Browse Source

Link ldso vs libgcc.a and eliminate baggage caused by
not previously linking vs libgcc
-Erik

Eric Andersen 22 years ago
parent
commit
8329f998f8

+ 2 - 1
ldso/ldso/Makefile

@@ -26,6 +26,7 @@ TOPDIR=../../
 DOPIC=true
 include $(TOPDIR)Rules.mak
 LDSO_FULLNAME=ld-uClibc-$(MAJOR_VERSION).$(MINOR_VERSION).$(SUBLEVEL).so
+LIBGCC:=$(shell $(CC) -print-libgcc-file-name)
 
 # Enable this to enable all the code needed to support traditional ldd
 # (i.e. where the shared library loader does all the heavy lifting)
@@ -80,7 +81,7 @@ all: lib
 
 lib:: ldso.h $(OBJS) $(DLINK_OBJS)
 	$(LD) $(LDFLAGS) -e _dl_boot -soname=$(UCLIBC_LDSO) \
-		-o $(LDSO_FULLNAME) $(OBJS);
+		-o $(LDSO_FULLNAME) $(OBJS) $(LIBGCC);
 	install -d $(TOPDIR)lib 
 	install -m 755 $(LDSO_FULLNAME) $(TOPDIR)lib
 	(cd $(TOPDIR)lib && ln -sf $(LDSO_FULLNAME) $(UCLIBC_LDSO))

+ 1 - 28
ldso/ldso/arm/dl-sysdep.h

@@ -89,34 +89,7 @@
 struct elf_resolve;
 unsigned long _dl_linux_resolver(struct elf_resolve * tpnt, int reloc_entry);
 
-static inline unsigned long arm_modulus(unsigned long m, unsigned long p) {
-	unsigned long i,t,inc;
-        i=p; t=0;
-        while(!(i&(1<<31))) {
-                i<<=1;
-                t++;
-        }
-        t--;
-        for(inc=t;inc>2;inc--) {
-                i=p<<inc;
-                if(i&(1<<31))
-                        break;
-                while(m>=i) {
-                        m-=i;
-                        i<<=1;
-                        if(i&(1<<31))
-                                break;
-                        if(i<p)
-                                break;
-                }
-        }
-        while(m>=p) {
-                m-=p;
-        }
-        return m;
-}
-
-#define do_rem(result, n, base)  result=arm_modulus(n,base);
+#define do_rem(result, n, base)	    result = (n % base)
 
 /* 4096 bytes alignment */
 #define PAGE_ALIGN 0xfffff000

+ 1 - 28
ldso/ldso/arm/ld_sysdep.h

@@ -89,34 +89,7 @@
 struct elf_resolve;
 unsigned long _dl_linux_resolver(struct elf_resolve * tpnt, int reloc_entry);
 
-static inline unsigned long arm_modulus(unsigned long m, unsigned long p) {
-	unsigned long i,t,inc;
-        i=p; t=0;
-        while(!(i&(1<<31))) {
-                i<<=1;
-                t++;
-        }
-        t--;
-        for(inc=t;inc>2;inc--) {
-                i=p<<inc;
-                if(i&(1<<31))
-                        break;
-                while(m>=i) {
-                        m-=i;
-                        i<<=1;
-                        if(i&(1<<31))
-                                break;
-                        if(i<p)
-                                break;
-                }
-        }
-        while(m>=p) {
-                m-=p;
-        }
-        return m;
-}
-
-#define do_rem(result, n, base)  result=arm_modulus(n,base);
+#define do_rem(result, n, base)	    result = (n % base)
 
 /* 4096 bytes alignment */
 #define PAGE_ALIGN 0xfffff000

+ 1 - 61
ldso/ldso/sh/dl-sysdep.h

@@ -77,67 +77,7 @@
 struct elf_resolve;
 extern unsigned long _dl_linux_resolver(struct elf_resolve * tpnt, int reloc_entry);
 
-static __inline__ unsigned int
-_dl_urem(unsigned int n, unsigned int base)
-{
-register unsigned int __r0 __asm__ ("r0");
-register unsigned int __r4 __asm__ ("r4") = n;
-register unsigned int __r5 __asm__ ("r5") = base;
-
-	__asm__ ("
-		mov	#0, r0
-		div0u
-
-		! get one bit from the msb of the numerator into the T
-		! bit and divide it by whats in %2.  Put the answer bit
-		! into the T bit so it can come out again at the bottom
-
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
- 
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4
-		mov  r4, r0
-"
-		: "=r" (__r0)
-		: "r" (__r4), "r" (__r5)
-		: "r4", "cc");
-
-	return n - (base * __r0);
-}
-
-#define do_rem(result, n, base)		((result) = _dl_urem((n), (base)))
+#define do_rem(result, n, base)	    result = (n % base)
 
 /* 4096 bytes alignment */
 #define PAGE_ALIGN 0xfffff000

+ 1 - 61
ldso/ldso/sh/ld_sysdep.h

@@ -77,67 +77,7 @@
 struct elf_resolve;
 extern unsigned long _dl_linux_resolver(struct elf_resolve * tpnt, int reloc_entry);
 
-static __inline__ unsigned int
-_dl_urem(unsigned int n, unsigned int base)
-{
-register unsigned int __r0 __asm__ ("r0");
-register unsigned int __r4 __asm__ ("r4") = n;
-register unsigned int __r5 __asm__ ("r5") = base;
-
-	__asm__ ("
-		mov	#0, r0
-		div0u
-
-		! get one bit from the msb of the numerator into the T
-		! bit and divide it by whats in %2.  Put the answer bit
-		! into the T bit so it can come out again at the bottom
-
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
- 
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4 ; div1 r5, r0
-		rotcl	r4
-		mov  r4, r0
-"
-		: "=r" (__r0)
-		: "r" (__r4), "r" (__r5)
-		: "r4", "cc");
-
-	return n - (base * __r0);
-}
-
-#define do_rem(result, n, base)		((result) = _dl_urem((n), (base)))
+#define do_rem(result, n, base)	    result = (n % base)
 
 /* 4096 bytes alignment */
 #define PAGE_ALIGN 0xfffff000

+ 0 - 5
ldso/ldso/sparc/DEFS.h

@@ -1,5 +0,0 @@
-#define	FUNC(name)	\
-	.global name;	\
-	.type name,@function;     \
-	.align 4;	\
-	name:

+ 1 - 18
ldso/ldso/sparc/dl-sysdep.h

@@ -97,25 +97,8 @@ extern unsigned int _dl_linux_resolver(unsigned int reloc_entry,
  */
 #define SOLARIS_COMPATIBLE
 
-/*
- * Define this because we do not want to call .udiv in the library.
- * Change on the plans -miguel:
- * We just statically link against .udiv.  This is required
- * if we want to be able to run on Sun4c machines.
- */
+#define do_rem(result, n, base)	    result = (n % base)
 
-/* We now link .urem against this one */
-#ifdef USE_V8
-#define do_rem(result,n,base) ({ \
-volatile int __res; \
-__asm__("mov %%g0,%%Y\n\t" \
-	"sdiv %2,%3,%%l6\n\t" \
-	 "smul %%l6,%3,%%l6\n\t" \
-	 "sub  %2,%%l6,%0\n\t" \
-	 :"=r" (result),"=r" (__res):"r" (n),"r"(base) : "l6" ); __res; })
-#else
-#define do_rem(a,b,c) a = _dl_urem (b,c);
-#endif
 /*
  * dbx wants the binder to have a specific name.  Mustn't disappoint it.
  */

+ 1 - 18
ldso/ldso/sparc/ld_sysdep.h

@@ -97,25 +97,8 @@ extern unsigned int _dl_linux_resolver(unsigned int reloc_entry,
  */
 #define SOLARIS_COMPATIBLE
 
-/*
- * Define this because we do not want to call .udiv in the library.
- * Change on the plans -miguel:
- * We just statically link against .udiv.  This is required
- * if we want to be able to run on Sun4c machines.
- */
+#define do_rem(result, n, base)	    result = (n % base)
 
-/* We now link .urem against this one */
-#ifdef USE_V8
-#define do_rem(result,n,base) ({ \
-volatile int __res; \
-__asm__("mov %%g0,%%Y\n\t" \
-	"sdiv %2,%3,%%l6\n\t" \
-	 "smul %%l6,%3,%%l6\n\t" \
-	 "sub  %2,%%l6,%0\n\t" \
-	 :"=r" (result),"=r" (__res):"r" (n),"r"(base) : "l6" ); __res; })
-#else
-#define do_rem(a,b,c) a = _dl_urem (b,c);
-#endif
 /*
  * dbx wants the binder to have a specific name.  Mustn't disappoint it.
  */

+ 0 - 361
ldso/ldso/sparc/sdiv.S

@@ -1,361 +0,0 @@
-   /* This file is generated from divrem.m4; DO NOT EDIT! */
-/*
- * Division and remainder, from Appendix E of the Sparc Version 8
- * Architecture Manual, with fixes from Gordon Irlam.
- */
-
-/*
- * Input: dividend and divisor in %o0 and %o1 respectively.
- *
- * m4 parameters:
- *  .div	name of function to generate
- *  div		div=div => %o0 / %o1; div=rem => %o0 % %o1
- *  true		true=true => signed; true=false => unsigned
- *
- * Algorithm parameters:
- *  N		how many bits per iteration we try to get (4)
- *  WORDSIZE	total number of bits (32)
- *
- * Derived constants:
- *  TOPBITS	number of bits in the top decade of a number
- *
- * Important variables:
- *  Q		the partial quotient under development (initially 0)
- *  R		the remainder so far, initially the dividend
- *  ITER	number of main division loop iterations required;
- *		equal to ceil(log2(quotient) / N).  Note that this
- *		is the log base (2^N) of the quotient.
- *  V		the current comparand, initially divisor*2^(ITER*N-1)
- *
- * Cost:
- *  Current estimate for non-large dividend is
- *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
- *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
- *  different path, as the upper bits of the quotient must be developed
- *  one bit at a time.
- */
-
-
-
-#include "DEFS.h"
-#include <asm/traps.h>
-
-FUNC(_dl_div)
-	! compute sign of result; if neither is negative, no problem
-	orcc	%o1, %o0, %g0	! either negative?
-	bge	2f			! no, go do the divide
-	xor	%o1, %o0, %g6	! compute sign in any case
-	tst	%o1
-	bge	1f
-	tst	%o0
-	! %o1 is definitely negative; %o0 might also be negative
-	bge	2f			! if %o0 not negative...
-	sub	%g0, %o1, %o1	! in any case, make %o1 nonneg
-1:	! %o0 is negative, %o1 is nonnegative
-	sub	%g0, %o0, %o0	! make %o0 nonnegative
-2:
-
-	! Ready to divide.  Compute size of quotient; scale comparand.
-	orcc	%o1, %g0, %o5
-	bne	1f
-	mov	%o0, %o3
-
-		! Divide by zero trap.  If it returns, return 0 (about as
-		! wrong as possible, but that is what SunOS does...).
-		ta	ST_DIV0
-		retl
-		clr	%o0
-
-1:
-	cmp	%o3, %o5			! if %o1 exceeds %o0, done
-	blu	Lgot_result		! (and algorithm fails otherwise)
-	clr	%o2
-	sethi	%hi(1 << (32 - 4 - 1)), %g1
-	cmp	%o3, %g1
-	blu	Lnot_really_big
-	clr	%o4
-
-	! Here the dividend is >= 2**(31-N) or so.  We must be careful here,
-	! as our usual N-at-a-shot divide step will cause overflow and havoc.
-	! The number of bits in the result here is N*ITER+SC, where SC <= N.
-	! Compute ITER in an unorthodox manner: know we need to shift V into
-	! the top decade: so do not even bother to compare to R.
-	1:
-		cmp	%o5, %g1
-		bgeu	3f
-		mov	1, %g7
-		sll	%o5, 4, %o5
-		b	1b
-		add	%o4, 1, %o4
-
-	! Now compute %g7.
-	2:	addcc	%o5, %o5, %o5
-		bcc	Lnot_too_big
-		add	%g7, 1, %g7
-
-		! We get here if the %o1 overflowed while shifting.
-		! This means that %o3 has the high-order bit set.
-		! Restore %o5 and subtract from %o3.
-		sll	%g1, 4, %g1	! high order bit
-		srl	%o5, 1, %o5		! rest of %o5
-		add	%o5, %g1, %o5
-		b	Ldo_single_div
-		sub	%g7, 1, %g7
-
-	Lnot_too_big:
-	3:	cmp	%o5, %o3
-		blu	2b
-		nop
-		be	Ldo_single_div
-		nop
-	/* NB: these are commented out in the V8-Sparc manual as well */
-	/* (I do not understand this) */
-	! %o5 > %o3: went too far: back up 1 step
-	!	srl	%o5, 1, %o5
-	!	dec	%g7
-	! do single-bit divide steps
-	!
-	! We have to be careful here.  We know that %o3 >= %o5, so we can do the
-	! first divide step without thinking.  BUT, the others are conditional,
-	! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-
-	! order bit set in the first step, just falling into the regular
-	! division loop will mess up the first time around.
-	! So we unroll slightly...
-	Ldo_single_div:
-		subcc	%g7, 1, %g7
-		bl	Lend_regular_divide
-		nop
-		sub	%o3, %o5, %o3
-		mov	1, %o2
-		b	Lend_single_divloop
-		nop
-	Lsingle_divloop:
-		sll	%o2, 1, %o2
-		bl	1f
-		srl	%o5, 1, %o5
-		! %o3 >= 0
-		sub	%o3, %o5, %o3
-		b	2f
-		add	%o2, 1, %o2
-	1:	! %o3 < 0
-		add	%o3, %o5, %o3
-		sub	%o2, 1, %o2
-	2:
-	Lend_single_divloop:
-		subcc	%g7, 1, %g7
-		bge	Lsingle_divloop
-		tst	%o3
-		b,a	Lend_regular_divide
-
-Lnot_really_big:
-1:
-	sll	%o5, 4, %o5
-	cmp	%o5, %o3
-	bleu	1b
-	addcc	%o4, 1, %o4
-	be	Lgot_result
-	sub	%o4, 1, %o4
-
-	tst	%o3	! set up for initial iteration
-Ldivloop:
-	sll	%o2, 4, %o2
-		! depth 1, accumulated bits 0
-	bl	L.1.16
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 2, accumulated bits 1
-	bl	L.2.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 3, accumulated bits 3
-	bl	L.3.19
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 7
-	bl	L.4.23
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (7*2+1), %o2
-	
-L.4.23:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (7*2-1), %o2
-	
-	
-L.3.19:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 5
-	bl	L.4.21
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (5*2+1), %o2
-	
-L.4.21:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (5*2-1), %o2
-	
-	
-	
-L.2.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 3, accumulated bits 1
-	bl	L.3.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 3
-	bl	L.4.19
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (3*2+1), %o2
-	
-L.4.19:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (3*2-1), %o2
-	
-	
-L.3.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 1
-	bl	L.4.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (1*2+1), %o2
-	
-L.4.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (1*2-1), %o2
-	
-	
-	
-	
-L.1.16:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 2, accumulated bits -1
-	bl	L.2.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 3, accumulated bits -1
-	bl	L.3.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -1
-	bl	L.4.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-1*2+1), %o2
-	
-L.4.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-1*2-1), %o2
-	
-	
-L.3.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -3
-	bl	L.4.13
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-3*2+1), %o2
-	
-L.4.13:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-3*2-1), %o2
-	
-	
-	
-L.2.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 3, accumulated bits -3
-	bl	L.3.13
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -5
-	bl	L.4.11
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-5*2+1), %o2
-	
-L.4.11:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-5*2-1), %o2
-	
-	
-L.3.13:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -7
-	bl	L.4.9
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-7*2+1), %o2
-	
-L.4.9:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-7*2-1), %o2
-	
-	
-	
-	
-	9:
-Lend_regular_divide:
-	subcc	%o4, 1, %o4
-	bge	Ldivloop
-	tst	%o3
-	bl,a	Lgot_result
-	! non-restoring fixup here (one instruction only!)
-	sub	%o2, 1, %o2
-
-
-Lgot_result:
-	! check to see if answer should be < 0
-	tst	%g6
-	bl,a	1f
-	sub %g0, %o2, %o2
-1:
-	retl
-	mov %o2, %o0

+ 0 - 343
ldso/ldso/sparc/udiv.S

@@ -1,343 +0,0 @@
-   /* This file is generated from divrem.m4; DO NOT EDIT! */
-/*
- * Division and remainder, from Appendix E of the Sparc Version 8
- * Architecture Manual, with fixes from Gordon Irlam.
- */
-
-/*
- * Input: dividend and divisor in %o0 and %o1 respectively.
- *
- * m4 parameters:
- *  .udiv	name of function to generate
- *  div		div=div => %o0 / %o1; div=rem => %o0 % %o1
- *  false		false=true => signed; false=false => unsigned
- *
- * Algorithm parameters:
- *  N		how many bits per iteration we try to get (4)
- *  WORDSIZE	total number of bits (32)
- *
- * Derived constants:
- *  TOPBITS	number of bits in the top decade of a number
- *
- * Important variables:
- *  Q		the partial quotient under development (initially 0)
- *  R		the remainder so far, initially the dividend
- *  ITER	number of main division loop iterations required;
- *		equal to ceil(log2(quotient) / N).  Note that this
- *		is the log base (2^N) of the quotient.
- *  V		the current comparand, initially divisor*2^(ITER*N-1)
- *
- * Cost:
- *  Current estimate for non-large dividend is
- *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
- *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
- *  different path, as the upper bits of the quotient must be developed
- *  one bit at a time.
- */
-
-
-#include "DEFS.h"
-#include <asm/traps.h>
-
-FUNC(_dl_udiv)
-
-	! Ready to divide.  Compute size of quotient; scale comparand.
-	orcc	%o1, %g0, %o5
-	bne	1f
-	mov	%o0, %o3
-
-		! Divide by zero trap.  If it returns, return 0 (about as
-		! wrong as possible, but that is what SunOS does...).
-		ta	ST_DIV0
-		retl
-		clr	%o0
-
-1:
-	cmp	%o3, %o5			! if %o1 exceeds %o0, done
-	blu	Lgot_result		! (and algorithm fails otherwise)
-	clr	%o2
-	sethi	%hi(1 << (32 - 4 - 1)), %g1
-	cmp	%o3, %g1
-	blu	Lnot_really_big
-	clr	%o4
-
-	! Here the dividend is >= 2**(31-N) or so.  We must be careful here,
-	! as our usual N-at-a-shot divide step will cause overflow and havoc.
-	! The number of bits in the result here is N*ITER+SC, where SC <= N.
-	! Compute ITER in an unorthodox manner: know we need to shift V into
-	! the top decade: so do not even bother to compare to R.
-	1:
-		cmp	%o5, %g1
-		bgeu	3f
-		mov	1, %g7
-		sll	%o5, 4, %o5
-		b	1b
-		add	%o4, 1, %o4
-
-	! Now compute %g7.
-	2:	addcc	%o5, %o5, %o5
-		bcc	Lnot_too_big
-		add	%g7, 1, %g7
-
-		! We get here if the %o1 overflowed while shifting.
-		! This means that %o3 has the high-order bit set.
-		! Restore %o5 and subtract from %o3.
-		sll	%g1, 4, %g1	! high order bit
-		srl	%o5, 1, %o5		! rest of %o5
-		add	%o5, %g1, %o5
-		b	Ldo_single_div
-		sub	%g7, 1, %g7
-
-	Lnot_too_big:
-	3:	cmp	%o5, %o3
-		blu	2b
-		nop
-		be	Ldo_single_div
-		nop
-	/* NB: these are commented out in the V8-Sparc manual as well */
-	/* (I do not understand this) */
-	! %o5 > %o3: went too far: back up 1 step
-	!	srl	%o5, 1, %o5
-	!	dec	%g7
-	! do single-bit divide steps
-	!
-	! We have to be careful here.  We know that %o3 >= %o5, so we can do the
-	! first divide step without thinking.  BUT, the others are conditional,
-	! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-
-	! order bit set in the first step, just falling into the regular
-	! division loop will mess up the first time around.
-	! So we unroll slightly...
-	Ldo_single_div:
-		subcc	%g7, 1, %g7
-		bl	Lend_regular_divide
-		nop
-		sub	%o3, %o5, %o3
-		mov	1, %o2
-		b	Lend_single_divloop
-		nop
-	Lsingle_divloop:
-		sll	%o2, 1, %o2
-		bl	1f
-		srl	%o5, 1, %o5
-		! %o3 >= 0
-		sub	%o3, %o5, %o3
-		b	2f
-		add	%o2, 1, %o2
-	1:	! %o3 < 0
-		add	%o3, %o5, %o3
-		sub	%o2, 1, %o2
-	2:
-	Lend_single_divloop:
-		subcc	%g7, 1, %g7
-		bge	Lsingle_divloop
-		tst	%o3
-		b,a	Lend_regular_divide
-
-Lnot_really_big:
-1:
-	sll	%o5, 4, %o5
-	cmp	%o5, %o3
-	bleu	1b
-	addcc	%o4, 1, %o4
-	be	Lgot_result
-	sub	%o4, 1, %o4
-
-	tst	%o3	! set up for initial iteration
-Ldivloop:
-	sll	%o2, 4, %o2
-		! depth 1, accumulated bits 0
-	bl	L.1.16
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 2, accumulated bits 1
-	bl	L.2.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 3, accumulated bits 3
-	bl	L.3.19
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 7
-	bl	L.4.23
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (7*2+1), %o2
-	
-L.4.23:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (7*2-1), %o2
-	
-	
-L.3.19:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 5
-	bl	L.4.21
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (5*2+1), %o2
-	
-L.4.21:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (5*2-1), %o2
-	
-	
-	
-L.2.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 3, accumulated bits 1
-	bl	L.3.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 3
-	bl	L.4.19
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (3*2+1), %o2
-	
-L.4.19:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (3*2-1), %o2
-	
-	
-L.3.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 1
-	bl	L.4.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (1*2+1), %o2
-	
-L.4.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (1*2-1), %o2
-	
-	
-	
-	
-L.1.16:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 2, accumulated bits -1
-	bl	L.2.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 3, accumulated bits -1
-	bl	L.3.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -1
-	bl	L.4.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-1*2+1), %o2
-	
-L.4.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-1*2-1), %o2
-	
-	
-L.3.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -3
-	bl	L.4.13
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-3*2+1), %o2
-	
-L.4.13:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-3*2-1), %o2
-	
-	
-	
-L.2.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 3, accumulated bits -3
-	bl	L.3.13
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -5
-	bl	L.4.11
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-5*2+1), %o2
-	
-L.4.11:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-5*2-1), %o2
-	
-	
-L.3.13:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -7
-	bl	L.4.9
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-7*2+1), %o2
-	
-L.4.9:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-7*2-1), %o2
-	
-	
-	
-	
-	9:
-Lend_regular_divide:
-	subcc	%o4, 1, %o4
-	bge	Ldivloop
-	tst	%o3
-	bl,a	Lgot_result
-	! non-restoring fixup here (one instruction only!)
-	sub	%o2, 1, %o2
-
-
-Lgot_result:
-
-	retl
-	mov %o2, %o0

+ 0 - 153
ldso/ldso/sparc/umul.S

@@ -1,153 +0,0 @@
-/*
- * Unsigned multiply.  Returns %o0 * %o1 in %o1%o0 (i.e., %o1 holds the
- * upper 32 bits of the 64-bit product).
- *
- * This code optimizes short (less than 13-bit) multiplies.  Short
- * multiplies require 25 instruction cycles, and long ones require
- * 45 instruction cycles.
- *
- * On return, overflow has occurred (%o1 is not zero) if and only if
- * the Z condition code is clear, allowing, e.g., the following:
- *
- *	call	.umul
- *	nop
- *	bnz	overflow	(or tnz)
- */
-
-#include "DEFS.h"
-FUNC(.umul)
-	or	%o0, %o1, %o4
-	mov	%o0, %y		! multiplier -> Y
-	andncc	%o4, 0xfff, %g0	! test bits 12..31 of *both* args
-	be	Lmul_shortway	! if zero, can do it the short way
-	andcc	%g0, %g0, %o4	! zero the partial product and clear N and V
-
-	/*
-	 * Long multiply.  32 steps, followed by a final shift step.
-	 */
-	mulscc	%o4, %o1, %o4	! 1
-	mulscc	%o4, %o1, %o4	! 2
-	mulscc	%o4, %o1, %o4	! 3
-	mulscc	%o4, %o1, %o4	! 4
-	mulscc	%o4, %o1, %o4	! 5
-	mulscc	%o4, %o1, %o4	! 6
-	mulscc	%o4, %o1, %o4	! 7
-	mulscc	%o4, %o1, %o4	! 8
-	mulscc	%o4, %o1, %o4	! 9
-	mulscc	%o4, %o1, %o4	! 10
-	mulscc	%o4, %o1, %o4	! 11
-	mulscc	%o4, %o1, %o4	! 12
-	mulscc	%o4, %o1, %o4	! 13
-	mulscc	%o4, %o1, %o4	! 14
-	mulscc	%o4, %o1, %o4	! 15
-	mulscc	%o4, %o1, %o4	! 16
-	mulscc	%o4, %o1, %o4	! 17
-	mulscc	%o4, %o1, %o4	! 18
-	mulscc	%o4, %o1, %o4	! 19
-	mulscc	%o4, %o1, %o4	! 20
-	mulscc	%o4, %o1, %o4	! 21
-	mulscc	%o4, %o1, %o4	! 22
-	mulscc	%o4, %o1, %o4	! 23
-	mulscc	%o4, %o1, %o4	! 24
-	mulscc	%o4, %o1, %o4	! 25
-	mulscc	%o4, %o1, %o4	! 26
-	mulscc	%o4, %o1, %o4	! 27
-	mulscc	%o4, %o1, %o4	! 28
-	mulscc	%o4, %o1, %o4	! 29
-	mulscc	%o4, %o1, %o4	! 30
-	mulscc	%o4, %o1, %o4	! 31
-	mulscc	%o4, %o1, %o4	! 32
-	mulscc	%o4, %g0, %o4	! final shift
-
-
-	/*
-	 * Normally, with the shift-and-add approach, if both numbers are
-	 * positive you get the correct result.  With 32-bit two's-complement
-	 * numbers, -x is represented as
-	 *
-	 *		  x		    32
-	 *	( 2  -  ------ ) mod 2  *  2
-	 *		   32
-	 *		  2
-	 *
-	 * (the `mod 2' subtracts 1 from 1.bbbb).  To avoid lots of 2^32s,
-	 * we can treat this as if the radix point were just to the left
-	 * of the sign bit (multiply by 2^32), and get
-	 *
-	 *	-x  =  (2 - x) mod 2
-	 *
-	 * Then, ignoring the `mod 2's for convenience:
-	 *
-	 *   x *  y	= xy
-	 *  -x *  y	= 2y - xy
-	 *   x * -y	= 2x - xy
-	 *  -x * -y	= 4 - 2x - 2y + xy
-	 *
-	 * For signed multiplies, we subtract (x << 32) from the partial
-	 * product to fix this problem for negative multipliers (see mul.s).
-	 * Because of the way the shift into the partial product is calculated
-	 * (N xor V), this term is automatically removed for the multiplicand,
-	 * so we don't have to adjust.
-	 *
-	 * But for unsigned multiplies, the high order bit wasn't a sign bit,
-	 * and the correction is wrong.  So for unsigned multiplies where the
-	 * high order bit is one, we end up with xy - (y << 32).  To fix it
-	 * we add y << 32.
-	 */
-#if 0
-	tst	%o1
-	bl,a	1f		! if %o1 < 0 (high order bit = 1),
-	add	%o4, %o0, %o4	! %o4 += %o0 (add y to upper half)
-1:	rd	%y, %o0		! get lower half of product
-	retl
-	addcc	%o4, %g0, %o1	! put upper half in place and set Z for %o1==0
-#else
-	/* Faster code from tege@sics.se.  */
-	sra	%o1, 31, %o2	! make mask from sign bit
-	and	%o0, %o2, %o2	! %o2 = 0 or %o0, depending on sign of %o1
-	rd	%y, %o0		! get lower half of product
-	retl
-	addcc	%o4, %o2, %o1	! add compensation and put upper half in place
-#endif
-
-Lmul_shortway:
-	/*
-	 * Short multiply.  12 steps, followed by a final shift step.
-	 * The resulting bits are off by 12 and (32-12) = 20 bit positions,
-	 * but there is no problem with %o0 being negative (unlike above),
-	 * and overflow is impossible (the answer is at most 24 bits long).
-	 */
-	mulscc	%o4, %o1, %o4	! 1
-	mulscc	%o4, %o1, %o4	! 2
-	mulscc	%o4, %o1, %o4	! 3
-	mulscc	%o4, %o1, %o4	! 4
-	mulscc	%o4, %o1, %o4	! 5
-	mulscc	%o4, %o1, %o4	! 6
-	mulscc	%o4, %o1, %o4	! 7
-	mulscc	%o4, %o1, %o4	! 8
-	mulscc	%o4, %o1, %o4	! 9
-	mulscc	%o4, %o1, %o4	! 10
-	mulscc	%o4, %o1, %o4	! 11
-	mulscc	%o4, %o1, %o4	! 12
-	mulscc	%o4, %g0, %o4	! final shift
-
-	/*
-	 * %o4 has 20 of the bits that should be in the result; %y has
-	 * the bottom 12 (as %y's top 12).  That is:
-	 *
-	 *	  %o4		    %y
-	 * +----------------+----------------+
-	 * | -12- |   -20-  | -12- |   -20-  |
-	 * +------(---------+------)---------+
-	 *	   -----result-----
-	 *
-	 * The 12 bits of %o4 left of the `result' area are all zero;
-	 * in fact, all top 20 bits of %o4 are zero.
-	 */
-
-	rd	%y, %o5
-	sll	%o4, 12, %o0	! shift middle bits left 12
-	srl	%o5, 20, %o5	! shift low bits right 20
-	or	%o5, %o0, %o0
-	retl
-	addcc	%g0, %g0, %o1	! %o1 = zero, and set Z

+ 0 - 344
ldso/ldso/sparc/urem.S

@@ -1,344 +0,0 @@
-   /* This file is generated from divrem.m4; DO NOT EDIT! */
-/*
- * Division and remainder, from Appendix E of the Sparc Version 8
- * Architecture Manual, with fixes from Gordon Irlam.
- */
-
-/*
- * Input: dividend and divisor in %o0 and %o1 respectively.
- *
- * m4 parameters:
- *  .urem	name of function to generate
- *  rem		rem=div => %o0 / %o1; rem=rem => %o0 % %o1
- *  false		false=true => signed; false=false => unsigned
- *
- * Algorithm parameters:
- *  N		how many bits per iteration we try to get (4)
- *  WORDSIZE	total number of bits (32)
- *
- * Derived constants:
- *  TOPBITS	number of bits in the top decade of a number
- *
- * Important variables:
- *  Q		the partial quotient under development (initially 0)
- *  R		the remainder so far, initially the dividend
- *  ITER	number of main division loop iterations required;
- *		equal to ceil(log2(quotient) / N).  Note that this
- *		is the log base (2^N) of the quotient.
- *  V		the current comparand, initially divisor*2^(ITER*N-1)
- *
- * Cost:
- *  Current estimate for non-large dividend is
- *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
- *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
- *  different path, as the upper bits of the quotient must be developed
- *  one bit at a time.
- */
-
-
-
-#include "DEFS.h"
-#include <asm/traps.h>
-
-FUNC(_dl_urem)
-
-	! Ready to divide.  Compute size of quotient; scale comparand.
-	orcc	%o1, %g0, %o5
-	bne	1f
-	mov	%o0, %o3
-
-		! Divide by zero trap.  If it returns, return 0 (about as
-		! wrong as possible, but that is what SunOS does...).
-		ta	ST_DIV0
-		retl
-		clr	%o0
-
-1:
-	cmp	%o3, %o5			! if %o1 exceeds %o0, done
-	blu	Lgot_result		! (and algorithm fails otherwise)
-	clr	%o2
-	sethi	%hi(1 << (32 - 4 - 1)), %g1
-	cmp	%o3, %g1
-	blu	Lnot_really_big
-	clr	%o4
-
-	! Here the dividend is >= 2**(31-N) or so.  We must be careful here,
-	! as our usual N-at-a-shot divide step will cause overflow and havoc.
-	! The number of bits in the result here is N*ITER+SC, where SC <= N.
-	! Compute ITER in an unorthodox manner: know we need to shift V into
-	! the top decade: so do not even bother to compare to R.
-	1:
-		cmp	%o5, %g1
-		bgeu	3f
-		mov	1, %g7
-		sll	%o5, 4, %o5
-		b	1b
-		add	%o4, 1, %o4
-
-	! Now compute %g7.
-	2:	addcc	%o5, %o5, %o5
-		bcc	Lnot_too_big
-		add	%g7, 1, %g7
-
-		! We get here if the %o1 overflowed while shifting.
-		! This means that %o3 has the high-order bit set.
-		! Restore %o5 and subtract from %o3.
-		sll	%g1, 4, %g1	! high order bit
-		srl	%o5, 1, %o5		! rest of %o5
-		add	%o5, %g1, %o5
-		b	Ldo_single_div
-		sub	%g7, 1, %g7
-
-	Lnot_too_big:
-	3:	cmp	%o5, %o3
-		blu	2b
-		nop
-		be	Ldo_single_div
-		nop
-	/* NB: these are commented out in the V8-Sparc manual as well */
-	/* (I do not understand this) */
-	! %o5 > %o3: went too far: back up 1 step
-	!	srl	%o5, 1, %o5
-	!	dec	%g7
-	! do single-bit divide steps
-	!
-	! We have to be careful here.  We know that %o3 >= %o5, so we can do the
-	! first divide step without thinking.  BUT, the others are conditional,
-	! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-
-	! order bit set in the first step, just falling into the regular
-	! division loop will mess up the first time around.
-	! So we unroll slightly...
-	Ldo_single_div:
-		subcc	%g7, 1, %g7
-		bl	Lend_regular_divide
-		nop
-		sub	%o3, %o5, %o3
-		mov	1, %o2
-		b	Lend_single_divloop
-		nop
-	Lsingle_divloop:
-		sll	%o2, 1, %o2
-		bl	1f
-		srl	%o5, 1, %o5
-		! %o3 >= 0
-		sub	%o3, %o5, %o3
-		b	2f
-		add	%o2, 1, %o2
-	1:	! %o3 < 0
-		add	%o3, %o5, %o3
-		sub	%o2, 1, %o2
-	2:
-	Lend_single_divloop:
-		subcc	%g7, 1, %g7
-		bge	Lsingle_divloop
-		tst	%o3
-		b,a	Lend_regular_divide
-
-Lnot_really_big:
-1:
-	sll	%o5, 4, %o5
-	cmp	%o5, %o3
-	bleu	1b
-	addcc	%o4, 1, %o4
-	be	Lgot_result
-	sub	%o4, 1, %o4
-
-	tst	%o3	! set up for initial iteration
-Ldivloop:
-	sll	%o2, 4, %o2
-		! depth 1, accumulated bits 0
-	bl	L.1.16
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 2, accumulated bits 1
-	bl	L.2.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 3, accumulated bits 3
-	bl	L.3.19
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 7
-	bl	L.4.23
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (7*2+1), %o2
-	
-L.4.23:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (7*2-1), %o2
-	
-	
-L.3.19:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 5
-	bl	L.4.21
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (5*2+1), %o2
-	
-L.4.21:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (5*2-1), %o2
-	
-	
-	
-L.2.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 3, accumulated bits 1
-	bl	L.3.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 3
-	bl	L.4.19
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (3*2+1), %o2
-	
-L.4.19:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (3*2-1), %o2
-	
-	
-L.3.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits 1
-	bl	L.4.17
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (1*2+1), %o2
-	
-L.4.17:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (1*2-1), %o2
-	
-	
-	
-	
-L.1.16:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 2, accumulated bits -1
-	bl	L.2.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 3, accumulated bits -1
-	bl	L.3.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -1
-	bl	L.4.15
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-1*2+1), %o2
-	
-L.4.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-1*2-1), %o2
-	
-	
-L.3.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -3
-	bl	L.4.13
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-3*2+1), %o2
-	
-L.4.13:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-3*2-1), %o2
-	
-	
-	
-L.2.15:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 3, accumulated bits -3
-	bl	L.3.13
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -5
-	bl	L.4.11
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-5*2+1), %o2
-	
-L.4.11:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-5*2-1), %o2
-	
-	
-L.3.13:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-			! depth 4, accumulated bits -7
-	bl	L.4.9
-	srl	%o5,1,%o5
-	! remainder is positive
-	subcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-7*2+1), %o2
-	
-L.4.9:
-	! remainder is negative
-	addcc	%o3,%o5,%o3
-		b	9f
-		add	%o2, (-7*2-1), %o2
-	
-	
-	
-	
-	9:
-Lend_regular_divide:
-	subcc	%o4, 1, %o4
-	bge	Ldivloop
-	tst	%o3
-	bl,a	Lgot_result
-	! non-restoring fixup here (one instruction only!)
-	add	%o3, %o1, %o3
-
-
-Lgot_result:
-
-	retl
-	mov %o3, %o0