
-+ detail::spread_sort(first, last, shift(*first, 0), *first, shift, comp);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //integer_sort with right_shift functor
|
|
|
-+ template <class RandomAccessIter, class right_shift>
|
|
|
-+ inline void integer_sort(RandomAccessIter first, RandomAccessIter last,
|
|
|
-+ right_shift shift) {
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last);
|
|
|
-+ else
|
|
|
-+ detail::spread_sort(first, last, shift(*first, 0), *first, shift);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //------------------------------------------------------ float_sort source --------------------------------------
|
|
|
-+ //Casts a RandomAccessIter to the specified data type
|
|
|
-+ template<class cast_type, class RandomAccessIter>
|
|
|
-+ inline cast_type
|
|
|
-+ cast_float_iter(const RandomAccessIter & floatiter)
|
|
|
-+ {
|
|
|
-+ cast_type result;
|
|
|
-+ std::memcpy(&result, &(*floatiter), sizeof(cast_type));
|
|
|
-+ return result;
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Casts a data element to the specified datinner_float_a type
|
|
|
-+ template<class data_type, class cast_type>
|
|
|
-+ inline cast_type
|
|
|
-+ mem_cast(const data_type & data)
|
|
|
-+ {
|
|
|
-+ cast_type result;
|
|
|
-+ std::memcpy(&result, &data, sizeof(cast_type));
|
|
|
-+ return result;
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ namespace detail {
|
|
|
-+ template <class RandomAccessIter, class div_type, class right_shift>
|
|
|
-+ inline void
|
|
|
-+ find_extremes(RandomAccessIter current, RandomAccessIter last, div_type & max, div_type & min, right_shift shift)
|
|
|
-+ {
|
|
|
-+ min = max = shift(*current, 0);
|
|
|
-+ while(++current < last) {
|
|
|
-+ div_type value = shift(*current, 0);
|
|
|
-+ if(max < value)
|
|
|
-+ max = value;
|
|
|
-+ else if(value < min)
|
|
|
-+ min = value;
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Specialized swap loops for floating-point casting
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-+ inline void inner_float_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii
|
|
|
-+ , const unsigned log_divisor, const div_type div_min)
|
|
|
-+ {
|
|
|
-+ RandomAccessIter * local_bin = bins + ii;
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ for(RandomAccessIter * target_bin = (bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)); target_bin != local_bin;
|
|
|
-+ target_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)) {
|
|
|
-+ data_type tmp;
|
|
|
-+ RandomAccessIter b = (*target_bin)++;
|
|
|
-+ RandomAccessIter * b_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(b) >> log_divisor) - div_min);
|
|
|
-+ //Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs
|
|
|
-+ if (b_bin != local_bin) {
|
|
|
-+ RandomAccessIter c = (*b_bin)++;
|
|
|
-+ tmp = *c;
|
|
|
-+ *c = *b;
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ tmp = *b;
|
|
|
-+ *b = *current;
|
|
|
-+ *current = tmp;
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-+ inline void float_swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii
|
|
|
-+ , const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min)
|
|
|
-+ {
|
|
|
-+ nextbinstart += bin_sizes[ii];
|
|
|
-+ inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, log_divisor, div_min);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class cast_type>
|
|
|
-+ inline void
|
|
|
-+ find_extremes(RandomAccessIter current, RandomAccessIter last, cast_type & max, cast_type & min)
|
|
|
-+ {
|
|
|
-+ min = max = cast_float_iter<cast_type, RandomAccessIter>(current);
|
|
|
-+ while(++current < last) {
|
|
|
-+ cast_type value = cast_float_iter<cast_type, RandomAccessIter>(current);
|
|
|
-+ if(max < value)
|
|
|
-+ max = value;
|
|
|
-+ else if(value < min)
|
|
|
-+ min = value;
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Special-case sorting of positive floats with casting instead of a right_shift
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-+ inline void
|
|
|
-+ positive_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes)
|
|
|
-+ {
|
|
|
-+ div_type max, min;
|
|
|
-+ find_extremes(first, last, max, min);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-+ div_type div_min = min >> log_divisor;
|
|
|
-+ div_type div_max = max >> log_divisor;
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
|
-+ bins[0] = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count - 1; u++)
|
|
|
-+ bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count - 1; ++u)
|
|
|
-+ float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, bin_sizes, log_divisor, div_min);
|
|
|
-+ bins[bin_count - 1] = last;
|
|
|
-+
|
|
|
-+ //Return if we've completed bucketsorting
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Recursing
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[u]);
|
|
|
-+ else
|
|
|
-+ positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Sorting negative_ float_s
|
|
|
-+ //Note that bins are iterated in reverse order because max_neg_float = min_neg_int
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-+ inline void
|
|
|
-+ negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes)
|
|
|
-+ {
|
|
|
-+ div_type max, min;
|
|
|
-+ find_extremes(first, last, max, min);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-+ div_type div_min = min >> log_divisor;
|
|
|
-+ div_type div_max = max >> log_divisor;
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
|
-+ bins[bin_count - 1] = first;
|
|
|
-+ for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
|
-+ bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ //The last bin will always have the correct elements in it
|
|
|
-+ for(int ii = bin_count - 1; ii > 0; --ii)
|
|
|
-+ float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, bin_sizes, log_divisor, div_min);
|
|
|
-+ //Since we don't process the last bin, we need to update its end position
|
|
|
-+ bin_cache[cache_offset] = last;
|
|
|
-+
|
|
|
-+ //Return if we've completed bucketsorting
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Recursing
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
|
-+ size_t count = bin_cache[ii] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[ii]);
|
|
|
-+ else
|
|
|
-+ negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Sorting negative_ float_s
|
|
|
-+ //Note that bins are iterated in reverse order because max_neg_float = min_neg_int
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-+ inline void
|
|
|
-+ negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes, right_shift shift)
|
|
|
-+ {
|
|
|
-+ div_type max, min;
|
|
|
-+ find_extremes(first, last, max, min, shift);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-+ div_type div_min = min >> log_divisor;
|
|
|
-+ div_type div_max = max >> log_divisor;
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-+ bins[bin_count - 1] = first;
|
|
|
-+ for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
|
-+ bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ //The last bin will always have the correct elements in it
|
|
|
-+ for(int ii = bin_count - 1; ii > 0; --ii)
|
|
|
-+ swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
|
-+ //Since we don't process the last bin, we need to update its end position
|
|
|
-+ bin_cache[cache_offset] = last;
|
|
|
-+
|
|
|
-+ //Return if we've completed bucketsorting
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Recursing
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
|
-+ size_t count = bin_cache[ii] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[ii]);
|
|
|
-+ else
|
|
|
-+ negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-+ inline void
|
|
|
-+ negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
|
-+ {
|
|
|
-+ div_type max, min;
|
|
|
-+ find_extremes(first, last, max, min, shift);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-+ div_type div_min = min >> log_divisor;
|
|
|
-+ div_type div_max = max >> log_divisor;
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-+ bins[bin_count - 1] = first;
|
|
|
-+ for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
|
-+ bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ //The last bin will always have the correct elements in it
|
|
|
-+ for(int ii = bin_count - 1; ii > 0; --ii)
|
|
|
-+ swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
|
-+ //Since we don't process the last bin, we need to update its end position
|
|
|
-+ bin_cache[cache_offset] = last;
|
|
|
-+
|
|
|
-+ //Return if we've completed bucketsorting
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Recursing
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
|
-+ size_t count = bin_cache[ii] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[ii], comp);
|
|
|
-+ else
|
|
|
-+ negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Casting special-case for floating-point sorting
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type>
|
|
|
-+ inline void
|
|
|
-+ float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes)
|
|
|
-+ {
|
|
|
-+ div_type max, min;
|
|
|
-+ find_extremes(first, last, max, min);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-+ div_type div_min = min >> log_divisor;
|
|
|
-+ div_type div_max = max >> log_divisor;
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
|
-+ //The index of the first positive bin
|
|
|
-+ div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
|
-+ //Resetting if all bins are negative
|
|
|
-+ if(cache_offset + first_positive > cache_end)
|
|
|
-+ first_positive = cache_end - cache_offset;
|
|
|
-+ //Reversing the order of the negative bins
|
|
|
-+ //Note that because of the negative/positive ordering direction flip
|
|
|
-+ //We can not depend upon bin order and positions matching up
|
|
|
-+ //so bin_sizes must be reused to contain the end of the bin
|
|
|
-+ if(first_positive > 0) {
|
|
|
-+ bins[first_positive - 1] = first;
|
|
|
-+ for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
|
-+ bins[ii] = first + bin_sizes[ii + 1];
|
|
|
-+ bin_sizes[ii] += bin_sizes[ii + 1];
|
|
|
-+ }
|
|
|
-+ //Handling positives following negatives
|
|
|
-+ if((unsigned)first_positive < bin_count) {
|
|
|
-+ bins[first_positive] = first + bin_sizes[0];
|
|
|
-+ bin_sizes[first_positive] += bin_sizes[0];
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ bins[0] = first;
|
|
|
-+ for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
|
-+ bins[u + 1] = first + bin_sizes[u];
|
|
|
-+ bin_sizes[u + 1] += bin_sizes[u];
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count; ++u) {
|
|
|
-+ nextbinstart = first + bin_sizes[u];
|
|
|
-+ inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, log_divisor, div_min);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Handling negative values first
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
|
-+ size_t count = bin_cache[ii] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[ii]);
|
|
|
-+ //sort negative values using reversed-bin spread_sort
|
|
|
-+ else
|
|
|
-+ negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[u]);
|
|
|
-+ //sort positive values using normal spread_sort
|
|
|
-+ else
|
|
|
-+ positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Functor implementation for recursive sorting
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-+ inline void
|
|
|
-+ float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes, right_shift shift)
|
|
|
-+ {
|
|
|
-+ div_type max, min;
|
|
|
-+ find_extremes(first, last, max, min, shift);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-+ div_type div_min = min >> log_divisor;
|
|
|
-+ div_type div_max = max >> log_divisor;
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-+ //The index of the first positive bin
|
|
|
-+ div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
|
-+ //Resetting if all bins are negative
|
|
|
-+ if(cache_offset + first_positive > cache_end)
|
|
|
-+ first_positive = cache_end - cache_offset;
|
|
|
-+ //Reversing the order of the negative bins
|
|
|
-+ //Note that because of the negative/positive ordering direction flip
|
|
|
-+ //We can not depend upon bin order and positions matching up
|
|
|
-+ //so bin_sizes must be reused to contain the end of the bin
|
|
|
-+ if(first_positive > 0) {
|
|
|
-+ bins[first_positive - 1] = first;
|
|
|
-+ for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
|
-+ bins[ii] = first + bin_sizes[ii + 1];
|
|
|
-+ bin_sizes[ii] += bin_sizes[ii + 1];
|
|
|
-+ }
|
|
|
-+ //Handling positives following negatives
|
|
|
-+ if((unsigned)first_positive < bin_count) {
|
|
|
-+ bins[first_positive] = first + bin_sizes[0];
|
|
|
-+ bin_sizes[first_positive] += bin_sizes[0];
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ bins[0] = first;
|
|
|
-+ for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
|
-+ bins[u + 1] = first + bin_sizes[u];
|
|
|
-+ bin_sizes[u + 1] += bin_sizes[u];
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count; ++u) {
|
|
|
-+ nextbinstart = first + bin_sizes[u];
|
|
|
-+ inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Return if we've completed bucketsorting
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Handling negative values first
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
|
-+ size_t count = bin_cache[ii] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[ii]);
|
|
|
-+ //sort negative values using reversed-bin spread_sort
|
|
|
-+ else
|
|
|
-+ negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[u]);
|
|
|
-+ //sort positive values using normal spread_sort
|
|
|
-+ else
|
|
|
-+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-+ inline void
|
|
|
-+ float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
|
-+ , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
|
-+ {
|
|
|
-+ div_type max, min;
|
|
|
-+ find_extremes(first, last, max, min, shift);
|
|
|
-+ if(max == min)
|
|
|
-+ return;
|
|
|
-+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
|
-+ div_type div_min = min >> log_divisor;
|
|
|
-+ div_type div_max = max >> log_divisor;
|
|
|
-+ unsigned bin_count = div_max - div_min + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin
|
|
|
-+ for (RandomAccessIter current = first; current != last;)
|
|
|
-+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
|
-+ //The index of the first positive bin
|
|
|
-+ div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
|
-+ //Resetting if all bins are negative
|
|
|
-+ if(cache_offset + first_positive > cache_end)
|
|
|
-+ first_positive = cache_end - cache_offset;
|
|
|
-+ //Reversing the order of the negative bins
|
|
|
-+ //Note that because of the negative/positive ordering direction flip
|
|
|
-+ //We can not depend upon bin order and positions matching up
|
|
|
-+ //so bin_sizes must be reused to contain the end of the bin
|
|
|
-+ if(first_positive > 0) {
|
|
|
-+ bins[first_positive - 1] = first;
|
|
|
-+ for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
|
-+ bins[ii] = first + bin_sizes[ii + 1];
|
|
|
-+ bin_sizes[ii] += bin_sizes[ii + 1];
|
|
|
-+ }
|
|
|
-+ //Handling positives following negatives
|
|
|
-+ if((unsigned)first_positive < bin_count) {
|
|
|
-+ bins[first_positive] = first + bin_sizes[0];
|
|
|
-+ bin_sizes[first_positive] += bin_sizes[0];
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ bins[0] = first;
|
|
|
-+ for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
|
-+ bins[u + 1] = first + bin_sizes[u];
|
|
|
-+ bin_sizes[u + 1] += bin_sizes[u];
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ for(unsigned u = 0; u < bin_count; ++u) {
|
|
|
-+ nextbinstart = first + bin_sizes[u];
|
|
|
-+ inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Return if we've completed bucketsorting
|
|
|
-+ if(!log_divisor)
|
|
|
-+ return;
|
|
|
-+
|
|
|
-+ //Handling negative values first
|
|
|
-+ size_t max_count = get_max_count(log_divisor, last - first);
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
|
-+ size_t count = bin_cache[ii] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[ii]);
|
|
|
-+ //sort negative values using reversed-bin spread_sort
|
|
|
-+ else
|
|
|
-+ negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ if(count < max_count)
|
|
|
-+ std::sort(lastPos, bin_cache[u]);
|
|
|
-+ //sort positive values using normal spread_sort
|
|
|
-+ else
|
|
|
-+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class cast_type, class data_type>
|
|
|
-+ inline void
|
|
|
-+ float_Sort(RandomAccessIter first, RandomAccessIter last, cast_type, data_type)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ float_sort_rec<RandomAccessIter, cast_type, data_type>(first, last, bin_cache, 0, bin_sizes);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
|
-+ inline void
|
|
|
-+ float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
|
-+ inline void
|
|
|
-+ float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift, comp);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //float_sort with casting
|
|
|
-+ //The cast_type must be equal in size to the data type, and must be a signed integer
|
|
|
-+ template <class RandomAccessIter, class cast_type>
|
|
|
-+ inline void float_sort_cast(RandomAccessIter first, RandomAccessIter last, cast_type cVal)
|
|
|
-+ {
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last);
|
|
|
-+ else
|
|
|
-+ detail::float_Sort(first, last, cVal, *first);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //float_sort with casting to an int
|
|
|
-+ //Only use this with IEEE floating-point numbers
|
|
|
-+ template <class RandomAccessIter>
|
|
|
-+ inline void float_sort_cast_to_int(RandomAccessIter first, RandomAccessIter last)
|
|
|
-+ {
|
|
|
-+ int cVal = 0;
|
|
|
-+ float_sort_cast(first, last, cVal);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //float_sort with functors
|
|
|
-+ template <class RandomAccessIter, class right_shift>
|
|
|
-+ inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift)
|
|
|
-+ {
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last);
|
|
|
-+ else
|
|
|
-+ detail::float_Sort(first, last, shift(*first, 0), *first, shift);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class right_shift, class compare>
|
|
|
-+ inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift, compare comp)
|
|
|
-+ {
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last, comp);
|
|
|
-+ else
|
|
|
-+ detail::float_Sort(first, last, shift(*first, 0), *first, shift, comp);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //------------------------------------------------- string_sort source ---------------------------------------------
|
|
|
-+ namespace detail {
|
|
|
-+ //Offsetting on identical characters. This function works a character at a time for optimal worst-case performance.
|
|
|
-+ template<class RandomAccessIter>
|
|
|
-+ inline void
|
|
|
-+ update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset)
|
|
|
-+ {
|
|
|
-+ unsigned nextOffset = char_offset;
|
|
|
-+ bool done = false;
|
|
|
-+ while(!done) {
|
|
|
-+ RandomAccessIter curr = first;
|
|
|
-+ do {
|
|
|
-+ //ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character
|
|
|
-+ if((*curr).size() > char_offset && ((*curr).size() <= (nextOffset + 1) || (*curr)[nextOffset] != (*first)[nextOffset])) {
|
|
|
-+ done = true;
|
|
|
-+ break;
|
|
|
-+ }
|
|
|
-+ } while(++curr != finish);
|
|
|
-+ if(!done)
|
|
|
-+ ++nextOffset;
|
|
|
-+ }
|
|
|
-+ char_offset = nextOffset;
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Offsetting on identical characters. This function works a character at a time for optimal worst-case performance.
|
|
|
-+ template<class RandomAccessIter, class get_char, class get_length>
|
|
|
-+ inline void
|
|
|
-+ update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset, get_char getchar, get_length length)
|
|
|
-+ {
|
|
|
-+ unsigned nextOffset = char_offset;
|
|
|
-+ bool done = false;
|
|
|
-+ while(!done) {
|
|
|
-+ RandomAccessIter curr = first;
|
|
|
-+ do {
|
|
|
-+ //ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character
|
|
|
-+ if(length(*curr) > char_offset && (length(*curr) <= (nextOffset + 1) || getchar((*curr), nextOffset) != getchar((*first), nextOffset))) {
|
|
|
-+ done = true;
|
|
|
-+ break;
|
|
|
-+ }
|
|
|
-+ } while(++curr != finish);
|
|
|
-+ if(!done)
|
|
|
-+ ++nextOffset;
|
|
|
-+ }
|
|
|
-+ char_offset = nextOffset;
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //A comparison functor for strings that assumes they are identical up to char_offset
|
|
|
-+ template<class data_type, class unsignedchar_type>
|
|
|
-+ struct offset_lessthan {
|
|
|
-+ offset_lessthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
|
-+ inline bool operator()(const data_type &x, const data_type &y) const
|
|
|
-+ {
|
|
|
-+ unsigned minSize = std::min(x.size(), y.size());
|
|
|
-+ for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
|
-+ if(static_cast<unsignedchar_type>(x[u]) < static_cast<unsignedchar_type>(y[u]))
|
|
|
-+ return true;
|
|
|
-+ else if(static_cast<unsignedchar_type>(y[u]) < static_cast<unsignedchar_type>(x[u]))
|
|
|
-+ return false;
|
|
|
-+ }
|
|
|
-+ return x.size() < y.size();
|
|
|
-+ }
|
|
|
-+ unsigned fchar_offset;
|
|
|
-+ };
|
|
|
-+
|
|
|
-+ //A comparison functor for strings that assumes they are identical up to char_offset
|
|
|
-+ template<class data_type, class unsignedchar_type>
|
|
|
-+ struct offset_greaterthan {
|
|
|
-+ offset_greaterthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
|
-+ inline bool operator()(const data_type &x, const data_type &y) const
|
|
|
-+ {
|
|
|
-+ unsigned minSize = std::min(x.size(), y.size());
|
|
|
-+ for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
|
-+ if(static_cast<unsignedchar_type>(x[u]) > static_cast<unsignedchar_type>(y[u]))
|
|
|
-+ return true;
|
|
|
-+ else if(static_cast<unsignedchar_type>(y[u]) > static_cast<unsignedchar_type>(x[u]))
|
|
|
-+ return false;
|
|
|
-+ }
|
|
|
-+ return x.size() > y.size();
|
|
|
-+ }
|
|
|
-+ unsigned fchar_offset;
|
|
|
-+ };
|
|
|
-+
|
|
|
-+ //A comparison functor for strings that assumes they are identical up to char_offset
|
|
|
-+ template<class data_type, class get_char, class get_length>
|
|
|
-+ struct offset_char_lessthan {
|
|
|
-+ offset_char_lessthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
|
-+ inline bool operator()(const data_type &x, const data_type &y) const
|
|
|
-+ {
|
|
|
-+ unsigned minSize = std::min(length(x), length(y));
|
|
|
-+ for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
|
-+ if(getchar(x, u) < getchar(y, u))
|
|
|
-+ return true;
|
|
|
-+ else if(getchar(y, u) < getchar(x, u))
|
|
|
-+ return false;
|
|
|
-+ }
|
|
|
-+ return length(x) < length(y);
|
|
|
-+ }
|
|
|
-+ unsigned fchar_offset;
|
|
|
-+ get_char getchar;
|
|
|
-+ get_length length;
|
|
|
-+ };
|
|
|
-+
|
|
|
-+ //String sorting recursive implementation
|
|
|
-+ template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
|
-+ inline void
|
|
|
-+ string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-+ , unsigned cache_offset, std::vector<size_t> &bin_sizes)
|
|
|
-+ {
|
|
|
-+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-+ //Iterate to the end of the empties. If all empty, return
|
|
|
-+ while((*first).size() <= char_offset) {
|
|
|
-+ if(++first == last)
|
|
|
-+ return;
|
|
|
-+ }
|
|
|
-+ RandomAccessIter finish = last - 1;
|
|
|
-+ //Getting the last non-empty
|
|
|
-+ for(;(*finish).size() <= char_offset; --finish) { }
|
|
|
-+ ++finish;
|
|
|
-+ //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
|
-+ update_offset(first, finish, char_offset);
|
|
|
-+
|
|
|
-+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-+ const unsigned max_size = bin_count;
|
|
|
-+ const unsigned membin_count = bin_count + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-+ for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-+ if((*current).size() <= char_offset) {
|
|
|
-+ bin_sizes[0]++;
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ bin_sizes[static_cast<unsignedchar_type>((*current)[char_offset]) + 1]++;
|
|
|
-+ }
|
|
|
-+ //Assign the bin positions
|
|
|
-+ bin_cache[cache_offset] = first;
|
|
|
-+ for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ //handling empty bins
|
|
|
-+ RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
|
-+ nextbinstart += bin_sizes[0];
|
|
|
-+ RandomAccessIter * target_bin;
|
|
|
-+ //Iterating over each element in the bin of empties
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //empties belong in this bin
|
|
|
-+ while((*current).size() > char_offset) {
|
|
|
-+ target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]);
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-+ unsigned last_bin = bin_count - 1;
|
|
|
-+ for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
|
-+ //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-+ for(unsigned u = 0; u < last_bin; ++u) {
|
|
|
-+ local_bin = bins + u;
|
|
|
-+ nextbinstart += bin_sizes[u + 1];
|
|
|
-+ //Iterating over each element in this bin
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-+ for(target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin;
|
|
|
-+ target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]))
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ }
|
|
|
-+ bins[last_bin] = last;
|
|
|
-+ //Recursing
|
|
|
-+ RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
|
-+ //Skip this loop for empties
|
|
|
-+ for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ //don't sort unless there are at least two items to compare
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ //using std::sort if its worst-case is better
|
|
|
-+ if(count < max_size)
|
|
|
-+ std::sort(lastPos, bin_cache[u], offset_lessthan<data_type, unsignedchar_type>(char_offset + 1));
|
|
|
-+ else
|
|
|
-+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Sorts strings in reverse order, with empties at the end
|
|
|
-+ template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
|
-+ inline void
|
|
|
-+ reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-+ , unsigned cache_offset, std::vector<size_t> &bin_sizes)
|
|
|
-+ {
|
|
|
-+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-+ RandomAccessIter curr = first;
|
|
|
-+ //Iterate to the end of the empties. If all empty, return
|
|
|
-+ while((*curr).size() <= char_offset) {
|
|
|
-+ if(++curr == last)
|
|
|
-+ return;
|
|
|
-+ }
|
|
|
-+ //Getting the last non-empty
|
|
|
-+ while((*(--last)).size() <= char_offset) { }
|
|
|
-+ ++last;
|
|
|
-+ //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
|
-+ update_offset(curr, last, char_offset);
|
|
|
-+ RandomAccessIter * target_bin;
|
|
|
-+
|
|
|
-+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-+ const unsigned max_size = bin_count;
|
|
|
-+ const unsigned membin_count = bin_count + 1;
|
|
|
-+ const unsigned max_bin = bin_count - 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count);
|
|
|
-+ RandomAccessIter * end_bin = &(bin_cache[cache_offset + max_bin]);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-+ for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-+ if((*current).size() <= char_offset) {
|
|
|
-+ bin_sizes[bin_count]++;
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ bin_sizes[max_bin - static_cast<unsignedchar_type>((*current)[char_offset])]++;
|
|
|
-+ }
|
|
|
-+ //Assign the bin positions
|
|
|
-+ bin_cache[cache_offset] = first;
|
|
|
-+ for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = last;
|
|
|
-+ //handling empty bins
|
|
|
-+ RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]);
|
|
|
-+ RandomAccessIter lastFull = *local_bin;
|
|
|
-+ //Iterating over each element in the bin of empties
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //empties belong in this bin
|
|
|
-+ while((*current).size() > char_offset) {
|
|
|
-+ target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]);
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ nextbinstart = first;
|
|
|
-+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-+ unsigned last_bin = max_bin;
|
|
|
-+ for(; last_bin && !bin_sizes[last_bin]; --last_bin) { }
|
|
|
-+ //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-+ for(unsigned u = 0; u < last_bin; ++u) {
|
|
|
-+ local_bin = bins + u;
|
|
|
-+ nextbinstart += bin_sizes[u];
|
|
|
-+ //Iterating over each element in this bin
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-+ for(target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin;
|
|
|
-+ target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]))
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ }
|
|
|
-+ bins[last_bin] = lastFull;
|
|
|
-+ //Recursing
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ //Skip this loop for empties
|
|
|
-+ for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ //don't sort unless there are at least two items to compare
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ //using std::sort if its worst-case is better
|
|
|
-+ if(count < max_size)
|
|
|
-+ std::sort(lastPos, bin_cache[u], offset_greaterthan<data_type, unsignedchar_type>(char_offset + 1));
|
|
|
-+ else
|
|
|
-+ reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //String sorting recursive implementation
|
|
|
-+ template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length>
|
|
|
-+ inline void
|
|
|
-+ string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-+ , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length)
|
|
|
-+ {
|
|
|
-+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-+ //Iterate to the end of the empties. If all empty, return
|
|
|
-+ while(length(*first) <= char_offset) {
|
|
|
-+ if(++first == last)
|
|
|
-+ return;
|
|
|
-+ }
|
|
|
-+ RandomAccessIter finish = last - 1;
|
|
|
-+ //Getting the last non-empty
|
|
|
-+ for(;length(*finish) <= char_offset; --finish) { }
|
|
|
-+ ++finish;
|
|
|
-+ update_offset(first, finish, char_offset, getchar, length);
|
|
|
-+
|
|
|
-+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-+ const unsigned max_size = bin_count;
|
|
|
-+ const unsigned membin_count = bin_count + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-+ for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-+ if(length(*current) <= char_offset) {
|
|
|
-+ bin_sizes[0]++;
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ bin_sizes[getchar((*current), char_offset) + 1]++;
|
|
|
-+ }
|
|
|
-+ //Assign the bin positions
|
|
|
-+ bin_cache[cache_offset] = first;
|
|
|
-+ for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ //handling empty bins
|
|
|
-+ RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
|
-+ nextbinstart += bin_sizes[0];
|
|
|
-+ RandomAccessIter * target_bin;
|
|
|
-+ //Iterating over each element in the bin of empties
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //empties belong in this bin
|
|
|
-+ while(length(*current) > char_offset) {
|
|
|
-+ target_bin = bins + getchar((*current), char_offset);
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-+ unsigned last_bin = bin_count - 1;
|
|
|
-+ for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
|
-+ //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-+ for(unsigned ii = 0; ii < last_bin; ++ii) {
|
|
|
-+ local_bin = bins + ii;
|
|
|
-+ nextbinstart += bin_sizes[ii + 1];
|
|
|
-+ //Iterating over each element in this bin
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-+ for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin;
|
|
|
-+ target_bin = bins + getchar((*current), char_offset))
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ }
|
|
|
-+ bins[last_bin] = last;
|
|
|
-+
|
|
|
-+ //Recursing
|
|
|
-+ RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
|
-+ //Skip this loop for empties
|
|
|
-+ for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ //don't sort unless there are at least two items to compare
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ //using std::sort if its worst-case is better
|
|
|
-+ if(count < max_size)
|
|
|
-+ std::sort(lastPos, bin_cache[u], offset_char_lessthan<data_type, get_char, get_length>(char_offset + 1));
|
|
|
-+ else
|
|
|
-+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //String sorting recursive implementation
|
|
|
-+ template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare>
|
|
|
-+ inline void
|
|
|
-+ string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-+ , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp)
|
|
|
-+ {
|
|
|
-+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-+ //Iterate to the end of the empties. If all empty, return
|
|
|
-+ while(length(*first) <= char_offset) {
|
|
|
-+ if(++first == last)
|
|
|
-+ return;
|
|
|
-+ }
|
|
|
-+ RandomAccessIter finish = last - 1;
|
|
|
-+ //Getting the last non-empty
|
|
|
-+ for(;length(*finish) <= char_offset; --finish) { }
|
|
|
-+ ++finish;
|
|
|
-+ update_offset(first, finish, char_offset, getchar, length);
|
|
|
-+
|
|
|
-+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-+ const unsigned max_size = bin_count;
|
|
|
-+ const unsigned membin_count = bin_count + 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-+ for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-+ if(length(*current) <= char_offset) {
|
|
|
-+ bin_sizes[0]++;
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ bin_sizes[getchar((*current), char_offset) + 1]++;
|
|
|
-+ }
|
|
|
-+ //Assign the bin positions
|
|
|
-+ bin_cache[cache_offset] = first;
|
|
|
-+ for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = first;
|
|
|
-+ //handling empty bins
|
|
|
-+ RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
|
-+ nextbinstart += bin_sizes[0];
|
|
|
-+ RandomAccessIter * target_bin;
|
|
|
-+ //Iterating over each element in the bin of empties
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //empties belong in this bin
|
|
|
-+ while(length(*current) > char_offset) {
|
|
|
-+ target_bin = bins + getchar((*current), char_offset);
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-+ unsigned last_bin = bin_count - 1;
|
|
|
-+ for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
|
-+ //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-+ for(unsigned u = 0; u < last_bin; ++u) {
|
|
|
-+ local_bin = bins + u;
|
|
|
-+ nextbinstart += bin_sizes[u + 1];
|
|
|
-+ //Iterating over each element in this bin
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-+ for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin;
|
|
|
-+ target_bin = bins + getchar((*current), char_offset))
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ }
|
|
|
-+ bins[last_bin] = last;
|
|
|
-+
|
|
|
-+ //Recursing
|
|
|
-+ RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
|
-+ //Skip this loop for empties
|
|
|
-+ for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ //don't sort unless there are at least two items to compare
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ //using std::sort if its worst-case is better
|
|
|
-+ if(count < max_size)
|
|
|
-+ std::sort(lastPos, bin_cache[u], comp);
|
|
|
-+ else
|
|
|
-+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos
|
|
|
-+ , bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Sorts strings in reverse order, with empties at the end
|
|
|
-+ template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare>
|
|
|
-+ inline void
|
|
|
-+ reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
|
-+ , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp)
|
|
|
-+ {
|
|
|
-+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
|
-+ RandomAccessIter curr = first;
|
|
|
-+ //Iterate to the end of the empties. If all empty, return
|
|
|
-+ while(length(*curr) <= char_offset) {
|
|
|
-+ if(++curr == last)
|
|
|
-+ return;
|
|
|
-+ }
|
|
|
-+ //Getting the last non-empty
|
|
|
-+ while(length(*(--last)) <= char_offset) { }
|
|
|
-+ ++last;
|
|
|
-+ //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
|
-+ update_offset(first, last, char_offset, getchar, length);
|
|
|
-+
|
|
|
-+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
|
-+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
|
-+ const unsigned max_size = bin_count;
|
|
|
-+ const unsigned membin_count = bin_count + 1;
|
|
|
-+ const unsigned max_bin = bin_count - 1;
|
|
|
-+ unsigned cache_end;
|
|
|
-+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count);
|
|
|
-+ RandomAccessIter *end_bin = &(bin_cache[cache_offset + max_bin]);
|
|
|
-+
|
|
|
-+ //Calculating the size of each bin; this takes roughly 10% of runtime
|
|
|
-+ for (RandomAccessIter current = first; current != last; ++current) {
|
|
|
-+ if(length(*current) <= char_offset) {
|
|
|
-+ bin_sizes[bin_count]++;
|
|
|
-+ }
|
|
|
-+ else
|
|
|
-+ bin_sizes[max_bin - getchar((*current), char_offset)]++;
|
|
|
-+ }
|
|
|
-+ //Assign the bin positions
|
|
|
-+ bin_cache[cache_offset] = first;
|
|
|
-+ for(unsigned u = 0; u < membin_count - 1; u++)
|
|
|
-+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
-+
|
|
|
-+ //Swap into place
|
|
|
-+ RandomAccessIter nextbinstart = last;
|
|
|
-+ //handling empty bins
|
|
|
-+ RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]);
|
|
|
-+ RandomAccessIter lastFull = *local_bin;
|
|
|
-+ RandomAccessIter * target_bin;
|
|
|
-+ //Iterating over each element in the bin of empties
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //empties belong in this bin
|
|
|
-+ while(length(*current) > char_offset) {
|
|
|
-+ target_bin = end_bin - getchar((*current), char_offset);
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ nextbinstart = first;
|
|
|
-+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
|
-+ unsigned last_bin = max_bin;
|
|
|
-+ for(; last_bin && !bin_sizes[last_bin]; --last_bin) { }
|
|
|
-+ //This dominates runtime, mostly in the swap and bin lookups
|
|
|
-+ for(unsigned u = 0; u < last_bin; ++u) {
|
|
|
-+ local_bin = bins + u;
|
|
|
-+ nextbinstart += bin_sizes[u];
|
|
|
-+ //Iterating over each element in this bin
|
|
|
-+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
|
-+ //Swapping elements in current into place until the correct element has been swapped in
|
|
|
-+ for(target_bin = end_bin - getchar((*current), char_offset); target_bin != local_bin;
|
|
|
-+ target_bin = end_bin - getchar((*current), char_offset))
|
|
|
-+ iter_swap(current, (*target_bin)++);
|
|
|
-+ }
|
|
|
-+ *local_bin = nextbinstart;
|
|
|
-+ }
|
|
|
-+ bins[last_bin] = lastFull;
|
|
|
-+ //Recursing
|
|
|
-+ RandomAccessIter lastPos = first;
|
|
|
-+ //Skip this loop for empties
|
|
|
-+ for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) {
|
|
|
-+ size_t count = bin_cache[u] - lastPos;
|
|
|
-+ //don't sort unless there are at least two items to compare
|
|
|
-+ if(count < 2)
|
|
|
-+ continue;
|
|
|
-+ //using std::sort if its worst-case is better
|
|
|
-+ if(count < max_size)
|
|
|
-+ std::sort(lastPos, bin_cache[u], comp);
|
|
|
-+ else
|
|
|
-+ reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos
|
|
|
-+ , bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Holds the bin vector and makes the initial recursive call
|
|
|
-+ template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
|
-+ inline void
|
|
|
-+ string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Holds the bin vector and makes the initial recursive call
|
|
|
-+ template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
|
-+ inline void
|
|
|
-+ reverse_string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Holds the bin vector and makes the initial recursive call
|
|
|
-+ template <class RandomAccessIter, class get_char, class get_length, class data_type, class unsignedchar_type>
|
|
|
-+ inline void
|
|
|
-+ string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, data_type, unsignedchar_type)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Holds the bin vector and makes the initial recursive call
|
|
|
-+ template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type>
|
|
|
-+ inline void
|
|
|
-+ string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Holds the bin vector and makes the initial recursive call
|
|
|
-+ template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type>
|
|
|
-+ inline void
|
|
|
-+ reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type)
|
|
|
-+ {
|
|
|
-+ std::vector<size_t> bin_sizes;
|
|
|
-+ std::vector<RandomAccessIter> bin_cache;
|
|
|
-+ reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp);
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Allows character-type overloads
|
|
|
-+ template <class RandomAccessIter, class unsignedchar_type>
|
|
|
-+ inline void string_sort(RandomAccessIter first, RandomAccessIter last, unsignedchar_type unused)
|
|
|
-+ {
|
|
|
-+ //Don't sort if it's too small to optimize
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last);
|
|
|
-+ else
|
|
|
-+ detail::string_sort(first, last, *first, unused);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Top-level sorting call; wraps using default of unsigned char
|
|
|
-+ template <class RandomAccessIter>
|
|
|
-+ inline void string_sort(RandomAccessIter first, RandomAccessIter last)
|
|
|
-+ {
|
|
|
-+ unsigned char unused = '\0';
|
|
|
-+ string_sort(first, last, unused);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Allows character-type overloads
|
|
|
-+ template <class RandomAccessIter, class compare, class unsignedchar_type>
|
|
|
-+ inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp, unsignedchar_type unused)
|
|
|
-+ {
|
|
|
-+ //Don't sort if it's too small to optimize
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last, comp);
|
|
|
-+ else
|
|
|
-+ detail::reverse_string_sort(first, last, *first, unused);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ //Top-level sorting call; wraps using default of unsigned char
|
|
|
-+ template <class RandomAccessIter, class compare>
|
|
|
-+ inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp)
|
|
|
-+ {
|
|
|
-+ unsigned char unused = '\0';
|
|
|
-+ reverse_string_sort(first, last, comp, unused);
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class get_char, class get_length>
|
|
|
-+ inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length)
|
|
|
-+ {
|
|
|
-+ //Don't sort if it's too small to optimize
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last);
|
|
|
-+ else {
|
|
|
-+ //skipping past empties at the beginning, which allows us to get the character type
|
|
|
-+ //.empty() is not used so as not to require a user declaration of it
|
|
|
-+ while(!length(*first)) {
|
|
|
-+ if(++first == last)
|
|
|
-+ return;
|
|
|
-+ }
|
|
|
-+ detail::string_sort(first, last, getchar, length, *first, getchar((*first), 0));
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class get_char, class get_length, class compare>
|
|
|
-+ inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp)
|
|
|
-+ {
|
|
|
-+ //Don't sort if it's too small to optimize
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last, comp);
|
|
|
-+ else {
|
|
|
-+ //skipping past empties at the beginning, which allows us to get the character type
|
|
|
-+ //.empty() is not used so as not to require a user declaration of it
|
|
|
-+ while(!length(*first)) {
|
|
|
-+ if(++first == last)
|
|
|
-+ return;
|
|
|
-+ }
|
|
|
-+ detail::string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0));
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+
|
|
|
-+ template <class RandomAccessIter, class get_char, class get_length, class compare>
|
|
|
-+ inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp)
|
|
|
-+ {
|
|
|
-+ //Don't sort if it's too small to optimize
|
|
|
-+ if(last - first < detail::MIN_SORT_SIZE)
|
|
|
-+ std::sort(first, last, comp);
|
|
|
-+ else {
|
|
|
-+ //skipping past empties at the beginning, which allows us to get the character type
|
|
|
-+ //.empty() is not used so as not to require a user declaration of it
|
|
|
-+ while(!length(*(--last))) {
|
|
|
-+ //Note: if there is just one non-empty, and it's at the beginning, then it's already in sorted order
|
|
|
-+ if(first == last)
|
|
|
-+ return;
|
|
|
-+ }
|
|
|
-+ //making last just after the end of the non-empty part of the array
|
|
|
-+ ++last;
|
|
|
-+ detail::reverse_string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0));
|
|
|
-+ }
|
|
|
-+ }
|
|
|
-+}
|
|
|
-+
|
|
|
-+#endif
|