Browse Source

fix fec problem in qemu-m68k-mcf5208

Waldemar Brodkorb 10 years ago
parent
commit
c37e025dde

+ 0 - 0
target/m68k/qemu-m68k/patches/3.14.54/m68k-coldfire-fec.patch → target/m68k/qemu-m68k-mcf5208/patches/3.14.54/m68k-coldfire-fec.patch


+ 0 - 0
target/m68k/qemu-m68k/patches/3.18.22/m68k-coldfire-fec.patch → target/m68k/qemu-m68k-mcf5208/patches/3.18.22/m68k-coldfire-fec.patch


+ 3626 - 0
target/m68k/qemu-m68k-mcf5208/patches/4.1.10/m68k-coldfire-fec.patch

@@ -0,0 +1,3626 @@
+diff -Nur linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c
+--- linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c	2015-10-03 13:49:38.000000000 +0200
++++ linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c	2015-10-31 18:05:40.000000000 +0100
+@@ -137,7 +137,7 @@
+ module_param_array(macaddr, byte, NULL, 0);
+ MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
+ 
+-#if defined(CONFIG_M5272)
++#if defined(CONFIG_COLDFIRE)
+ /*
+  * Some hardware gets it MAC address out of local flash memory.
+  * if this is non-zero then assume it is the address to get MAC from.
+@@ -155,7 +155,7 @@
+ #else
+ #define	FEC_FLASHMAC	0
+ #endif
+-#endif /* CONFIG_M5272 */
++#endif /* CONFIG_COLDFIRE */
+ 
+ /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
+  */
+@@ -969,7 +969,7 @@
+ 	/* Set MII speed */
+ 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
+ 
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ 	/* set RX checksum */
+ 	val = readl(fep->hwp + FEC_RACC);
+ 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
+@@ -1033,7 +1033,7 @@
+ #endif
+ 	}
+ 
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ 	/* enable pause frame*/
+ 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
+ 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
+@@ -1051,13 +1051,13 @@
+ 	} else {
+ 		rcntl &= ~FEC_ENET_FCE;
+ 	}
+-#endif /* !defined(CONFIG_M5272) */
++#endif /* !defined(CONFIG_COLDFIRE) */
+ 
+ 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
+ 
+ 	/* Setup multicast filter. */
+ 	set_multicast_list(ndev);
+-#ifndef CONFIG_M5272
++#ifndef CONFIG_COLDFIRE
+ 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
+ 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
+ #endif
+@@ -1072,7 +1072,7 @@
+ 	if (fep->bufdesc_ex)
+ 		ecntl |= (1 << 4);
+ 
+-#ifndef CONFIG_M5272
++#ifndef CONFIG_COLDFIRE
+ 	/* Enable the MIB statistic event counters */
+ 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
+ #endif
+@@ -1657,7 +1657,7 @@
+ 	 * 3) from flash or fuse (via platform data)
+ 	 */
+ 	if (!is_valid_ether_addr(iap)) {
+-#ifdef CONFIG_M5272
++#ifdef CONFIG_COLDFIRE
+ 		if (FEC_FLASHMAC)
+ 			iap = (unsigned char *)FEC_FLASHMAC;
+ #else
+@@ -1931,7 +1931,7 @@
+ 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
+ 		phy_dev->supported &= PHY_GBIT_FEATURES;
+ 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ 		phy_dev->supported |= SUPPORTED_Pause;
+ #endif
+ 	}
+@@ -2148,7 +2148,7 @@
+ 	}
+ }
+ 
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ 
+ static void fec_enet_get_pauseparam(struct net_device *ndev,
+ 				    struct ethtool_pauseparam *pause)
+@@ -2303,7 +2303,7 @@
+ 		return -EOPNOTSUPP;
+ 	}
+ }
+-#endif /* !defined(CONFIG_M5272) */
++#endif /* !defined(CONFIG_COLDFIRE) */
+ 
+ static int fec_enet_nway_reset(struct net_device *dev)
+ {
+@@ -2520,7 +2520,7 @@
+ 	.get_link		= ethtool_op_get_link,
+ 	.get_coalesce		= fec_enet_get_coalesce,
+ 	.set_coalesce		= fec_enet_set_coalesce,
+-#ifndef CONFIG_M5272
++#ifndef CONFIG_COLDFIRE
+ 	.get_pauseparam		= fec_enet_get_pauseparam,
+ 	.set_pauseparam		= fec_enet_set_pauseparam,
+ 	.get_strings		= fec_enet_get_strings,
+@@ -3220,7 +3220,7 @@
+ 	fep->num_rx_queues = num_rx_qs;
+ 	fep->num_tx_queues = num_tx_qs;
+ 
+-#if !defined(CONFIG_M5272)
++#if !defined(CONFIG_COLDFIRE)
+ 	/* default enable pause frame auto negotiation */
+ 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
+ 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
+diff -Nur linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c.orig linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c.orig
+--- linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c.orig	1970-01-01 01:00:00.000000000 +0100
++++ linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c.orig	2015-10-03 13:49:38.000000000 +0200
+@@ -0,0 +1,3504 @@
++/*
++ * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
++ * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
++ *
++ * Right now, I am very wasteful with the buffers.  I allocate memory
++ * pages and then divide them into 2K frame buffers.  This way I know I
++ * have buffers large enough to hold one frame within one buffer descriptor.
++ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
++ * will be much more memory efficient and will easily handle lots of
++ * small packets.
++ *
++ * Much better multiple PHY support by Magnus Damm.
++ * Copyright (c) 2000 Ericsson Radio Systems AB.
++ *
++ * Support for FEC controller of ColdFire processors.
++ * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
++ *
++ * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
++ * Copyright (c) 2004-2006 Macq Electronique SA.
++ *
++ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
++ */
++
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/string.h>
++#include <linux/ptrace.h>
++#include <linux/errno.h>
++#include <linux/ioport.h>
++#include <linux/slab.h>
++#include <linux/interrupt.h>
++#include <linux/delay.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/skbuff.h>
++#include <linux/in.h>
++#include <linux/ip.h>
++#include <net/ip.h>
++#include <net/tso.h>
++#include <linux/tcp.h>
++#include <linux/udp.h>
++#include <linux/icmp.h>
++#include <linux/spinlock.h>
++#include <linux/workqueue.h>
++#include <linux/bitops.h>
++#include <linux/io.h>
++#include <linux/irq.h>
++#include <linux/clk.h>
++#include <linux/platform_device.h>
++#include <linux/phy.h>
++#include <linux/fec.h>
++#include <linux/of.h>
++#include <linux/of_device.h>
++#include <linux/of_gpio.h>
++#include <linux/of_mdio.h>
++#include <linux/of_net.h>
++#include <linux/regulator/consumer.h>
++#include <linux/if_vlan.h>
++#include <linux/pinctrl/consumer.h>
++#include <linux/prefetch.h>
++
++#include <asm/cacheflush.h>
++
++#include "fec.h"
++
++static void set_multicast_list(struct net_device *ndev);
++static void fec_enet_itr_coal_init(struct net_device *ndev);
++
++#define DRIVER_NAME	"fec"
++
++#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
++
++/* Pause frame feild and FIFO threshold */
++#define FEC_ENET_FCE	(1 << 5)
++#define FEC_ENET_RSEM_V	0x84
++#define FEC_ENET_RSFL_V	16
++#define FEC_ENET_RAEM_V	0x8
++#define FEC_ENET_RAFL_V	0x8
++#define FEC_ENET_OPD_V	0xFFF0
++
++static struct platform_device_id fec_devtype[] = {
++	{
++		/* keep it for coldfire */
++		.name = DRIVER_NAME,
++		.driver_data = 0,
++	}, {
++		.name = "imx25-fec",
++		.driver_data = FEC_QUIRK_USE_GASKET,
++	}, {
++		.name = "imx27-fec",
++		.driver_data = 0,
++	}, {
++		.name = "imx28-fec",
++		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
++				FEC_QUIRK_SINGLE_MDIO,
++	}, {
++		.name = "imx6q-fec",
++		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
++				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
++				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
++	}, {
++		.name = "mvf600-fec",
++		.driver_data = FEC_QUIRK_ENET_MAC,
++	}, {
++		.name = "imx6sx-fec",
++		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
++				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
++				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
++				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
++	}, {
++		/* sentinel */
++	}
++};
++MODULE_DEVICE_TABLE(platform, fec_devtype);
++
++enum imx_fec_type {
++	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
++	IMX27_FEC,	/* runs on i.mx27/35/51 */
++	IMX28_FEC,
++	IMX6Q_FEC,
++	MVF600_FEC,
++	IMX6SX_FEC,
++};
++
++static const struct of_device_id fec_dt_ids[] = {
++	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
++	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
++	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
++	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
++	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
++	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
++	{ /* sentinel */ }
++};
++MODULE_DEVICE_TABLE(of, fec_dt_ids);
++
++static unsigned char macaddr[ETH_ALEN];
++module_param_array(macaddr, byte, NULL, 0);
++MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
++
++#if defined(CONFIG_M5272)
++/*
++ * Some hardware gets it MAC address out of local flash memory.
++ * if this is non-zero then assume it is the address to get MAC from.
++ */
++#if defined(CONFIG_NETtel)
++#define	FEC_FLASHMAC	0xf0006006
++#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
++#define	FEC_FLASHMAC	0xf0006000
++#elif defined(CONFIG_CANCam)
++#define	FEC_FLASHMAC	0xf0020000
++#elif defined (CONFIG_M5272C3)
++#define	FEC_FLASHMAC	(0xffe04000 + 4)
++#elif defined(CONFIG_MOD5272)
++#define FEC_FLASHMAC	0xffc0406b
++#else
++#define	FEC_FLASHMAC	0
++#endif
++#endif /* CONFIG_M5272 */
++
++/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
++ */
++#define PKT_MAXBUF_SIZE		1522
++#define PKT_MINBUF_SIZE		64
++#define PKT_MAXBLR_SIZE		1536
++
++/* FEC receive acceleration */
++#define FEC_RACC_IPDIS		(1 << 1)
++#define FEC_RACC_PRODIS		(1 << 2)
++#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
++
++/*
++ * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
++ * size bits. Other FEC hardware does not, so we need to take that into
++ * account when setting it.
++ */
++#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
++    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
++#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
++#else
++#define	OPT_FRAME_SIZE	0
++#endif
++
++/* FEC MII MMFR bits definition */
++#define FEC_MMFR_ST		(1 << 30)
++#define FEC_MMFR_OP_READ	(2 << 28)
++#define FEC_MMFR_OP_WRITE	(1 << 28)
++#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
++#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
++#define FEC_MMFR_TA		(2 << 16)
++#define FEC_MMFR_DATA(v)	(v & 0xffff)
++/* FEC ECR bits definition */
++#define FEC_ECR_MAGICEN		(1 << 2)
++#define FEC_ECR_SLEEP		(1 << 3)
++
++#define FEC_MII_TIMEOUT		30000 /* us */
++
++/* Transmitter timeout */
++#define TX_TIMEOUT (2 * HZ)
++
++#define FEC_PAUSE_FLAG_AUTONEG	0x1
++#define FEC_PAUSE_FLAG_ENABLE	0x2
++#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
++#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
++#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
++
++#define COPYBREAK_DEFAULT	256
++
++#define TSO_HEADER_SIZE		128
++/* Max number of allowed TCP segments for software TSO */
++#define FEC_MAX_TSO_SEGS	100
++#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
++
++#define IS_TSO_HEADER(txq, addr) \
++	((addr >= txq->tso_hdrs_dma) && \
++	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
++
++static int mii_cnt;
++
++static inline
++struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
++				      struct fec_enet_private *fep,
++				      int queue_id)
++{
++	struct bufdesc *new_bd = bdp + 1;
++	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
++	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
++	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
++	struct bufdesc_ex *ex_base;
++	struct bufdesc *base;
++	int ring_size;
++
++	if (bdp >= txq->tx_bd_base) {
++		base = txq->tx_bd_base;
++		ring_size = txq->tx_ring_size;
++		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
++	} else {
++		base = rxq->rx_bd_base;
++		ring_size = rxq->rx_ring_size;
++		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
++	}
++
++	if (fep->bufdesc_ex)
++		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
++			ex_base : ex_new_bd);
++	else
++		return (new_bd >= (base + ring_size)) ?
++			base : new_bd;
++}
++
++static inline
++struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
++				      struct fec_enet_private *fep,
++				      int queue_id)
++{
++	struct bufdesc *new_bd = bdp - 1;
++	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
++	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
++	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
++	struct bufdesc_ex *ex_base;
++	struct bufdesc *base;
++	int ring_size;
++
++	if (bdp >= txq->tx_bd_base) {
++		base = txq->tx_bd_base;
++		ring_size = txq->tx_ring_size;
++		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
++	} else {
++		base = rxq->rx_bd_base;
++		ring_size = rxq->rx_ring_size;
++		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
++	}
++
++	if (fep->bufdesc_ex)
++		return (struct bufdesc *)((ex_new_bd < ex_base) ?
++			(ex_new_bd + ring_size) : ex_new_bd);
++	else
++		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
++}
++
++static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
++				struct fec_enet_private *fep)
++{
++	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
++}
++
++static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
++					struct fec_enet_priv_tx_q *txq)
++{
++	int entries;
++
++	entries = ((const char *)txq->dirty_tx -
++			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
++
++	return entries > 0 ? entries : entries + txq->tx_ring_size;
++}
++
++static void swap_buffer(void *bufaddr, int len)
++{
++	int i;
++	unsigned int *buf = bufaddr;
++
++	for (i = 0; i < len; i += 4, buf++)
++		swab32s(buf);
++}
++
++static void swap_buffer2(void *dst_buf, void *src_buf, int len)
++{
++	int i;
++	unsigned int *src = src_buf;
++	unsigned int *dst = dst_buf;
++
++	for (i = 0; i < len; i += 4, src++, dst++)
++		*dst = swab32p(src);
++}
++
++static void fec_dump(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct bufdesc *bdp;
++	struct fec_enet_priv_tx_q *txq;
++	int index = 0;
++
++	netdev_info(ndev, "TX ring dump\n");
++	pr_info("Nr     SC     addr       len  SKB\n");
++
++	txq = fep->tx_queue[0];
++	bdp = txq->tx_bd_base;
++
++	do {
++		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
++			index,
++			bdp == txq->cur_tx ? 'S' : ' ',
++			bdp == txq->dirty_tx ? 'H' : ' ',
++			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
++			txq->tx_skbuff[index]);
++		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
++		index++;
++	} while (bdp != txq->tx_bd_base);
++}
++
++static inline bool is_ipv4_pkt(struct sk_buff *skb)
++{
++	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
++}
++
++static int
++fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
++{
++	/* Only run for packets requiring a checksum. */
++	if (skb->ip_summed != CHECKSUM_PARTIAL)
++		return 0;
++
++	if (unlikely(skb_cow_head(skb, 0)))
++		return -1;
++
++	if (is_ipv4_pkt(skb))
++		ip_hdr(skb)->check = 0;
++	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
++
++	return 0;
++}
++
++static int
++fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
++			     struct sk_buff *skb,
++			     struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct bufdesc *bdp = txq->cur_tx;
++	struct bufdesc_ex *ebdp;
++	int nr_frags = skb_shinfo(skb)->nr_frags;
++	unsigned short queue = skb_get_queue_mapping(skb);
++	int frag, frag_len;
++	unsigned short status;
++	unsigned int estatus = 0;
++	skb_frag_t *this_frag;
++	unsigned int index;
++	void *bufaddr;
++	dma_addr_t addr;
++	int i;
++
++	for (frag = 0; frag < nr_frags; frag++) {
++		this_frag = &skb_shinfo(skb)->frags[frag];
++		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++		ebdp = (struct bufdesc_ex *)bdp;
++
++		status = bdp->cbd_sc;
++		status &= ~BD_ENET_TX_STATS;
++		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
++		frag_len = skb_shinfo(skb)->frags[frag].size;
++
++		/* Handle the last BD specially */
++		if (frag == nr_frags - 1) {
++			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
++			if (fep->bufdesc_ex) {
++				estatus |= BD_ENET_TX_INT;
++				if (unlikely(skb_shinfo(skb)->tx_flags &
++					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
++					estatus |= BD_ENET_TX_TS;
++			}
++		}
++
++		if (fep->bufdesc_ex) {
++			if (fep->quirks & FEC_QUIRK_HAS_AVB)
++				estatus |= FEC_TX_BD_FTYPE(queue);
++			if (skb->ip_summed == CHECKSUM_PARTIAL)
++				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
++			ebdp->cbd_bdu = 0;
++			ebdp->cbd_esc = estatus;
++		}
++
++		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
++
++		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
++		if (((unsigned long) bufaddr) & fep->tx_align ||
++			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
++			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
++			bufaddr = txq->tx_bounce[index];
++
++			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
++				swap_buffer(bufaddr, frag_len);
++		}
++
++		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
++				      DMA_TO_DEVICE);
++		if (dma_mapping_error(&fep->pdev->dev, addr)) {
++			dev_kfree_skb_any(skb);
++			if (net_ratelimit())
++				netdev_err(ndev, "Tx DMA memory map failed\n");
++			goto dma_mapping_error;
++		}
++
++		bdp->cbd_bufaddr = addr;
++		bdp->cbd_datlen = frag_len;
++		bdp->cbd_sc = status;
++	}
++
++	txq->cur_tx = bdp;
++
++	return 0;
++
++dma_mapping_error:
++	bdp = txq->cur_tx;
++	for (i = 0; i < frag; i++) {
++		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
++				bdp->cbd_datlen, DMA_TO_DEVICE);
++	}
++	return NETDEV_TX_OK;
++}
++
++static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
++				   struct sk_buff *skb, struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int nr_frags = skb_shinfo(skb)->nr_frags;
++	struct bufdesc *bdp, *last_bdp;
++	void *bufaddr;
++	dma_addr_t addr;
++	unsigned short status;
++	unsigned short buflen;
++	unsigned short queue;
++	unsigned int estatus = 0;
++	unsigned int index;
++	int entries_free;
++	int ret;
++
++	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
++	if (entries_free < MAX_SKB_FRAGS + 1) {
++		dev_kfree_skb_any(skb);
++		if (net_ratelimit())
++			netdev_err(ndev, "NOT enough BD for SG!\n");
++		return NETDEV_TX_OK;
++	}
++
++	/* Protocol checksum off-load for TCP and UDP. */
++	if (fec_enet_clear_csum(skb, ndev)) {
++		dev_kfree_skb_any(skb);
++		return NETDEV_TX_OK;
++	}
++
++	/* Fill in a Tx ring entry */
++	bdp = txq->cur_tx;
++	status = bdp->cbd_sc;
++	status &= ~BD_ENET_TX_STATS;
++
++	/* Set buffer length and buffer pointer */
++	bufaddr = skb->data;
++	buflen = skb_headlen(skb);
++
++	queue = skb_get_queue_mapping(skb);
++	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
++	if (((unsigned long) bufaddr) & fep->tx_align ||
++		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
++		memcpy(txq->tx_bounce[index], skb->data, buflen);
++		bufaddr = txq->tx_bounce[index];
++
++		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
++			swap_buffer(bufaddr, buflen);
++	}
++
++	/* Push the data cache so the CPM does not get stale memory data. */
++	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
++	if (dma_mapping_error(&fep->pdev->dev, addr)) {
++		dev_kfree_skb_any(skb);
++		if (net_ratelimit())
++			netdev_err(ndev, "Tx DMA memory map failed\n");
++		return NETDEV_TX_OK;
++	}
++
++	if (nr_frags) {
++		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
++		if (ret)
++			return ret;
++	} else {
++		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
++		if (fep->bufdesc_ex) {
++			estatus = BD_ENET_TX_INT;
++			if (unlikely(skb_shinfo(skb)->tx_flags &
++				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
++				estatus |= BD_ENET_TX_TS;
++		}
++	}
++
++	if (fep->bufdesc_ex) {
++
++		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++
++		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
++			fep->hwts_tx_en))
++			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
++
++		if (fep->quirks & FEC_QUIRK_HAS_AVB)
++			estatus |= FEC_TX_BD_FTYPE(queue);
++
++		if (skb->ip_summed == CHECKSUM_PARTIAL)
++			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
++
++		ebdp->cbd_bdu = 0;
++		ebdp->cbd_esc = estatus;
++	}
++
++	last_bdp = txq->cur_tx;
++	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
++	/* Save skb pointer */
++	txq->tx_skbuff[index] = skb;
++
++	bdp->cbd_datlen = buflen;
++	bdp->cbd_bufaddr = addr;
++
++	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
++	 * it's the last BD of the frame, and to put the CRC on the end.
++	 */
++	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
++	bdp->cbd_sc = status;
++
++	/* If this was the last BD in the ring, start at the beginning again. */
++	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
++
++	skb_tx_timestamp(skb);
++
++	txq->cur_tx = bdp;
++
++	/* Trigger transmission start */
++	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
++
++	return 0;
++}
++
++static int
++fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
++			  struct net_device *ndev,
++			  struct bufdesc *bdp, int index, char *data,
++			  int size, bool last_tcp, bool is_last)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
++	unsigned short queue = skb_get_queue_mapping(skb);
++	unsigned short status;
++	unsigned int estatus = 0;
++	dma_addr_t addr;
++
++	status = bdp->cbd_sc;
++	status &= ~BD_ENET_TX_STATS;
++
++	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
++
++	if (((unsigned long) data) & fep->tx_align ||
++		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
++		memcpy(txq->tx_bounce[index], data, size);
++		data = txq->tx_bounce[index];
++
++		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
++			swap_buffer(data, size);
++	}
++
++	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
++	if (dma_mapping_error(&fep->pdev->dev, addr)) {
++		dev_kfree_skb_any(skb);
++		if (net_ratelimit())
++			netdev_err(ndev, "Tx DMA memory map failed\n");
++		return NETDEV_TX_BUSY;
++	}
++
++	bdp->cbd_datlen = size;
++	bdp->cbd_bufaddr = addr;
++
++	if (fep->bufdesc_ex) {
++		if (fep->quirks & FEC_QUIRK_HAS_AVB)
++			estatus |= FEC_TX_BD_FTYPE(queue);
++		if (skb->ip_summed == CHECKSUM_PARTIAL)
++			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
++		ebdp->cbd_bdu = 0;
++		ebdp->cbd_esc = estatus;
++	}
++
++	/* Handle the last BD specially */
++	if (last_tcp)
++		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
++	if (is_last) {
++		status |= BD_ENET_TX_INTR;
++		if (fep->bufdesc_ex)
++			ebdp->cbd_esc |= BD_ENET_TX_INT;
++	}
++
++	bdp->cbd_sc = status;
++
++	return 0;
++}
++
++static int
++fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
++			 struct sk_buff *skb, struct net_device *ndev,
++			 struct bufdesc *bdp, int index)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
++	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
++	unsigned short queue = skb_get_queue_mapping(skb);
++	void *bufaddr;
++	unsigned long dmabuf;
++	unsigned short status;
++	unsigned int estatus = 0;
++
++	status = bdp->cbd_sc;
++	status &= ~BD_ENET_TX_STATS;
++	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
++
++	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
++	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
++	if (((unsigned long)bufaddr) & fep->tx_align ||
++		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
++		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
++		bufaddr = txq->tx_bounce[index];
++
++		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
++			swap_buffer(bufaddr, hdr_len);
++
++		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
++					hdr_len, DMA_TO_DEVICE);
++		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
++			dev_kfree_skb_any(skb);
++			if (net_ratelimit())
++				netdev_err(ndev, "Tx DMA memory map failed\n");
++			return NETDEV_TX_BUSY;
++		}
++	}
++
++	bdp->cbd_bufaddr = dmabuf;
++	bdp->cbd_datlen = hdr_len;
++
++	if (fep->bufdesc_ex) {
++		if (fep->quirks & FEC_QUIRK_HAS_AVB)
++			estatus |= FEC_TX_BD_FTYPE(queue);
++		if (skb->ip_summed == CHECKSUM_PARTIAL)
++			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
++		ebdp->cbd_bdu = 0;
++		ebdp->cbd_esc = estatus;
++	}
++
++	bdp->cbd_sc = status;
++
++	return 0;
++}
++
++static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
++				   struct sk_buff *skb,
++				   struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
++	int total_len, data_left;
++	struct bufdesc *bdp = txq->cur_tx;
++	unsigned short queue = skb_get_queue_mapping(skb);
++	struct tso_t tso;
++	unsigned int index = 0;
++	int ret;
++
++	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
++		dev_kfree_skb_any(skb);
++		if (net_ratelimit())
++			netdev_err(ndev, "NOT enough BD for TSO!\n");
++		return NETDEV_TX_OK;
++	}
++
++	/* Protocol checksum off-load for TCP and UDP. */
++	if (fec_enet_clear_csum(skb, ndev)) {
++		dev_kfree_skb_any(skb);
++		return NETDEV_TX_OK;
++	}
++
++	/* Initialize the TSO handler, and prepare the first payload */
++	tso_start(skb, &tso);
++
++	total_len = skb->len - hdr_len;
++	while (total_len > 0) {
++		char *hdr;
++
++		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
++		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
++		total_len -= data_left;
++
++		/* prepare packet headers: MAC + IP + TCP */
++		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
++		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
++		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
++		if (ret)
++			goto err_release;
++
++		while (data_left > 0) {
++			int size;
++
++			size = min_t(int, tso.size, data_left);
++			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++			index = fec_enet_get_bd_index(txq->tx_bd_base,
++						      bdp, fep);
++			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
++							bdp, index,
++							tso.data, size,
++							size == data_left,
++							total_len == 0);
++			if (ret)
++				goto err_release;
++
++			data_left -= size;
++			tso_build_data(skb, &tso, size);
++		}
++
++		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++	}
++
++	/* Save skb pointer */
++	txq->tx_skbuff[index] = skb;
++
++	skb_tx_timestamp(skb);
++	txq->cur_tx = bdp;
++
++	/* Trigger transmission start */
++	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
++	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
++	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
++	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
++	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
++		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
++
++	return 0;
++
++err_release:
++	/* TODO: Release all used data descriptors for TSO */
++	return ret;
++}
++
++static netdev_tx_t
++fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int entries_free;
++	unsigned short queue;
++	struct fec_enet_priv_tx_q *txq;
++	struct netdev_queue *nq;
++	int ret;
++
++	queue = skb_get_queue_mapping(skb);
++	txq = fep->tx_queue[queue];
++	nq = netdev_get_tx_queue(ndev, queue);
++
++	if (skb_is_gso(skb))
++		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
++	else
++		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
++	if (ret)
++		return ret;
++
++	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
++	if (entries_free <= txq->tx_stop_threshold)
++		netif_tx_stop_queue(nq);
++
++	return NETDEV_TX_OK;
++}
++
++/* Init RX & TX buffer descriptors
++ */
++static void fec_enet_bd_init(struct net_device *dev)
++{
++	struct fec_enet_private *fep = netdev_priv(dev);
++	struct fec_enet_priv_tx_q *txq;
++	struct fec_enet_priv_rx_q *rxq;
++	struct bufdesc *bdp;
++	unsigned int i;
++	unsigned int q;
++
++	for (q = 0; q < fep->num_rx_queues; q++) {
++		/* Initialize the receive buffer descriptors. */
++		rxq = fep->rx_queue[q];
++		bdp = rxq->rx_bd_base;
++
++		for (i = 0; i < rxq->rx_ring_size; i++) {
++
++			/* Initialize the BD for every fragment in the page. */
++			if (bdp->cbd_bufaddr)
++				bdp->cbd_sc = BD_ENET_RX_EMPTY;
++			else
++				bdp->cbd_sc = 0;
++			bdp = fec_enet_get_nextdesc(bdp, fep, q);
++		}
++
++		/* Set the last buffer to wrap */
++		bdp = fec_enet_get_prevdesc(bdp, fep, q);
++		bdp->cbd_sc |= BD_SC_WRAP;
++
++		rxq->cur_rx = rxq->rx_bd_base;
++	}
++
++	for (q = 0; q < fep->num_tx_queues; q++) {
++		/* ...and the same for transmit */
++		txq = fep->tx_queue[q];
++		bdp = txq->tx_bd_base;
++		txq->cur_tx = bdp;
++
++		for (i = 0; i < txq->tx_ring_size; i++) {
++			/* Initialize the BD for every fragment in the page. */
++			bdp->cbd_sc = 0;
++			if (txq->tx_skbuff[i]) {
++				dev_kfree_skb_any(txq->tx_skbuff[i]);
++				txq->tx_skbuff[i] = NULL;
++			}
++			bdp->cbd_bufaddr = 0;
++			bdp = fec_enet_get_nextdesc(bdp, fep, q);
++		}
++
++		/* Set the last buffer to wrap */
++		bdp = fec_enet_get_prevdesc(bdp, fep, q);
++		bdp->cbd_sc |= BD_SC_WRAP;
++		txq->dirty_tx = bdp;
++	}
++}
++
++static void fec_enet_active_rxring(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int i;
++
++	for (i = 0; i < fep->num_rx_queues; i++)
++		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
++}
++
++static void fec_enet_enable_ring(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct fec_enet_priv_tx_q *txq;
++	struct fec_enet_priv_rx_q *rxq;
++	int i;
++
++	for (i = 0; i < fep->num_rx_queues; i++) {
++		rxq = fep->rx_queue[i];
++		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
++		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
++
++		/* enable DMA1/2 */
++		if (i)
++			writel(RCMR_MATCHEN | RCMR_CMP(i),
++			       fep->hwp + FEC_RCMR(i));
++	}
++
++	for (i = 0; i < fep->num_tx_queues; i++) {
++		txq = fep->tx_queue[i];
++		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
++
++		/* enable DMA1/2 */
++		if (i)
++			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
++			       fep->hwp + FEC_DMA_CFG(i));
++	}
++}
++
++static void fec_enet_reset_skb(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct fec_enet_priv_tx_q *txq;
++	int i, j;
++
++	for (i = 0; i < fep->num_tx_queues; i++) {
++		txq = fep->tx_queue[i];
++
++		for (j = 0; j < txq->tx_ring_size; j++) {
++			if (txq->tx_skbuff[j]) {
++				dev_kfree_skb_any(txq->tx_skbuff[j]);
++				txq->tx_skbuff[j] = NULL;
++			}
++		}
++	}
++}
++
++/*
++ * This function is called to start or restart the FEC during a link
++ * change, transmit timeout, or to reconfigure the FEC.  The network
++ * packet processing for this device must be stopped before this call.
++ */
++static void
++fec_restart(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	u32 val;
++	u32 temp_mac[2];
++	u32 rcntl = OPT_FRAME_SIZE | 0x04;
++	u32 ecntl = 0x2; /* ETHEREN */
++
++	/* Whack a reset.  We should wait for this.
++	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
++	 * instead of reset MAC itself.
++	 */
++	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
++		writel(0, fep->hwp + FEC_ECNTRL);
++	} else {
++		writel(1, fep->hwp + FEC_ECNTRL);
++		udelay(10);
++	}
++
++	/*
++	 * enet-mac reset will reset mac address registers too,
++	 * so need to reconfigure it.
++	 */
++	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
++		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
++		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
++		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
++	}
++
++	/* Clear any outstanding interrupt. */
++	writel(0xffffffff, fep->hwp + FEC_IEVENT);
++
++	fec_enet_bd_init(ndev);
++
++	fec_enet_enable_ring(ndev);
++
++	/* Reset tx SKB buffers. */
++	fec_enet_reset_skb(ndev);
++
++	/* Enable MII mode */
++	if (fep->full_duplex == DUPLEX_FULL) {
++		/* FD enable */
++		writel(0x04, fep->hwp + FEC_X_CNTRL);
++	} else {
++		/* No Rcv on Xmit */
++		rcntl |= 0x02;
++		writel(0x0, fep->hwp + FEC_X_CNTRL);
++	}
++
++	/* Set MII speed */
++	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
++
++#if !defined(CONFIG_M5272)
++	/* set RX checksum */
++	val = readl(fep->hwp + FEC_RACC);
++	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
++		val |= FEC_RACC_OPTIONS;
++	else
++		val &= ~FEC_RACC_OPTIONS;
++	writel(val, fep->hwp + FEC_RACC);
++#endif
++
++	/*
++	 * The phy interface and speed need to get configured
++	 * differently on enet-mac.
++	 */
++	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
++		/* Enable flow control and length check */
++		rcntl |= 0x40000000 | 0x00000020;
++
++		/* RGMII, RMII or MII */
++		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
++		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
++		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
++		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
++			rcntl |= (1 << 6);
++		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
++			rcntl |= (1 << 8);
++		else
++			rcntl &= ~(1 << 8);
++
++		/* 1G, 100M or 10M */
++		if (fep->phy_dev) {
++			if (fep->phy_dev->speed == SPEED_1000)
++				ecntl |= (1 << 5);
++			else if (fep->phy_dev->speed == SPEED_100)
++				rcntl &= ~(1 << 9);
++			else
++				rcntl |= (1 << 9);
++		}
++	} else {
++#ifdef FEC_MIIGSK_ENR
++		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
++			u32 cfgr;
++			/* disable the gasket and wait */
++			writel(0, fep->hwp + FEC_MIIGSK_ENR);
++			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
++				udelay(1);
++
++			/*
++			 * configure the gasket:
++			 *   RMII, 50 MHz, no loopback, no echo
++			 *   MII, 25 MHz, no loopback, no echo
++			 */
++			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
++				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
++			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
++				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
++			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
++
++			/* re-enable the gasket */
++			writel(2, fep->hwp + FEC_MIIGSK_ENR);
++		}
++#endif
++	}
++
++#if !defined(CONFIG_M5272)
++	/* enable pause frame*/
++	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
++	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
++	     fep->phy_dev && fep->phy_dev->pause)) {
++		rcntl |= FEC_ENET_FCE;
++
++		/* set FIFO threshold parameter to reduce overrun */
++		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
++		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
++		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
++		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
++
++		/* OPD */
++		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
++	} else {
++		rcntl &= ~FEC_ENET_FCE;
++	}
++#endif /* !defined(CONFIG_M5272) */
++
++	writel(rcntl, fep->hwp + FEC_R_CNTRL);
++
++	/* Setup multicast filter. */
++	set_multicast_list(ndev);
++#ifndef CONFIG_M5272
++	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
++	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
++#endif
++
++	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
++		/* enable ENET endian swap */
++		ecntl |= (1 << 8);
++		/* enable ENET store and forward mode */
++		writel(1 << 8, fep->hwp + FEC_X_WMRK);
++	}
++
++	if (fep->bufdesc_ex)
++		ecntl |= (1 << 4);
++
++#ifndef CONFIG_M5272
++	/* Enable the MIB statistic event counters */
++	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
++#endif
++
++	/* And last, enable the transmit and receive processing */
++	writel(ecntl, fep->hwp + FEC_ECNTRL);
++	fec_enet_active_rxring(ndev);
++
++	if (fep->bufdesc_ex)
++		fec_ptp_start_cyclecounter(ndev);
++
++	/* Enable interrupts we wish to service */
++	if (fep->link)
++		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
++	else
++		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
++
++	/* Init the interrupt coalescing */
++	fec_enet_itr_coal_init(ndev);
++
++}
++
++static void
++fec_stop(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
++	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
++	u32 val;
++
++	/* We cannot expect a graceful transmit stop without link !!! */
++	if (fep->link) {
++		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
++		udelay(10);
++		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
++			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
++	}
++
++	/* Whack a reset.  We should wait for this.
++	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
++	 * instead of reset MAC itself.
++	 */
++	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
++		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
++			writel(0, fep->hwp + FEC_ECNTRL);
++		} else {
++			writel(1, fep->hwp + FEC_ECNTRL);
++			udelay(10);
++		}
++		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
++	} else {
++		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
++		val = readl(fep->hwp + FEC_ECNTRL);
++		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
++		writel(val, fep->hwp + FEC_ECNTRL);
++
++		if (pdata && pdata->sleep_mode_enable)
++			pdata->sleep_mode_enable(true);
++	}
++	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
++
++	/* We have to keep ENET enabled to have MII interrupt stay working */
++	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
++		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
++		writel(2, fep->hwp + FEC_ECNTRL);
++		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
++	}
++}
++
++
++static void
++fec_timeout(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	fec_dump(ndev);
++
++	ndev->stats.tx_errors++;
++
++	schedule_work(&fep->tx_timeout_work);
++}
++
++static void fec_enet_timeout_work(struct work_struct *work)
++{
++	struct fec_enet_private *fep =
++		container_of(work, struct fec_enet_private, tx_timeout_work);
++	struct net_device *ndev = fep->netdev;
++
++	rtnl_lock();
++	if (netif_device_present(ndev) || netif_running(ndev)) {
++		napi_disable(&fep->napi);
++		netif_tx_lock_bh(ndev);
++		fec_restart(ndev);
++		netif_wake_queue(ndev);
++		netif_tx_unlock_bh(ndev);
++		napi_enable(&fep->napi);
++	}
++	rtnl_unlock();
++}
++
++static void
++fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
++	struct skb_shared_hwtstamps *hwtstamps)
++{
++	unsigned long flags;
++	u64 ns;
++
++	spin_lock_irqsave(&fep->tmreg_lock, flags);
++	ns = timecounter_cyc2time(&fep->tc, ts);
++	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
++
++	memset(hwtstamps, 0, sizeof(*hwtstamps));
++	hwtstamps->hwtstamp = ns_to_ktime(ns);
++}
++
++static void
++fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
++{
++	struct	fec_enet_private *fep;
++	struct bufdesc *bdp;
++	unsigned short status;
++	struct	sk_buff	*skb;
++	struct fec_enet_priv_tx_q *txq;
++	struct netdev_queue *nq;
++	int	index = 0;
++	int	entries_free;
++
++	fep = netdev_priv(ndev);
++
++	queue_id = FEC_ENET_GET_QUQUE(queue_id);
++
++	txq = fep->tx_queue[queue_id];
++	/* get next bdp of dirty_tx */
++	nq = netdev_get_tx_queue(ndev, queue_id);
++	bdp = txq->dirty_tx;
++
++	/* get next bdp of dirty_tx */
++	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
++
++	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
++
++		/* current queue is empty */
++		if (bdp == txq->cur_tx)
++			break;
++
++		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
++
++		skb = txq->tx_skbuff[index];
++		txq->tx_skbuff[index] = NULL;
++		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
++			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
++					bdp->cbd_datlen, DMA_TO_DEVICE);
++		bdp->cbd_bufaddr = 0;
++		if (!skb) {
++			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
++			continue;
++		}
++
++		/* Check for errors. */
++		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
++				   BD_ENET_TX_RL | BD_ENET_TX_UN |
++				   BD_ENET_TX_CSL)) {
++			ndev->stats.tx_errors++;
++			if (status & BD_ENET_TX_HB)  /* No heartbeat */
++				ndev->stats.tx_heartbeat_errors++;
++			if (status & BD_ENET_TX_LC)  /* Late collision */
++				ndev->stats.tx_window_errors++;
++			if (status & BD_ENET_TX_RL)  /* Retrans limit */
++				ndev->stats.tx_aborted_errors++;
++			if (status & BD_ENET_TX_UN)  /* Underrun */
++				ndev->stats.tx_fifo_errors++;
++			if (status & BD_ENET_TX_CSL) /* Carrier lost */
++				ndev->stats.tx_carrier_errors++;
++		} else {
++			ndev->stats.tx_packets++;
++			ndev->stats.tx_bytes += skb->len;
++		}
++
++		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
++			fep->bufdesc_ex) {
++			struct skb_shared_hwtstamps shhwtstamps;
++			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++
++			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
++			skb_tstamp_tx(skb, &shhwtstamps);
++		}
++
++		/* Deferred means some collisions occurred during transmit,
++		 * but we eventually sent the packet OK.
++		 */
++		if (status & BD_ENET_TX_DEF)
++			ndev->stats.collisions++;
++
++		/* Free the sk buffer associated with this last transmit */
++		dev_kfree_skb_any(skb);
++
++		txq->dirty_tx = bdp;
++
++		/* Update pointer to next buffer descriptor to be transmitted */
++		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
++
++		/* Since we have freed up a buffer, the ring is no longer full
++		 */
++		if (netif_queue_stopped(ndev)) {
++			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
++			if (entries_free >= txq->tx_wake_threshold)
++				netif_tx_wake_queue(nq);
++		}
++	}
++
++	/* ERR006538: Keep the transmitter going */
++	if (bdp != txq->cur_tx &&
++	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
++		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
++}
++
++static void
++fec_enet_tx(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	u16 queue_id;
++	/* First process class A queue, then Class B and Best Effort queue */
++	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
++		clear_bit(queue_id, &fep->work_tx);
++		fec_enet_tx_queue(ndev, queue_id);
++	}
++	return;
++}
++
++static int
++fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
++{
++	struct  fec_enet_private *fep = netdev_priv(ndev);
++	int off;
++
++	off = ((unsigned long)skb->data) & fep->rx_align;
++	if (off)
++		skb_reserve(skb, fep->rx_align + 1 - off);
++
++	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
++					  FEC_ENET_RX_FRSIZE - fep->rx_align,
++					  DMA_FROM_DEVICE);
++	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
++		if (net_ratelimit())
++			netdev_err(ndev, "Rx DMA memory map failed\n");
++		return -ENOMEM;
++	}
++
++	return 0;
++}
++
++static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
++			       struct bufdesc *bdp, u32 length, bool swap)
++{
++	struct  fec_enet_private *fep = netdev_priv(ndev);
++	struct sk_buff *new_skb;
++
++	if (length > fep->rx_copybreak)
++		return false;
++
++	new_skb = netdev_alloc_skb(ndev, length);
++	if (!new_skb)
++		return false;
++
++	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
++				FEC_ENET_RX_FRSIZE - fep->rx_align,
++				DMA_FROM_DEVICE);
++	if (!swap)
++		memcpy(new_skb->data, (*skb)->data, length);
++	else
++		swap_buffer2(new_skb->data, (*skb)->data, length);
++	*skb = new_skb;
++
++	return true;
++}
++
++/* During a receive, the cur_rx points to the current incoming buffer.
++ * When we update through the ring, if the next incoming buffer has
++ * not been given to the system, we just set the empty indicator,
++ * effectively tossing the packet.
++ */
++static int
++fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct fec_enet_priv_rx_q *rxq;
++	struct bufdesc *bdp;
++	unsigned short status;
++	struct  sk_buff *skb_new = NULL;
++	struct  sk_buff *skb;
++	ushort	pkt_len;
++	__u8 *data;
++	int	pkt_received = 0;
++	struct	bufdesc_ex *ebdp = NULL;
++	bool	vlan_packet_rcvd = false;
++	u16	vlan_tag;
++	int	index = 0;
++	bool	is_copybreak;
++	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
++
++#ifdef CONFIG_M532x
++	flush_cache_all();
++#endif
++	queue_id = FEC_ENET_GET_QUQUE(queue_id);
++	rxq = fep->rx_queue[queue_id];
++
++	/* First, grab all of the stats for the incoming packet.
++	 * These get messed up if we get called due to a busy condition.
++	 */
++	bdp = rxq->cur_rx;
++
++	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
++
++		if (pkt_received >= budget)
++			break;
++		pkt_received++;
++
++		/* Since we have allocated space to hold a complete frame,
++		 * the last indicator should be set.
++		 */
++		if ((status & BD_ENET_RX_LAST) == 0)
++			netdev_err(ndev, "rcv is not +last\n");
++
++		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
++
++		/* Check for errors. */
++		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
++			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
++			ndev->stats.rx_errors++;
++			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
++				/* Frame too long or too short. */
++				ndev->stats.rx_length_errors++;
++			}
++			if (status & BD_ENET_RX_NO)	/* Frame alignment */
++				ndev->stats.rx_frame_errors++;
++			if (status & BD_ENET_RX_CR)	/* CRC Error */
++				ndev->stats.rx_crc_errors++;
++			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
++				ndev->stats.rx_fifo_errors++;
++		}
++
++		/* Report late collisions as a frame error.
++		 * On this error, the BD is closed, but we don't know what we
++		 * have in the buffer.  So, just drop this frame on the floor.
++		 */
++		if (status & BD_ENET_RX_CL) {
++			ndev->stats.rx_errors++;
++			ndev->stats.rx_frame_errors++;
++			goto rx_processing_done;
++		}
++
++		/* Process the incoming frame. */
++		ndev->stats.rx_packets++;
++		pkt_len = bdp->cbd_datlen;
++		ndev->stats.rx_bytes += pkt_len;
++
++		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
++		skb = rxq->rx_skbuff[index];
++
++		/* The packet length includes FCS, but we don't want to
++		 * include that when passing upstream as it messes up
++		 * bridging applications.
++		 */
++		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
++						  need_swap);
++		if (!is_copybreak) {
++			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
++			if (unlikely(!skb_new)) {
++				ndev->stats.rx_dropped++;
++				goto rx_processing_done;
++			}
++			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
++					 FEC_ENET_RX_FRSIZE - fep->rx_align,
++					 DMA_FROM_DEVICE);
++		}
++
++		prefetch(skb->data - NET_IP_ALIGN);
++		skb_put(skb, pkt_len - 4);
++		data = skb->data;
++		if (!is_copybreak && need_swap)
++			swap_buffer(data, pkt_len);
++
++		/* Extract the enhanced buffer descriptor */
++		ebdp = NULL;
++		if (fep->bufdesc_ex)
++			ebdp = (struct bufdesc_ex *)bdp;
++
++		/* If this is a VLAN packet remove the VLAN Tag */
++		vlan_packet_rcvd = false;
++		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
++			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
++			/* Push and remove the vlan tag */
++			struct vlan_hdr *vlan_header =
++					(struct vlan_hdr *) (data + ETH_HLEN);
++			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
++
++			vlan_packet_rcvd = true;
++
++			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
++			skb_pull(skb, VLAN_HLEN);
++		}
++
++		skb->protocol = eth_type_trans(skb, ndev);
++
++		/* Get receive timestamp from the skb */
++		if (fep->hwts_rx_en && fep->bufdesc_ex)
++			fec_enet_hwtstamp(fep, ebdp->ts,
++					  skb_hwtstamps(skb));
++
++		if (fep->bufdesc_ex &&
++		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
++			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
++				/* don't check it */
++				skb->ip_summed = CHECKSUM_UNNECESSARY;
++			} else {
++				skb_checksum_none_assert(skb);
++			}
++		}
++
++		/* Handle received VLAN packets */
++		if (vlan_packet_rcvd)
++			__vlan_hwaccel_put_tag(skb,
++					       htons(ETH_P_8021Q),
++					       vlan_tag);
++
++		napi_gro_receive(&fep->napi, skb);
++
++		if (is_copybreak) {
++			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
++						   FEC_ENET_RX_FRSIZE - fep->rx_align,
++						   DMA_FROM_DEVICE);
++		} else {
++			rxq->rx_skbuff[index] = skb_new;
++			fec_enet_new_rxbdp(ndev, bdp, skb_new);
++		}
++
++rx_processing_done:
++		/* Clear the status flags for this buffer */
++		status &= ~BD_ENET_RX_STATS;
++
++		/* Mark the buffer empty */
++		status |= BD_ENET_RX_EMPTY;
++		bdp->cbd_sc = status;
++
++		if (fep->bufdesc_ex) {
++			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++
++			ebdp->cbd_esc = BD_ENET_RX_INT;
++			ebdp->cbd_prot = 0;
++			ebdp->cbd_bdu = 0;
++		}
++
++		/* Update BD pointer to next entry */
++		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
++
++		/* Doing this here will keep the FEC running while we process
++		 * incoming frames.  On a heavily loaded network, we should be
++		 * able to keep up at the expense of system resources.
++		 */
++		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
++	}
++	rxq->cur_rx = bdp;
++	return pkt_received;
++}
++
++static int
++fec_enet_rx(struct net_device *ndev, int budget)
++{
++	int     pkt_received = 0;
++	u16	queue_id;
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
++		clear_bit(queue_id, &fep->work_rx);
++		pkt_received += fec_enet_rx_queue(ndev,
++					budget - pkt_received, queue_id);
++	}
++	return pkt_received;
++}
++
++static bool
++fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
++{
++	if (int_events == 0)
++		return false;
++
++	if (int_events & FEC_ENET_RXF)
++		fep->work_rx |= (1 << 2);
++	if (int_events & FEC_ENET_RXF_1)
++		fep->work_rx |= (1 << 0);
++	if (int_events & FEC_ENET_RXF_2)
++		fep->work_rx |= (1 << 1);
++
++	if (int_events & FEC_ENET_TXF)
++		fep->work_tx |= (1 << 2);
++	if (int_events & FEC_ENET_TXF_1)
++		fep->work_tx |= (1 << 0);
++	if (int_events & FEC_ENET_TXF_2)
++		fep->work_tx |= (1 << 1);
++
++	return true;
++}
++
++static irqreturn_t
++fec_enet_interrupt(int irq, void *dev_id)
++{
++	struct net_device *ndev = dev_id;
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	uint int_events;
++	irqreturn_t ret = IRQ_NONE;
++
++	int_events = readl(fep->hwp + FEC_IEVENT);
++	writel(int_events, fep->hwp + FEC_IEVENT);
++	fec_enet_collect_events(fep, int_events);
++
++	if ((fep->work_tx || fep->work_rx) && fep->link) {
++		ret = IRQ_HANDLED;
++
++		if (napi_schedule_prep(&fep->napi)) {
++			/* Disable the NAPI interrupts */
++			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
++			__napi_schedule(&fep->napi);
++		}
++	}
++
++	if (int_events & FEC_ENET_MII) {
++		ret = IRQ_HANDLED;
++		complete(&fep->mdio_done);
++	}
++
++	if (fep->ptp_clock)
++		fec_ptp_check_pps_event(fep);
++
++	return ret;
++}
++
++static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
++{
++	struct net_device *ndev = napi->dev;
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int pkts;
++
++	pkts = fec_enet_rx(ndev, budget);
++
++	fec_enet_tx(ndev);
++
++	if (pkts < budget) {
++		napi_complete(napi);
++		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
++	}
++	return pkts;
++}
++
++/* ------------------------------------------------------------------------- */
++static void fec_get_mac(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
++	unsigned char *iap, tmpaddr[ETH_ALEN];
++
++	/*
++	 * try to get mac address in following order:
++	 *
++	 * 1) module parameter via kernel command line in form
++	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
++	 */
++	iap = macaddr;
++
++	/*
++	 * 2) from device tree data
++	 */
++	if (!is_valid_ether_addr(iap)) {
++		struct device_node *np = fep->pdev->dev.of_node;
++		if (np) {
++			const char *mac = of_get_mac_address(np);
++			if (mac)
++				iap = (unsigned char *) mac;
++		}
++	}
++
++	/*
++	 * 3) from flash or fuse (via platform data)
++	 */
++	if (!is_valid_ether_addr(iap)) {
++#ifdef CONFIG_M5272
++		if (FEC_FLASHMAC)
++			iap = (unsigned char *)FEC_FLASHMAC;
++#else
++		if (pdata)
++			iap = (unsigned char *)&pdata->mac;
++#endif
++	}
++
++	/*
++	 * 4) FEC mac registers set by bootloader
++	 */
++	if (!is_valid_ether_addr(iap)) {
++		*((__be32 *) &tmpaddr[0]) =
++			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
++		*((__be16 *) &tmpaddr[4]) =
++			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
++		iap = &tmpaddr[0];
++	}
++
++	/*
++	 * 5) random mac address
++	 */
++	if (!is_valid_ether_addr(iap)) {
++		/* Report it and use a random ethernet address instead */
++		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
++		eth_hw_addr_random(ndev);
++		netdev_info(ndev, "Using random MAC address: %pM\n",
++			    ndev->dev_addr);
++		return;
++	}
++
++	memcpy(ndev->dev_addr, iap, ETH_ALEN);
++
++	/* Adjust MAC if using macaddr */
++	if (iap == macaddr)
++		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
++}
++
++/* ------------------------------------------------------------------------- */
++
++/*
++ * Phy section
++ */
++static void fec_enet_adjust_link(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct phy_device *phy_dev = fep->phy_dev;
++	int status_change = 0;
++
++	/* Prevent a state halted on mii error */
++	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
++		phy_dev->state = PHY_RESUMING;
++		return;
++	}
++
++	/*
++	 * If the netdev is down, or is going down, we're not interested
++	 * in link state events, so just mark our idea of the link as down
++	 * and ignore the event.
++	 */
++	if (!netif_running(ndev) || !netif_device_present(ndev)) {
++		fep->link = 0;
++	} else if (phy_dev->link) {
++		if (!fep->link) {
++			fep->link = phy_dev->link;
++			status_change = 1;
++		}
++
++		if (fep->full_duplex != phy_dev->duplex) {
++			fep->full_duplex = phy_dev->duplex;
++			status_change = 1;
++		}
++
++		if (phy_dev->speed != fep->speed) {
++			fep->speed = phy_dev->speed;
++			status_change = 1;
++		}
++
++		/* if any of the above changed restart the FEC */
++		if (status_change) {
++			napi_disable(&fep->napi);
++			netif_tx_lock_bh(ndev);
++			fec_restart(ndev);
++			netif_wake_queue(ndev);
++			netif_tx_unlock_bh(ndev);
++			napi_enable(&fep->napi);
++		}
++	} else {
++		if (fep->link) {
++			napi_disable(&fep->napi);
++			netif_tx_lock_bh(ndev);
++			fec_stop(ndev);
++			netif_tx_unlock_bh(ndev);
++			napi_enable(&fep->napi);
++			fep->link = phy_dev->link;
++			status_change = 1;
++		}
++	}
++
++	if (status_change)
++		phy_print_status(phy_dev);
++}
++
++static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
++{
++	struct fec_enet_private *fep = bus->priv;
++	unsigned long time_left;
++
++	fep->mii_timeout = 0;
++	init_completion(&fep->mdio_done);
++
++	/* start a read op */
++	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
++		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
++		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
++
++	/* wait for end of transfer */
++	time_left = wait_for_completion_timeout(&fep->mdio_done,
++			usecs_to_jiffies(FEC_MII_TIMEOUT));
++	if (time_left == 0) {
++		fep->mii_timeout = 1;
++		netdev_err(fep->netdev, "MDIO read timeout\n");
++		return -ETIMEDOUT;
++	}
++
++	/* return value */
++	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
++}
++
++static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
++			   u16 value)
++{
++	struct fec_enet_private *fep = bus->priv;
++	unsigned long time_left;
++
++	fep->mii_timeout = 0;
++	init_completion(&fep->mdio_done);
++
++	/* start a write op */
++	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
++		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
++		FEC_MMFR_TA | FEC_MMFR_DATA(value),
++		fep->hwp + FEC_MII_DATA);
++
++	/* wait for end of transfer */
++	time_left = wait_for_completion_timeout(&fep->mdio_done,
++			usecs_to_jiffies(FEC_MII_TIMEOUT));
++	if (time_left == 0) {
++		fep->mii_timeout = 1;
++		netdev_err(fep->netdev, "MDIO write timeout\n");
++		return -ETIMEDOUT;
++	}
++
++	return 0;
++}
++
++static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int ret;
++
++	if (enable) {
++		ret = clk_prepare_enable(fep->clk_ahb);
++		if (ret)
++			return ret;
++		ret = clk_prepare_enable(fep->clk_ipg);
++		if (ret)
++			goto failed_clk_ipg;
++		if (fep->clk_enet_out) {
++			ret = clk_prepare_enable(fep->clk_enet_out);
++			if (ret)
++				goto failed_clk_enet_out;
++		}
++		if (fep->clk_ptp) {
++			mutex_lock(&fep->ptp_clk_mutex);
++			ret = clk_prepare_enable(fep->clk_ptp);
++			if (ret) {
++				mutex_unlock(&fep->ptp_clk_mutex);
++				goto failed_clk_ptp;
++			} else {
++				fep->ptp_clk_on = true;
++			}
++			mutex_unlock(&fep->ptp_clk_mutex);
++		}
++		if (fep->clk_ref) {
++			ret = clk_prepare_enable(fep->clk_ref);
++			if (ret)
++				goto failed_clk_ref;
++		}
++	} else {
++		clk_disable_unprepare(fep->clk_ahb);
++		clk_disable_unprepare(fep->clk_ipg);
++		if (fep->clk_enet_out)
++			clk_disable_unprepare(fep->clk_enet_out);
++		if (fep->clk_ptp) {
++			mutex_lock(&fep->ptp_clk_mutex);
++			clk_disable_unprepare(fep->clk_ptp);
++			fep->ptp_clk_on = false;
++			mutex_unlock(&fep->ptp_clk_mutex);
++		}
++		if (fep->clk_ref)
++			clk_disable_unprepare(fep->clk_ref);
++	}
++
++	return 0;
++
++failed_clk_ref:
++	if (fep->clk_ref)
++		clk_disable_unprepare(fep->clk_ref);
++failed_clk_ptp:
++	if (fep->clk_enet_out)
++		clk_disable_unprepare(fep->clk_enet_out);
++failed_clk_enet_out:
++		clk_disable_unprepare(fep->clk_ipg);
++failed_clk_ipg:
++		clk_disable_unprepare(fep->clk_ahb);
++
++	return ret;
++}
++
++static int fec_enet_mii_probe(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct phy_device *phy_dev = NULL;
++	char mdio_bus_id[MII_BUS_ID_SIZE];
++	char phy_name[MII_BUS_ID_SIZE + 3];
++	int phy_id;
++	int dev_id = fep->dev_id;
++
++	fep->phy_dev = NULL;
++
++	if (fep->phy_node) {
++		phy_dev = of_phy_connect(ndev, fep->phy_node,
++					 &fec_enet_adjust_link, 0,
++					 fep->phy_interface);
++		if (!phy_dev)
++			return -ENODEV;
++	} else {
++		/* check for attached phy */
++		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
++			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
++				continue;
++			if (fep->mii_bus->phy_map[phy_id] == NULL)
++				continue;
++			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
++				continue;
++			if (dev_id--)
++				continue;
++			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
++			break;
++		}
++
++		if (phy_id >= PHY_MAX_ADDR) {
++			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
++			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
++			phy_id = 0;
++		}
++
++		snprintf(phy_name, sizeof(phy_name),
++			 PHY_ID_FMT, mdio_bus_id, phy_id);
++		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
++				      fep->phy_interface);
++	}
++
++	if (IS_ERR(phy_dev)) {
++		netdev_err(ndev, "could not attach to PHY\n");
++		return PTR_ERR(phy_dev);
++	}
++
++	/* mask with MAC supported features */
++	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
++		phy_dev->supported &= PHY_GBIT_FEATURES;
++		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
++#if !defined(CONFIG_M5272)
++		phy_dev->supported |= SUPPORTED_Pause;
++#endif
++	}
++	else
++		phy_dev->supported &= PHY_BASIC_FEATURES;
++
++	phy_dev->advertising = phy_dev->supported;
++
++	fep->phy_dev = phy_dev;
++	fep->link = 0;
++	fep->full_duplex = 0;
++
++	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
++		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
++		    fep->phy_dev->irq);
++
++	return 0;
++}
++
++static int fec_enet_mii_init(struct platform_device *pdev)
++{
++	static struct mii_bus *fec0_mii_bus;
++	struct net_device *ndev = platform_get_drvdata(pdev);
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct device_node *node;
++	int err = -ENXIO, i;
++	u32 mii_speed, holdtime;
++
++	/*
++	 * The i.MX28 dual fec interfaces are not equal.
++	 * Here are the differences:
++	 *
++	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
++	 *  - fec0 acts as the 1588 time master while fec1 is slave
++	 *  - external phys can only be configured by fec0
++	 *
++	 * That is to say fec1 can not work independently. It only works
++	 * when fec0 is working. The reason behind this design is that the
++	 * second interface is added primarily for Switch mode.
++	 *
++	 * Because of the last point above, both phys are attached on fec0
++	 * mdio interface in board design, and need to be configured by
++	 * fec0 mii_bus.
++	 */
++	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
++		/* fec1 uses fec0 mii_bus */
++		if (mii_cnt && fec0_mii_bus) {
++			fep->mii_bus = fec0_mii_bus;
++			mii_cnt++;
++			return 0;
++		}
++		return -ENOENT;
++	}
++
++	fep->mii_timeout = 0;
++
++	/*
++	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
++	 *
++	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
++	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
++	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
++	 * document.
++	 */
++	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
++	if (fep->quirks & FEC_QUIRK_ENET_MAC)
++		mii_speed--;
++	if (mii_speed > 63) {
++		dev_err(&pdev->dev,
++			"fec clock (%lu) to fast to get right mii speed\n",
++			clk_get_rate(fep->clk_ipg));
++		err = -EINVAL;
++		goto err_out;
++	}
++
++	/*
++	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
++	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
++	 * versions are RAZ there, so just ignore the difference and write the
++	 * register always.
++	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
++	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
++	 * output.
++	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
++	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
++	 * holdtime cannot result in a value greater than 3.
++	 */
++	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
++
++	fep->phy_speed = mii_speed << 1 | holdtime << 8;
++
++	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
++
++	fep->mii_bus = mdiobus_alloc();
++	if (fep->mii_bus == NULL) {
++		err = -ENOMEM;
++		goto err_out;
++	}
++
++	fep->mii_bus->name = "fec_enet_mii_bus";
++	fep->mii_bus->read = fec_enet_mdio_read;
++	fep->mii_bus->write = fec_enet_mdio_write;
++	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
++		pdev->name, fep->dev_id + 1);
++	fep->mii_bus->priv = fep;
++	fep->mii_bus->parent = &pdev->dev;
++
++	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
++	if (!fep->mii_bus->irq) {
++		err = -ENOMEM;
++		goto err_out_free_mdiobus;
++	}
++
++	for (i = 0; i < PHY_MAX_ADDR; i++)
++		fep->mii_bus->irq[i] = PHY_POLL;
++
++	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
++	if (node) {
++		err = of_mdiobus_register(fep->mii_bus, node);
++		of_node_put(node);
++	} else {
++		err = mdiobus_register(fep->mii_bus);
++	}
++
++	if (err)
++		goto err_out_free_mdio_irq;
++
++	mii_cnt++;
++
++	/* save fec0 mii_bus */
++	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
++		fec0_mii_bus = fep->mii_bus;
++
++	return 0;
++
++err_out_free_mdio_irq:
++	kfree(fep->mii_bus->irq);
++err_out_free_mdiobus:
++	mdiobus_free(fep->mii_bus);
++err_out:
++	return err;
++}
++
++static void fec_enet_mii_remove(struct fec_enet_private *fep)
++{
++	if (--mii_cnt == 0) {
++		mdiobus_unregister(fep->mii_bus);
++		kfree(fep->mii_bus->irq);
++		mdiobus_free(fep->mii_bus);
++	}
++}
++
++static int fec_enet_get_settings(struct net_device *ndev,
++				  struct ethtool_cmd *cmd)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct phy_device *phydev = fep->phy_dev;
++
++	if (!phydev)
++		return -ENODEV;
++
++	return phy_ethtool_gset(phydev, cmd);
++}
++
++static int fec_enet_set_settings(struct net_device *ndev,
++				 struct ethtool_cmd *cmd)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct phy_device *phydev = fep->phy_dev;
++
++	if (!phydev)
++		return -ENODEV;
++
++	return phy_ethtool_sset(phydev, cmd);
++}
++
++static void fec_enet_get_drvinfo(struct net_device *ndev,
++				 struct ethtool_drvinfo *info)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	strlcpy(info->driver, fep->pdev->dev.driver->name,
++		sizeof(info->driver));
++	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
++	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
++}
++
++static int fec_enet_get_ts_info(struct net_device *ndev,
++				struct ethtool_ts_info *info)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	if (fep->bufdesc_ex) {
++
++		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
++					SOF_TIMESTAMPING_RX_SOFTWARE |
++					SOF_TIMESTAMPING_SOFTWARE |
++					SOF_TIMESTAMPING_TX_HARDWARE |
++					SOF_TIMESTAMPING_RX_HARDWARE |
++					SOF_TIMESTAMPING_RAW_HARDWARE;
++		if (fep->ptp_clock)
++			info->phc_index = ptp_clock_index(fep->ptp_clock);
++		else
++			info->phc_index = -1;
++
++		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
++				 (1 << HWTSTAMP_TX_ON);
++
++		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
++				   (1 << HWTSTAMP_FILTER_ALL);
++		return 0;
++	} else {
++		return ethtool_op_get_ts_info(ndev, info);
++	}
++}
++
++#if !defined(CONFIG_M5272)
++
++static void fec_enet_get_pauseparam(struct net_device *ndev,
++				    struct ethtool_pauseparam *pause)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
++	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
++	pause->rx_pause = pause->tx_pause;
++}
++
++static int fec_enet_set_pauseparam(struct net_device *ndev,
++				   struct ethtool_pauseparam *pause)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	if (!fep->phy_dev)
++		return -ENODEV;
++
++	if (pause->tx_pause != pause->rx_pause) {
++		netdev_info(ndev,
++			"hardware only support enable/disable both tx and rx");
++		return -EINVAL;
++	}
++
++	fep->pause_flag = 0;
++
++	/* tx pause must be same as rx pause */
++	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
++	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
++
++	if (pause->rx_pause || pause->autoneg) {
++		fep->phy_dev->supported |= ADVERTISED_Pause;
++		fep->phy_dev->advertising |= ADVERTISED_Pause;
++	} else {
++		fep->phy_dev->supported &= ~ADVERTISED_Pause;
++		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
++	}
++
++	if (pause->autoneg) {
++		if (netif_running(ndev))
++			fec_stop(ndev);
++		phy_start_aneg(fep->phy_dev);
++	}
++	if (netif_running(ndev)) {
++		napi_disable(&fep->napi);
++		netif_tx_lock_bh(ndev);
++		fec_restart(ndev);
++		netif_wake_queue(ndev);
++		netif_tx_unlock_bh(ndev);
++		napi_enable(&fep->napi);
++	}
++
++	return 0;
++}
++
++static const struct fec_stat {
++	char name[ETH_GSTRING_LEN];
++	u16 offset;
++} fec_stats[] = {
++	/* RMON TX */
++	{ "tx_dropped", RMON_T_DROP },
++	{ "tx_packets", RMON_T_PACKETS },
++	{ "tx_broadcast", RMON_T_BC_PKT },
++	{ "tx_multicast", RMON_T_MC_PKT },
++	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
++	{ "tx_undersize", RMON_T_UNDERSIZE },
++	{ "tx_oversize", RMON_T_OVERSIZE },
++	{ "tx_fragment", RMON_T_FRAG },
++	{ "tx_jabber", RMON_T_JAB },
++	{ "tx_collision", RMON_T_COL },
++	{ "tx_64byte", RMON_T_P64 },
++	{ "tx_65to127byte", RMON_T_P65TO127 },
++	{ "tx_128to255byte", RMON_T_P128TO255 },
++	{ "tx_256to511byte", RMON_T_P256TO511 },
++	{ "tx_512to1023byte", RMON_T_P512TO1023 },
++	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
++	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
++	{ "tx_octets", RMON_T_OCTETS },
++
++	/* IEEE TX */
++	{ "IEEE_tx_drop", IEEE_T_DROP },
++	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
++	{ "IEEE_tx_1col", IEEE_T_1COL },
++	{ "IEEE_tx_mcol", IEEE_T_MCOL },
++	{ "IEEE_tx_def", IEEE_T_DEF },
++	{ "IEEE_tx_lcol", IEEE_T_LCOL },
++	{ "IEEE_tx_excol", IEEE_T_EXCOL },
++	{ "IEEE_tx_macerr", IEEE_T_MACERR },
++	{ "IEEE_tx_cserr", IEEE_T_CSERR },
++	{ "IEEE_tx_sqe", IEEE_T_SQE },
++	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
++	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
++
++	/* RMON RX */
++	{ "rx_packets", RMON_R_PACKETS },
++	{ "rx_broadcast", RMON_R_BC_PKT },
++	{ "rx_multicast", RMON_R_MC_PKT },
++	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
++	{ "rx_undersize", RMON_R_UNDERSIZE },
++	{ "rx_oversize", RMON_R_OVERSIZE },
++	{ "rx_fragment", RMON_R_FRAG },
++	{ "rx_jabber", RMON_R_JAB },
++	{ "rx_64byte", RMON_R_P64 },
++	{ "rx_65to127byte", RMON_R_P65TO127 },
++	{ "rx_128to255byte", RMON_R_P128TO255 },
++	{ "rx_256to511byte", RMON_R_P256TO511 },
++	{ "rx_512to1023byte", RMON_R_P512TO1023 },
++	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
++	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
++	{ "rx_octets", RMON_R_OCTETS },
++
++	/* IEEE RX */
++	{ "IEEE_rx_drop", IEEE_R_DROP },
++	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
++	{ "IEEE_rx_crc", IEEE_R_CRC },
++	{ "IEEE_rx_align", IEEE_R_ALIGN },
++	{ "IEEE_rx_macerr", IEEE_R_MACERR },
++	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
++	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
++};
++
++static void fec_enet_get_ethtool_stats(struct net_device *dev,
++	struct ethtool_stats *stats, u64 *data)
++{
++	struct fec_enet_private *fep = netdev_priv(dev);
++	int i;
++
++	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
++		data[i] = readl(fep->hwp + fec_stats[i].offset);
++}
++
++static void fec_enet_get_strings(struct net_device *netdev,
++	u32 stringset, u8 *data)
++{
++	int i;
++	switch (stringset) {
++	case ETH_SS_STATS:
++		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
++			memcpy(data + i * ETH_GSTRING_LEN,
++				fec_stats[i].name, ETH_GSTRING_LEN);
++		break;
++	}
++}
++
++static int fec_enet_get_sset_count(struct net_device *dev, int sset)
++{
++	switch (sset) {
++	case ETH_SS_STATS:
++		return ARRAY_SIZE(fec_stats);
++	default:
++		return -EOPNOTSUPP;
++	}
++}
++#endif /* !defined(CONFIG_M5272) */
++
++static int fec_enet_nway_reset(struct net_device *dev)
++{
++	struct fec_enet_private *fep = netdev_priv(dev);
++	struct phy_device *phydev = fep->phy_dev;
++
++	if (!phydev)
++		return -ENODEV;
++
++	return genphy_restart_aneg(phydev);
++}
++
++/* ITR clock source is enet system clock (clk_ahb).
++ * TCTT unit is cycle_ns * 64 cycle
++ * So, the ICTT value = X us / (cycle_ns * 64)
++ */
++static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	return us * (fep->itr_clk_rate / 64000) / 1000;
++}
++
++/* Set threshold for interrupt coalescing */
++static void fec_enet_itr_coal_set(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int rx_itr, tx_itr;
++
++	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
++		return;
++
++	/* Must be greater than zero to avoid unpredictable behavior */
++	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
++	    !fep->tx_time_itr || !fep->tx_pkts_itr)
++		return;
++
++	/* Select enet system clock as Interrupt Coalescing
++	 * timer Clock Source
++	 */
++	rx_itr = FEC_ITR_CLK_SEL;
++	tx_itr = FEC_ITR_CLK_SEL;
++
++	/* set ICFT and ICTT */
++	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
++	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
++	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
++	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
++
++	rx_itr |= FEC_ITR_EN;
++	tx_itr |= FEC_ITR_EN;
++
++	writel(tx_itr, fep->hwp + FEC_TXIC0);
++	writel(rx_itr, fep->hwp + FEC_RXIC0);
++	writel(tx_itr, fep->hwp + FEC_TXIC1);
++	writel(rx_itr, fep->hwp + FEC_RXIC1);
++	writel(tx_itr, fep->hwp + FEC_TXIC2);
++	writel(rx_itr, fep->hwp + FEC_RXIC2);
++}
++
++static int
++fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
++		return -EOPNOTSUPP;
++
++	ec->rx_coalesce_usecs = fep->rx_time_itr;
++	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
++
++	ec->tx_coalesce_usecs = fep->tx_time_itr;
++	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
++
++	return 0;
++}
++
++static int
++fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	unsigned int cycle;
++
++	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
++		return -EOPNOTSUPP;
++
++	if (ec->rx_max_coalesced_frames > 255) {
++		pr_err("Rx coalesced frames exceed hardware limiation");
++		return -EINVAL;
++	}
++
++	if (ec->tx_max_coalesced_frames > 255) {
++		pr_err("Tx coalesced frame exceed hardware limiation");
++		return -EINVAL;
++	}
++
++	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
++	if (cycle > 0xFFFF) {
++		pr_err("Rx coalesed usec exceeed hardware limiation");
++		return -EINVAL;
++	}
++
++	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
++	if (cycle > 0xFFFF) {
++		pr_err("Rx coalesed usec exceeed hardware limiation");
++		return -EINVAL;
++	}
++
++	fep->rx_time_itr = ec->rx_coalesce_usecs;
++	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
++
++	fep->tx_time_itr = ec->tx_coalesce_usecs;
++	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
++
++	fec_enet_itr_coal_set(ndev);
++
++	return 0;
++}
++
++static void fec_enet_itr_coal_init(struct net_device *ndev)
++{
++	struct ethtool_coalesce ec;
++
++	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
++	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
++
++	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
++	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
++
++	fec_enet_set_coalesce(ndev, &ec);
++}
++
++static int fec_enet_get_tunable(struct net_device *netdev,
++				const struct ethtool_tunable *tuna,
++				void *data)
++{
++	struct fec_enet_private *fep = netdev_priv(netdev);
++	int ret = 0;
++
++	switch (tuna->id) {
++	case ETHTOOL_RX_COPYBREAK:
++		*(u32 *)data = fep->rx_copybreak;
++		break;
++	default:
++		ret = -EINVAL;
++		break;
++	}
++
++	return ret;
++}
++
++static int fec_enet_set_tunable(struct net_device *netdev,
++				const struct ethtool_tunable *tuna,
++				const void *data)
++{
++	struct fec_enet_private *fep = netdev_priv(netdev);
++	int ret = 0;
++
++	switch (tuna->id) {
++	case ETHTOOL_RX_COPYBREAK:
++		fep->rx_copybreak = *(u32 *)data;
++		break;
++	default:
++		ret = -EINVAL;
++		break;
++	}
++
++	return ret;
++}
++
++static void
++fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
++		wol->supported = WAKE_MAGIC;
++		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
++	} else {
++		wol->supported = wol->wolopts = 0;
++	}
++}
++
++static int
++fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
++		return -EINVAL;
++
++	if (wol->wolopts & ~WAKE_MAGIC)
++		return -EINVAL;
++
++	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
++	if (device_may_wakeup(&ndev->dev)) {
++		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
++		if (fep->irq[0] > 0)
++			enable_irq_wake(fep->irq[0]);
++	} else {
++		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
++		if (fep->irq[0] > 0)
++			disable_irq_wake(fep->irq[0]);
++	}
++
++	return 0;
++}
++
++static const struct ethtool_ops fec_enet_ethtool_ops = {
++	.get_settings		= fec_enet_get_settings,
++	.set_settings		= fec_enet_set_settings,
++	.get_drvinfo		= fec_enet_get_drvinfo,
++	.nway_reset		= fec_enet_nway_reset,
++	.get_link		= ethtool_op_get_link,
++	.get_coalesce		= fec_enet_get_coalesce,
++	.set_coalesce		= fec_enet_set_coalesce,
++#ifndef CONFIG_M5272
++	.get_pauseparam		= fec_enet_get_pauseparam,
++	.set_pauseparam		= fec_enet_set_pauseparam,
++	.get_strings		= fec_enet_get_strings,
++	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
++	.get_sset_count		= fec_enet_get_sset_count,
++#endif
++	.get_ts_info		= fec_enet_get_ts_info,
++	.get_tunable		= fec_enet_get_tunable,
++	.set_tunable		= fec_enet_set_tunable,
++	.get_wol		= fec_enet_get_wol,
++	.set_wol		= fec_enet_set_wol,
++};
++
++static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct phy_device *phydev = fep->phy_dev;
++
++	if (!netif_running(ndev))
++		return -EINVAL;
++
++	if (!phydev)
++		return -ENODEV;
++
++	if (fep->bufdesc_ex) {
++		if (cmd == SIOCSHWTSTAMP)
++			return fec_ptp_set(ndev, rq);
++		if (cmd == SIOCGHWTSTAMP)
++			return fec_ptp_get(ndev, rq);
++	}
++
++	return phy_mii_ioctl(phydev, rq, cmd);
++}
++
++static void fec_enet_free_buffers(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	unsigned int i;
++	struct sk_buff *skb;
++	struct bufdesc	*bdp;
++	struct fec_enet_priv_tx_q *txq;
++	struct fec_enet_priv_rx_q *rxq;
++	unsigned int q;
++
++	for (q = 0; q < fep->num_rx_queues; q++) {
++		rxq = fep->rx_queue[q];
++		bdp = rxq->rx_bd_base;
++		for (i = 0; i < rxq->rx_ring_size; i++) {
++			skb = rxq->rx_skbuff[i];
++			rxq->rx_skbuff[i] = NULL;
++			if (skb) {
++				dma_unmap_single(&fep->pdev->dev,
++						 bdp->cbd_bufaddr,
++						 FEC_ENET_RX_FRSIZE - fep->rx_align,
++						 DMA_FROM_DEVICE);
++				dev_kfree_skb(skb);
++			}
++			bdp = fec_enet_get_nextdesc(bdp, fep, q);
++		}
++	}
++
++	for (q = 0; q < fep->num_tx_queues; q++) {
++		txq = fep->tx_queue[q];
++		bdp = txq->tx_bd_base;
++		for (i = 0; i < txq->tx_ring_size; i++) {
++			kfree(txq->tx_bounce[i]);
++			txq->tx_bounce[i] = NULL;
++			skb = txq->tx_skbuff[i];
++			txq->tx_skbuff[i] = NULL;
++			dev_kfree_skb(skb);
++		}
++	}
++}
++
++static void fec_enet_free_queue(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int i;
++	struct fec_enet_priv_tx_q *txq;
++
++	for (i = 0; i < fep->num_tx_queues; i++)
++		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
++			txq = fep->tx_queue[i];
++			dma_free_coherent(NULL,
++					  txq->tx_ring_size * TSO_HEADER_SIZE,
++					  txq->tso_hdrs,
++					  txq->tso_hdrs_dma);
++		}
++
++	for (i = 0; i < fep->num_rx_queues; i++)
++		kfree(fep->rx_queue[i]);
++	for (i = 0; i < fep->num_tx_queues; i++)
++		kfree(fep->tx_queue[i]);
++}
++
++static int fec_enet_alloc_queue(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int i;
++	int ret = 0;
++	struct fec_enet_priv_tx_q *txq;
++
++	for (i = 0; i < fep->num_tx_queues; i++) {
++		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
++		if (!txq) {
++			ret = -ENOMEM;
++			goto alloc_failed;
++		}
++
++		fep->tx_queue[i] = txq;
++		txq->tx_ring_size = TX_RING_SIZE;
++		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
++
++		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
++		txq->tx_wake_threshold =
++				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
++
++		txq->tso_hdrs = dma_alloc_coherent(NULL,
++					txq->tx_ring_size * TSO_HEADER_SIZE,
++					&txq->tso_hdrs_dma,
++					GFP_KERNEL);
++		if (!txq->tso_hdrs) {
++			ret = -ENOMEM;
++			goto alloc_failed;
++		}
++	}
++
++	for (i = 0; i < fep->num_rx_queues; i++) {
++		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
++					   GFP_KERNEL);
++		if (!fep->rx_queue[i]) {
++			ret = -ENOMEM;
++			goto alloc_failed;
++		}
++
++		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
++		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
++	}
++	return ret;
++
++alloc_failed:
++	fec_enet_free_queue(ndev);
++	return ret;
++}
++
++static int
++fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	unsigned int i;
++	struct sk_buff *skb;
++	struct bufdesc	*bdp;
++	struct fec_enet_priv_rx_q *rxq;
++
++	rxq = fep->rx_queue[queue];
++	bdp = rxq->rx_bd_base;
++	for (i = 0; i < rxq->rx_ring_size; i++) {
++		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
++		if (!skb)
++			goto err_alloc;
++
++		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
++			dev_kfree_skb(skb);
++			goto err_alloc;
++		}
++
++		rxq->rx_skbuff[i] = skb;
++		bdp->cbd_sc = BD_ENET_RX_EMPTY;
++
++		if (fep->bufdesc_ex) {
++			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++			ebdp->cbd_esc = BD_ENET_RX_INT;
++		}
++
++		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++	}
++
++	/* Set the last buffer to wrap. */
++	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
++	bdp->cbd_sc |= BD_SC_WRAP;
++	return 0;
++
++ err_alloc:
++	fec_enet_free_buffers(ndev);
++	return -ENOMEM;
++}
++
++static int
++fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	unsigned int i;
++	struct bufdesc  *bdp;
++	struct fec_enet_priv_tx_q *txq;
++
++	txq = fep->tx_queue[queue];
++	bdp = txq->tx_bd_base;
++	for (i = 0; i < txq->tx_ring_size; i++) {
++		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
++		if (!txq->tx_bounce[i])
++			goto err_alloc;
++
++		bdp->cbd_sc = 0;
++		bdp->cbd_bufaddr = 0;
++
++		if (fep->bufdesc_ex) {
++			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
++			ebdp->cbd_esc = BD_ENET_TX_INT;
++		}
++
++		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
++	}
++
++	/* Set the last buffer to wrap. */
++	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
++	bdp->cbd_sc |= BD_SC_WRAP;
++
++	return 0;
++
++ err_alloc:
++	fec_enet_free_buffers(ndev);
++	return -ENOMEM;
++}
++
++static int fec_enet_alloc_buffers(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	unsigned int i;
++
++	for (i = 0; i < fep->num_rx_queues; i++)
++		if (fec_enet_alloc_rxq_buffers(ndev, i))
++			return -ENOMEM;
++
++	for (i = 0; i < fep->num_tx_queues; i++)
++		if (fec_enet_alloc_txq_buffers(ndev, i))
++			return -ENOMEM;
++	return 0;
++}
++
++static int
++fec_enet_open(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	int ret;
++
++	pinctrl_pm_select_default_state(&fep->pdev->dev);
++	ret = fec_enet_clk_enable(ndev, true);
++	if (ret)
++		return ret;
++
++	/* I should reset the ring buffers here, but I don't yet know
++	 * a simple way to do that.
++	 */
++
++	ret = fec_enet_alloc_buffers(ndev);
++	if (ret)
++		goto err_enet_alloc;
++
++	/* Probe and connect to PHY when open the interface */
++	ret = fec_enet_mii_probe(ndev);
++	if (ret)
++		goto err_enet_mii_probe;
++
++	fec_restart(ndev);
++	napi_enable(&fep->napi);
++	phy_start(fep->phy_dev);
++	netif_tx_start_all_queues(ndev);
++
++	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
++				 FEC_WOL_FLAG_ENABLE);
++
++	return 0;
++
++err_enet_mii_probe:
++	fec_enet_free_buffers(ndev);
++err_enet_alloc:
++	fec_enet_clk_enable(ndev, false);
++	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
++	return ret;
++}
++
++static int
++fec_enet_close(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	phy_stop(fep->phy_dev);
++
++	if (netif_device_present(ndev)) {
++		napi_disable(&fep->napi);
++		netif_tx_disable(ndev);
++		fec_stop(ndev);
++	}
++
++	phy_disconnect(fep->phy_dev);
++	fep->phy_dev = NULL;
++
++	fec_enet_clk_enable(ndev, false);
++	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
++	fec_enet_free_buffers(ndev);
++
++	return 0;
++}
++
++/* Set or clear the multicast filter for this adaptor.
++ * Skeleton taken from sunlance driver.
++ * The CPM Ethernet implementation allows Multicast as well as individual
++ * MAC address filtering.  Some of the drivers check to make sure it is
++ * a group multicast address, and discard those that are not.  I guess I
++ * will do the same for now, but just remove the test if you want
++ * individual filtering as well (do the upper net layers want or support
++ * this kind of feature?).
++ */
++
++#define HASH_BITS	6		/* #bits in hash */
++#define CRC32_POLY	0xEDB88320
++
++static void set_multicast_list(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct netdev_hw_addr *ha;
++	unsigned int i, bit, data, crc, tmp;
++	unsigned char hash;
++
++	if (ndev->flags & IFF_PROMISC) {
++		tmp = readl(fep->hwp + FEC_R_CNTRL);
++		tmp |= 0x8;
++		writel(tmp, fep->hwp + FEC_R_CNTRL);
++		return;
++	}
++
++	tmp = readl(fep->hwp + FEC_R_CNTRL);
++	tmp &= ~0x8;
++	writel(tmp, fep->hwp + FEC_R_CNTRL);
++
++	if (ndev->flags & IFF_ALLMULTI) {
++		/* Catch all multicast addresses, so set the
++		 * filter to all 1's
++		 */
++		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
++		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
++
++		return;
++	}
++
++	/* Clear filter and add the addresses in hash register
++	 */
++	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
++	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
++
++	netdev_for_each_mc_addr(ha, ndev) {
++		/* calculate crc32 value of mac address */
++		crc = 0xffffffff;
++
++		for (i = 0; i < ndev->addr_len; i++) {
++			data = ha->addr[i];
++			for (bit = 0; bit < 8; bit++, data >>= 1) {
++				crc = (crc >> 1) ^
++				(((crc ^ data) & 1) ? CRC32_POLY : 0);
++			}
++		}
++
++		/* only upper 6 bits (HASH_BITS) are used
++		 * which point to specific bit in he hash registers
++		 */
++		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
++
++		if (hash > 31) {
++			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
++			tmp |= 1 << (hash - 32);
++			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
++		} else {
++			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
++			tmp |= 1 << hash;
++			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
++		}
++	}
++}
++
++/* Set a MAC change in hardware. */
++static int
++fec_set_mac_address(struct net_device *ndev, void *p)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct sockaddr *addr = p;
++
++	if (addr) {
++		if (!is_valid_ether_addr(addr->sa_data))
++			return -EADDRNOTAVAIL;
++		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
++	}
++
++	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
++		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
++		fep->hwp + FEC_ADDR_LOW);
++	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
++		fep->hwp + FEC_ADDR_HIGH);
++	return 0;
++}
++
++#ifdef CONFIG_NET_POLL_CONTROLLER
++/**
++ * fec_poll_controller - FEC Poll controller function
++ * @dev: The FEC network adapter
++ *
++ * Polled functionality used by netconsole and others in non interrupt mode
++ *
++ */
++static void fec_poll_controller(struct net_device *dev)
++{
++	int i;
++	struct fec_enet_private *fep = netdev_priv(dev);
++
++	for (i = 0; i < FEC_IRQ_NUM; i++) {
++		if (fep->irq[i] > 0) {
++			disable_irq(fep->irq[i]);
++			fec_enet_interrupt(fep->irq[i], dev);
++			enable_irq(fep->irq[i]);
++		}
++	}
++}
++#endif
++
++#define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
++static inline void fec_enet_set_netdev_features(struct net_device *netdev,
++	netdev_features_t features)
++{
++	struct fec_enet_private *fep = netdev_priv(netdev);
++	netdev_features_t changed = features ^ netdev->features;
++
++	netdev->features = features;
++
++	/* Receive checksum has been changed */
++	if (changed & NETIF_F_RXCSUM) {
++		if (features & NETIF_F_RXCSUM)
++			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
++		else
++			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
++	}
++}
++
++static int fec_set_features(struct net_device *netdev,
++	netdev_features_t features)
++{
++	struct fec_enet_private *fep = netdev_priv(netdev);
++	netdev_features_t changed = features ^ netdev->features;
++
++	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
++		napi_disable(&fep->napi);
++		netif_tx_lock_bh(netdev);
++		fec_stop(netdev);
++		fec_enet_set_netdev_features(netdev, features);
++		fec_restart(netdev);
++		netif_tx_wake_all_queues(netdev);
++		netif_tx_unlock_bh(netdev);
++		napi_enable(&fep->napi);
++	} else {
++		fec_enet_set_netdev_features(netdev, features);
++	}
++
++	return 0;
++}
++
++static const struct net_device_ops fec_netdev_ops = {
++	.ndo_open		= fec_enet_open,
++	.ndo_stop		= fec_enet_close,
++	.ndo_start_xmit		= fec_enet_start_xmit,
++	.ndo_set_rx_mode	= set_multicast_list,
++	.ndo_change_mtu		= eth_change_mtu,
++	.ndo_validate_addr	= eth_validate_addr,
++	.ndo_tx_timeout		= fec_timeout,
++	.ndo_set_mac_address	= fec_set_mac_address,
++	.ndo_do_ioctl		= fec_enet_ioctl,
++#ifdef CONFIG_NET_POLL_CONTROLLER
++	.ndo_poll_controller	= fec_poll_controller,
++#endif
++	.ndo_set_features	= fec_set_features,
++};
++
++ /*
++  * XXX:  We need to clean up on failure exits here.
++  *
++  */
++static int fec_enet_init(struct net_device *ndev)
++{
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct fec_enet_priv_tx_q *txq;
++	struct fec_enet_priv_rx_q *rxq;
++	struct bufdesc *cbd_base;
++	dma_addr_t bd_dma;
++	int bd_size;
++	unsigned int i;
++
++#if defined(CONFIG_ARM)
++	fep->rx_align = 0xf;
++	fep->tx_align = 0xf;
++#else
++	fep->rx_align = 0x3;
++	fep->tx_align = 0x3;
++#endif
++
++	fec_enet_alloc_queue(ndev);
++
++	if (fep->bufdesc_ex)
++		fep->bufdesc_size = sizeof(struct bufdesc_ex);
++	else
++		fep->bufdesc_size = sizeof(struct bufdesc);
++	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
++			fep->bufdesc_size;
++
++	/* Allocate memory for buffer descriptors. */
++	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
++				      GFP_KERNEL);
++	if (!cbd_base) {
++		return -ENOMEM;
++	}
++
++	memset(cbd_base, 0, bd_size);
++
++	/* Get the Ethernet address */
++	fec_get_mac(ndev);
++	/* make sure MAC we just acquired is programmed into the hw */
++	fec_set_mac_address(ndev, NULL);
++
++	/* Set receive and transmit descriptor base. */
++	for (i = 0; i < fep->num_rx_queues; i++) {
++		rxq = fep->rx_queue[i];
++		rxq->index = i;
++		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
++		rxq->bd_dma = bd_dma;
++		if (fep->bufdesc_ex) {
++			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
++			cbd_base = (struct bufdesc *)
++				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
++		} else {
++			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
++			cbd_base += rxq->rx_ring_size;
++		}
++	}
++
++	for (i = 0; i < fep->num_tx_queues; i++) {
++		txq = fep->tx_queue[i];
++		txq->index = i;
++		txq->tx_bd_base = (struct bufdesc *)cbd_base;
++		txq->bd_dma = bd_dma;
++		if (fep->bufdesc_ex) {
++			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
++			cbd_base = (struct bufdesc *)
++			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
++		} else {
++			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
++			cbd_base += txq->tx_ring_size;
++		}
++	}
++
++
++	/* The FEC Ethernet specific entries in the device structure */
++	ndev->watchdog_timeo = TX_TIMEOUT;
++	ndev->netdev_ops = &fec_netdev_ops;
++	ndev->ethtool_ops = &fec_enet_ethtool_ops;
++
++	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
++	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
++
++	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
++		/* enable hw VLAN support */
++		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
++
++	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
++		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
++
++		/* enable hw accelerator */
++		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
++				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
++		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
++	}
++
++	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
++		fep->tx_align = 0;
++		fep->rx_align = 0x3f;
++	}
++
++	ndev->hw_features = ndev->features;
++
++	fec_restart(ndev);
++
++	return 0;
++}
++
++#ifdef CONFIG_OF
++static void fec_reset_phy(struct platform_device *pdev)
++{
++	int err, phy_reset;
++	int msec = 1;
++	struct device_node *np = pdev->dev.of_node;
++
++	if (!np)
++		return;
++
++	of_property_read_u32(np, "phy-reset-duration", &msec);
++	/* A sane reset duration should not be longer than 1s */
++	if (msec > 1000)
++		msec = 1;
++
++	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
++	if (!gpio_is_valid(phy_reset))
++		return;
++
++	err = devm_gpio_request_one(&pdev->dev, phy_reset,
++				    GPIOF_OUT_INIT_LOW, "phy-reset");
++	if (err) {
++		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
++		return;
++	}
++	msleep(msec);
++	gpio_set_value(phy_reset, 1);
++}
++#else /* CONFIG_OF */
++static void fec_reset_phy(struct platform_device *pdev)
++{
++	/*
++	 * In case of platform probe, the reset has been done
++	 * by machine code.
++	 */
++}
++#endif /* CONFIG_OF */
++
++static void
++fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
++{
++	struct device_node *np = pdev->dev.of_node;
++	int err;
++
++	*num_tx = *num_rx = 1;
++
++	if (!np || !of_device_is_available(np))
++		return;
++
++	/* parse the num of tx and rx queues */
++	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
++	if (err)
++		*num_tx = 1;
++
++	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
++	if (err)
++		*num_rx = 1;
++
++	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
++		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
++			 *num_tx);
++		*num_tx = 1;
++		return;
++	}
++
++	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
++		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
++			 *num_rx);
++		*num_rx = 1;
++		return;
++	}
++
++}
++
++static int
++fec_probe(struct platform_device *pdev)
++{
++	struct fec_enet_private *fep;
++	struct fec_platform_data *pdata;
++	struct net_device *ndev;
++	int i, irq, ret = 0;
++	struct resource *r;
++	const struct of_device_id *of_id;
++	static int dev_id;
++	struct device_node *np = pdev->dev.of_node, *phy_node;
++	int num_tx_qs;
++	int num_rx_qs;
++
++	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
++
++	/* Init network device */
++	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
++				  num_tx_qs, num_rx_qs);
++	if (!ndev)
++		return -ENOMEM;
++
++	SET_NETDEV_DEV(ndev, &pdev->dev);
++
++	/* setup board info structure */
++	fep = netdev_priv(ndev);
++
++	of_id = of_match_device(fec_dt_ids, &pdev->dev);
++	if (of_id)
++		pdev->id_entry = of_id->data;
++	fep->quirks = pdev->id_entry->driver_data;
++
++	fep->netdev = ndev;
++	fep->num_rx_queues = num_rx_qs;
++	fep->num_tx_queues = num_tx_qs;
++
++#if !defined(CONFIG_M5272)
++	/* default enable pause frame auto negotiation */
++	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
++		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
++#endif
++
++	/* Select default pin state */
++	pinctrl_pm_select_default_state(&pdev->dev);
++
++	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
++	if (IS_ERR(fep->hwp)) {
++		ret = PTR_ERR(fep->hwp);
++		goto failed_ioremap;
++	}
++
++	fep->pdev = pdev;
++	fep->dev_id = dev_id++;
++
++	platform_set_drvdata(pdev, ndev);
++
++	if (of_get_property(np, "fsl,magic-packet", NULL))
++		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
++
++	phy_node = of_parse_phandle(np, "phy-handle", 0);
++	if (!phy_node && of_phy_is_fixed_link(np)) {
++		ret = of_phy_register_fixed_link(np);
++		if (ret < 0) {
++			dev_err(&pdev->dev,
++				"broken fixed-link specification\n");
++			goto failed_phy;
++		}
++		phy_node = of_node_get(np);
++	}
++	fep->phy_node = phy_node;
++
++	ret = of_get_phy_mode(pdev->dev.of_node);
++	if (ret < 0) {
++		pdata = dev_get_platdata(&pdev->dev);
++		if (pdata)
++			fep->phy_interface = pdata->phy;
++		else
++			fep->phy_interface = PHY_INTERFACE_MODE_MII;
++	} else {
++		fep->phy_interface = ret;
++	}
++
++	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
++	if (IS_ERR(fep->clk_ipg)) {
++		ret = PTR_ERR(fep->clk_ipg);
++		goto failed_clk;
++	}
++
++	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
++	if (IS_ERR(fep->clk_ahb)) {
++		ret = PTR_ERR(fep->clk_ahb);
++		goto failed_clk;
++	}
++
++	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
++
++	/* enet_out is optional, depends on board */
++	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
++	if (IS_ERR(fep->clk_enet_out))
++		fep->clk_enet_out = NULL;
++
++	fep->ptp_clk_on = false;
++	mutex_init(&fep->ptp_clk_mutex);
++
++	/* clk_ref is optional, depends on board */
++	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
++	if (IS_ERR(fep->clk_ref))
++		fep->clk_ref = NULL;
++
++	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
++	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
++	if (IS_ERR(fep->clk_ptp)) {
++		fep->clk_ptp = NULL;
++		fep->bufdesc_ex = false;
++	}
++
++	ret = fec_enet_clk_enable(ndev, true);
++	if (ret)
++		goto failed_clk;
++
++	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
++	if (!IS_ERR(fep->reg_phy)) {
++		ret = regulator_enable(fep->reg_phy);
++		if (ret) {
++			dev_err(&pdev->dev,
++				"Failed to enable phy regulator: %d\n", ret);
++			goto failed_regulator;
++		}
++	} else {
++		fep->reg_phy = NULL;
++	}
++
++	fec_reset_phy(pdev);
++
++	if (fep->bufdesc_ex)
++		fec_ptp_init(pdev);
++
++	ret = fec_enet_init(ndev);
++	if (ret)
++		goto failed_init;
++
++	for (i = 0; i < FEC_IRQ_NUM; i++) {
++		irq = platform_get_irq(pdev, i);
++		if (irq < 0) {
++			if (i)
++				break;
++			ret = irq;
++			goto failed_irq;
++		}
++		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
++				       0, pdev->name, ndev);
++		if (ret)
++			goto failed_irq;
++
++		fep->irq[i] = irq;
++	}
++
++	init_completion(&fep->mdio_done);
++	ret = fec_enet_mii_init(pdev);
++	if (ret)
++		goto failed_mii_init;
++
++	/* Carrier starts down, phylib will bring it up */
++	netif_carrier_off(ndev);
++	fec_enet_clk_enable(ndev, false);
++	pinctrl_pm_select_sleep_state(&pdev->dev);
++
++	ret = register_netdev(ndev);
++	if (ret)
++		goto failed_register;
++
++	device_init_wakeup(&ndev->dev, fep->wol_flag &
++			   FEC_WOL_HAS_MAGIC_PACKET);
++
++	if (fep->bufdesc_ex && fep->ptp_clock)
++		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
++
++	fep->rx_copybreak = COPYBREAK_DEFAULT;
++	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
++	return 0;
++
++failed_register:
++	fec_enet_mii_remove(fep);
++failed_mii_init:
++failed_irq:
++failed_init:
++	if (fep->reg_phy)
++		regulator_disable(fep->reg_phy);
++failed_regulator:
++	fec_enet_clk_enable(ndev, false);
++failed_clk:
++failed_phy:
++	of_node_put(phy_node);
++failed_ioremap:
++	free_netdev(ndev);
++
++	return ret;
++}
++
++static int
++fec_drv_remove(struct platform_device *pdev)
++{
++	struct net_device *ndev = platform_get_drvdata(pdev);
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	cancel_delayed_work_sync(&fep->time_keep);
++	cancel_work_sync(&fep->tx_timeout_work);
++	unregister_netdev(ndev);
++	fec_enet_mii_remove(fep);
++	if (fep->reg_phy)
++		regulator_disable(fep->reg_phy);
++	if (fep->ptp_clock)
++		ptp_clock_unregister(fep->ptp_clock);
++	of_node_put(fep->phy_node);
++	free_netdev(ndev);
++
++	return 0;
++}
++
++static int __maybe_unused fec_suspend(struct device *dev)
++{
++	struct net_device *ndev = dev_get_drvdata(dev);
++	struct fec_enet_private *fep = netdev_priv(ndev);
++
++	rtnl_lock();
++	if (netif_running(ndev)) {
++		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
++			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
++		phy_stop(fep->phy_dev);
++		napi_disable(&fep->napi);
++		netif_tx_lock_bh(ndev);
++		netif_device_detach(ndev);
++		netif_tx_unlock_bh(ndev);
++		fec_stop(ndev);
++		fec_enet_clk_enable(ndev, false);
++		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
++			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
++	}
++	rtnl_unlock();
++
++	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
++		regulator_disable(fep->reg_phy);
++
++	/* SOC supply clock to phy, when clock is disabled, phy link down
++	 * SOC control phy regulator, when regulator is disabled, phy link down
++	 */
++	if (fep->clk_enet_out || fep->reg_phy)
++		fep->link = 0;
++
++	return 0;
++}
++
++static int __maybe_unused fec_resume(struct device *dev)
++{
++	struct net_device *ndev = dev_get_drvdata(dev);
++	struct fec_enet_private *fep = netdev_priv(ndev);
++	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
++	int ret;
++	int val;
++
++	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
++		ret = regulator_enable(fep->reg_phy);
++		if (ret)
++			return ret;
++	}
++
++	rtnl_lock();
++	if (netif_running(ndev)) {
++		ret = fec_enet_clk_enable(ndev, true);
++		if (ret) {
++			rtnl_unlock();
++			goto failed_clk;
++		}
++		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
++			if (pdata && pdata->sleep_mode_enable)
++				pdata->sleep_mode_enable(false);
++			val = readl(fep->hwp + FEC_ECNTRL);
++			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
++			writel(val, fep->hwp + FEC_ECNTRL);
++			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
++		} else {
++			pinctrl_pm_select_default_state(&fep->pdev->dev);
++		}
++		fec_restart(ndev);
++		netif_tx_lock_bh(ndev);
++		netif_device_attach(ndev);
++		netif_tx_unlock_bh(ndev);
++		napi_enable(&fep->napi);
++		phy_start(fep->phy_dev);
++	}
++	rtnl_unlock();
++
++	return 0;
++
++failed_clk:
++	if (fep->reg_phy)
++		regulator_disable(fep->reg_phy);
++	return ret;
++}
++
++static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
++
++static struct platform_driver fec_driver = {
++	.driver	= {
++		.name	= DRIVER_NAME,
++		.pm	= &fec_pm_ops,
++		.of_match_table = fec_dt_ids,
++	},
++	.id_table = fec_devtype,
++	.probe	= fec_probe,
++	.remove	= fec_drv_remove,
++};
++
++module_platform_driver(fec_driver);
++
++MODULE_ALIAS("platform:"DRIVER_NAME);
++MODULE_LICENSE("GPL");