md5.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. /* $OpenBSD: md5.c,v 1.8 2005/08/08 08:05:35 espie Exp $ */
  2. /*
  3. * This code implements the MD5 message-digest algorithm.
  4. * The algorithm is due to Ron Rivest. This code was
  5. * written by Colin Plumb in 1993, no copyright is claimed.
  6. * This code is in the public domain; do with it what you wish.
  7. *
  8. * Equivalent code is available from RSA Data Security, Inc.
  9. * This code has been tested against that, and is equivalent,
  10. * except that you don't need to include two pages of legalese
  11. * with every copy.
  12. *
  13. * To compute the message digest of a chunk of bytes, declare an
  14. * MD5Context structure, pass it to MD5Init, call MD5Update as
  15. * needed on buffers full of bytes, and then call MD5Final, which
  16. * will fill a supplied 16-byte array with the digest.
  17. */
  18. #include <sys/types.h>
  19. #include <stdint.h>
  20. #include <string.h>
  21. #include <md5.h>
  22. extern const uint8_t RFC1321_padding[64];
  23. __RCSID("$MirOS: src/lib/libc/hash/md5.c,v 1.3 2009/11/09 21:36:39 tg Exp $");
  24. #define PUT_64BIT_LE(cp, value) do { \
  25. (cp)[7] = (value) >> 56; \
  26. (cp)[6] = (value) >> 48; \
  27. (cp)[5] = (value) >> 40; \
  28. (cp)[4] = (value) >> 32; \
  29. (cp)[3] = (value) >> 24; \
  30. (cp)[2] = (value) >> 16; \
  31. (cp)[1] = (value) >> 8; \
  32. (cp)[0] = (value); } while (0)
  33. #define PUT_32BIT_LE(cp, value) do { \
  34. (cp)[3] = (value) >> 24; \
  35. (cp)[2] = (value) >> 16; \
  36. (cp)[1] = (value) >> 8; \
  37. (cp)[0] = (value); } while (0)
  38. /*
  39. * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
  40. * initialization constants.
  41. */
  42. void
  43. MD5Init(MD5_CTX *ctx)
  44. {
  45. ctx->count = 0;
  46. ctx->state[0] = 0x67452301;
  47. ctx->state[1] = 0xefcdab89;
  48. ctx->state[2] = 0x98badcfe;
  49. ctx->state[3] = 0x10325476;
  50. }
  51. /*
  52. * Update context to reflect the concatenation of another buffer full
  53. * of bytes.
  54. */
  55. void
  56. MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len)
  57. {
  58. size_t have, need;
  59. /* Check how many bytes we already have and how many more we need. */
  60. have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
  61. need = MD5_BLOCK_LENGTH - have;
  62. /* Update bitcount */
  63. ctx->count += (u_int64_t)len << 3;
  64. if (len >= need) {
  65. if (have != 0) {
  66. memcpy(ctx->buffer + have, input, need);
  67. MD5Transform(ctx->state, ctx->buffer);
  68. input += need;
  69. len -= need;
  70. have = 0;
  71. }
  72. /* Process data in MD5_BLOCK_LENGTH-byte chunks. */
  73. while (len >= MD5_BLOCK_LENGTH) {
  74. MD5Transform(ctx->state, input);
  75. input += MD5_BLOCK_LENGTH;
  76. len -= MD5_BLOCK_LENGTH;
  77. }
  78. }
  79. /* Handle any remaining bytes of data. */
  80. if (len != 0)
  81. memcpy(ctx->buffer + have, input, len);
  82. }
  83. /*
  84. * Pad pad to 64-byte boundary with the bit pattern
  85. * 1 0* (64-bit count of bits processed, MSB-first)
  86. */
  87. void
  88. MD5Pad(MD5_CTX *ctx)
  89. {
  90. u_int8_t count[8];
  91. /* Convert count to 8 bytes in little endian order. */
  92. PUT_64BIT_LE(count, ctx->count);
  93. /* Pad out to 56 mod 64. */
  94. MD5Update(ctx, RFC1321_padding, 64 - (((ctx->count >> 3) + 8) & 63));
  95. MD5Update(ctx, count, 8);
  96. }
  97. /*
  98. * Final wrapup--call MD5Pad, fill in digest and zero out ctx.
  99. */
  100. void
  101. MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
  102. {
  103. int i;
  104. MD5Pad(ctx);
  105. if (digest != NULL) {
  106. for (i = 0; i < 4; i++)
  107. PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
  108. memset(ctx, 0, sizeof(*ctx));
  109. }
  110. }
  111. /* The four core functions - F1 is optimized somewhat */
  112. /* #define F1(x, y, z) (x & y | ~x & z) */
  113. #define F1(x, y, z) (z ^ (x & (y ^ z)))
  114. #define F2(x, y, z) F1(z, x, y)
  115. #define F3(x, y, z) (x ^ y ^ z)
  116. #define F4(x, y, z) (y ^ (x | ~z))
  117. /* This is the central step in the MD5 algorithm. */
  118. #define MD5STEP(f, w, x, y, z, data, s) \
  119. ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
  120. /*
  121. * The core of the MD5 algorithm, this alters an existing MD5 hash to
  122. * reflect the addition of 16 longwords of new data. MD5Update blocks
  123. * the data and converts bytes into longwords for this routine.
  124. */
  125. void
  126. MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH])
  127. {
  128. u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
  129. #if BYTE_ORDER == LITTLE_ENDIAN
  130. memcpy(in, block, sizeof(in));
  131. #else
  132. for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
  133. in[a] = (u_int32_t)(
  134. (u_int32_t)(block[a * 4 + 0]) |
  135. (u_int32_t)(block[a * 4 + 1]) << 8 |
  136. (u_int32_t)(block[a * 4 + 2]) << 16 |
  137. (u_int32_t)(block[a * 4 + 3]) << 24);
  138. }
  139. #endif
  140. a = state[0];
  141. b = state[1];
  142. c = state[2];
  143. d = state[3];
  144. MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
  145. MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
  146. MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
  147. MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
  148. MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
  149. MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
  150. MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
  151. MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
  152. MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
  153. MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
  154. MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  155. MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  156. MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  157. MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  158. MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  159. MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
  160. MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
  161. MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
  162. MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  163. MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
  164. MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
  165. MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  166. MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  167. MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
  168. MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
  169. MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  170. MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
  171. MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
  172. MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  173. MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
  174. MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
  175. MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
  176. MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
  177. MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
  178. MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  179. MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  180. MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
  181. MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
  182. MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
  183. MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  184. MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  185. MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
  186. MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
  187. MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
  188. MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
  189. MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  190. MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  191. MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
  192. MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
  193. MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
  194. MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  195. MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
  196. MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  197. MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
  198. MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  199. MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
  200. MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
  201. MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  202. MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
  203. MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  204. MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
  205. MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  206. MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
  207. MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
  208. state[0] += a;
  209. state[1] += b;
  210. state[2] += c;
  211. state[3] += d;
  212. }