| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441 | /*- * Copyright (c) 2007 *	Thorsten Glaser <tg@mirbsd.de> * * Provided that these terms and disclaimer and all copyright notices * are retained or reproduced in an accompanying document, permission * is granted to deal in this work without restriction, including un- * limited rights to use, publicly perform, distribute, sell, modify, * merge, give away, or sublicence. * * Advertising materials mentioning features or use of this work must * display the following acknowledgement: *	This product includes material provided by Thorsten Glaser. *	This product includes software developed by Niels Provos. * * This work is provided "AS IS" and WITHOUT WARRANTY of any kind, to * the utmost extent permitted by applicable law, neither express nor * implied; without malicious intent or gross negligence. In no event * may a licensor, author or contributor be held liable for indirect, * direct, other damage, loss, or other issues arising in any way out * of dealing in the work, even if advised of the possibility of such * damage or existence of a defect, except proven that it results out * of said person's immediate fault when using the work as intended. */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <unistd.h>#include <sys/types.h>#define	MD5_BLOCK_LENGTH		64#define	MD5_DIGEST_LENGTH		16#define	MD5_DIGEST_STRING_LENGTH	(MD5_DIGEST_LENGTH * 2 + 1)typedef struct MD5Context {	u_int32_t state[4];	u_int64_t count;	u_int8_t  buffer[MD5_BLOCK_LENGTH];} MD5_CTX;/* low-level MD5 functions from md5c.c */void	MD5Init(MD5_CTX *);void	MD5Update(MD5_CTX *, const u_int8_t *, size_t);void	MD5Pad(MD5_CTX *);void	MD5Final(u_int8_t [MD5_DIGEST_LENGTH], MD5_CTX *);void	MD5Transform(u_int32_t [4], const u_int8_t [MD5_BLOCK_LENGTH]);/* high-level functions from mdXhl.c */char   *MD5End(MD5_CTX *, char *);char   *MD5File(const char *, char *);char   *MD5FileChunk(const char *, char *, off_t, off_t);char   *MD5Data(const u_int8_t *, size_t, char *);void to64(char *, u_int32_t, int);char *md5crypt(const char *pw, const char *salt);int pwd_gensalt(char *, int);static unsigned char itoa64[] =		/* 0 ... 63 => ascii - 64 */	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";voidto64(char *s, u_int32_t v, int n){	while (--n >= 0) {		*s++ = itoa64[v&0x3f];		v >>= 6;	}}#define PUT_64BIT_LE(cp, value) do {					\	(cp)[7] = (value) >> 56;					\	(cp)[6] = (value) >> 48;					\	(cp)[5] = (value) >> 40;					\	(cp)[4] = (value) >> 32;					\	(cp)[3] = (value) >> 24;					\	(cp)[2] = (value) >> 16;					\	(cp)[1] = (value) >> 8;						\	(cp)[0] = (value); } while (0)#define PUT_32BIT_LE(cp, value) do {					\	(cp)[3] = (value) >> 24;					\	(cp)[2] = (value) >> 16;					\	(cp)[1] = (value) >> 8;						\	(cp)[0] = (value); } while (0)static u_int8_t PADDING[MD5_BLOCK_LENGTH] = {	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};/* * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious * initialization constants. */voidMD5Init(MD5_CTX *ctx){	ctx->count = 0;	ctx->state[0] = 0x67452301;	ctx->state[1] = 0xefcdab89;	ctx->state[2] = 0x98badcfe;	ctx->state[3] = 0x10325476;}/* * Update context to reflect the concatenation of another buffer full * of bytes. */voidMD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len){	size_t have, need;	/* Check how many bytes we already have and how many more we need. */	have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));	need = MD5_BLOCK_LENGTH - have;	/* Update bitcount */	ctx->count += (u_int64_t)len << 3;	if (len >= need) {		if (have != 0) {			memcpy(ctx->buffer + have, input, need);			MD5Transform(ctx->state, ctx->buffer);			input += need;			len -= need;			have = 0;		}		/* Process data in MD5_BLOCK_LENGTH-byte chunks. */		while (len >= MD5_BLOCK_LENGTH) {			MD5Transform(ctx->state, input);			input += MD5_BLOCK_LENGTH;			len -= MD5_BLOCK_LENGTH;		}	}	/* Handle any remaining bytes of data. */	if (len != 0)		memcpy(ctx->buffer + have, input, len);}/* * Pad pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */voidMD5Pad(MD5_CTX *ctx){	u_int8_t count[8];	size_t padlen;	/* Convert count to 8 bytes in little endian order. */	PUT_64BIT_LE(count, ctx->count);	/* Pad out to 56 mod 64. */	padlen = MD5_BLOCK_LENGTH -	    ((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));	if (padlen < 1 + 8)		padlen += MD5_BLOCK_LENGTH;	MD5Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */	MD5Update(ctx, count, 8);}/* * Final wrapup--call MD5Pad, fill in digest and zero out ctx. */voidMD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx){	int i;	MD5Pad(ctx);	if (digest != NULL) {		for (i = 0; i < 4; i++)			PUT_32BIT_LE(digest + i * 4, ctx->state[i]);		memset(ctx, 0, sizeof(*ctx));	}}/* The four core functions - F1 is optimized somewhat *//* #define F1(x, y, z) (x & y | ~x & z) */#define F1(x, y, z) (z ^ (x & (y ^ z)))#define F2(x, y, z) F1(z, x, y)#define F3(x, y, z) (x ^ y ^ z)#define F4(x, y, z) (y ^ (x | ~z))/* This is the central step in the MD5 algorithm. */#define MD5STEP(f, w, x, y, z, data, s) \	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )/* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data.  MD5Update blocks * the data and converts bytes into longwords for this routine. */voidMD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH]){	u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];#if BYTE_ORDER == LITTLE_ENDIAN	memcpy(in, block, sizeof(in));#else	for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {		in[a] = (u_int32_t)(		    (u_int32_t)(block[a * 4 + 0]) |		    (u_int32_t)(block[a * 4 + 1]) <<  8 |		    (u_int32_t)(block[a * 4 + 2]) << 16 |		    (u_int32_t)(block[a * 4 + 3]) << 24);	}#endif	a = state[0];	b = state[1];	c = state[2];	d = state[3];	MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478,  7);	MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);	MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);	MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);	MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf,  7);	MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);	MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);	MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);	MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8,  7);	MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122,  7);	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);	MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562,  5);	MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340,  9);	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);	MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);	MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d,  5);	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453,  9);	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);	MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);	MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6,  5);	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6,  9);	MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);	MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905,  5);	MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8,  9);	MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);	MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942,  4);	MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);	MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44,  4);	MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);	MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6,  4);	MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);	MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);	MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);	MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039,  4);	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);	MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);	MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244,  6);	MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);	MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3,  6);	MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);	MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);	MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f,  6);	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);	MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);	MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82,  6);	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);	MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);	MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);	state[0] += a;	state[1] += b;	state[2] += c;	state[3] += d;}/* * UNIX password * * Use MD5 for what it is best at... */char *md5crypt(const char *pw, const char *salt){	/*	 * This string is magic for this algorithm.  Having	 * it this way, we can get get better later on	 */	static const unsigned char *magic = (const unsigned char *)"$1$";	static char     passwd[120], *p;	static const unsigned char *sp,*ep;	unsigned char	final[16];	int sl,pl,i;	MD5_CTX	ctx,ctx1;	u_int32_t l;	/* Refine the Salt first */	sp = (const unsigned char *)salt;	/* If it starts with the magic string, then skip that */	if(!strncmp((const char *)sp,(const char *)magic,strlen((const char *)magic)))		sp += strlen((const char *)magic);	/* It stops at the first '$', max 8 chars */	for(ep=sp;*ep && *ep != '$' && ep < (sp+8);ep++)		continue;	/* get the length of the true salt */	sl = ep - sp;	MD5Init(&ctx);	/* The password first, since that is what is most unknown */	MD5Update(&ctx,(const unsigned char *)pw,strlen(pw));	/* Then our magic string */	MD5Update(&ctx,magic,strlen((const char *)magic));	/* Then the raw salt */	MD5Update(&ctx,sp,sl);	/* Then just as many characters of the MD5(pw,salt,pw) */	MD5Init(&ctx1);	MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));	MD5Update(&ctx1,sp,sl);	MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));	MD5Final(final,&ctx1);	for(pl = strlen(pw); pl > 0; pl -= 16)		MD5Update(&ctx,final,pl>16 ? 16 : pl);	/* Don't leave anything around in vm they could use. */	memset(final,0,sizeof final);	/* Then something really weird... */	for (i = strlen(pw); i ; i >>= 1)		if(i&1)		    MD5Update(&ctx, final, 1);		else		    MD5Update(&ctx, (const unsigned char *)pw, 1);	/* Now make the output string */	snprintf(passwd, sizeof(passwd), "%s%.*s$", magic,	    sl, (const char *)sp);	MD5Final(final,&ctx);	/*	 * and now, just to make sure things don't run too fast	 * On a 60 Mhz Pentium this takes 34 msec, so you would	 * need 30 seconds to build a 1000 entry dictionary...	 */	for(i=0;i<1000;i++) {		MD5Init(&ctx1);		if(i & 1)			MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));		else			MD5Update(&ctx1,final,16);		if(i % 3)			MD5Update(&ctx1,sp,sl);		if(i % 7)			MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));		if(i & 1)			MD5Update(&ctx1,final,16);		else			MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));		MD5Final(final,&ctx1);	}	p = passwd + strlen(passwd);	l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; to64(p,l,4); p += 4;	l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; to64(p,l,4); p += 4;	l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; to64(p,l,4); p += 4;	l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; to64(p,l,4); p += 4;	l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; to64(p,l,4); p += 4;	l =		       final[11]		; to64(p,l,2); p += 2;	*p = '\0';	/* Don't leave anything around in vm they could use. */	memset(final, 0, sizeof final);	return passwd;}int pwd_gensalt(char *salt, int saltlen) {	*salt = '\0';	if (saltlen < 13) {	/* $1$8salt$\0 */		return 0;	}	strcpy(salt, "$1$");	to64(&salt[3], random(), 4);	to64(&salt[7], random(), 4);	strcpy(&salt[11], "$");	return 1;}int main(int argc, char *argv[]) {	char salt[16];	char *pw;	if (!argv[1]) {		fprintf(stderr, "Syntax Error!\n");		return (1);	}	if (!pwd_gensalt(salt, sizeof (salt)))		return (255);	if ((pw = md5crypt(argv[1], salt)) == NULL) {		fprintf(stderr, "Error generating password!\n");		return (1);	}	printf("%s\n", pw);	return (0);}
 |