|
@@ -0,0 +1,130 @@
|
|
|
+
|
|
|
+
|
|
|
+ * ====================================================
|
|
|
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
+ *
|
|
|
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
+ * Permission to use, copy, modify, and distribute this
|
|
|
+ * software is freely granted, provided that this notice
|
|
|
+ * is preserved.
|
|
|
+ * ====================================================
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+ * Return the logarithm to base 2 of x
|
|
|
+ *
|
|
|
+ * Method :
|
|
|
+ * 1. Argument Reduction: find k and f such that
|
|
|
+ * x = 2^k * (1+f),
|
|
|
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
|
|
|
+ *
|
|
|
+ * 2. Approximation of log(1+f).
|
|
|
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|
|
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|
|
+ * = 2s + s*R
|
|
|
+ * We use a special Reme algorithm on [0,0.1716] to generate
|
|
|
+ * a polynomial of degree 14 to approximate R The maximum error
|
|
|
+ * of this polynomial approximation is bounded by 2**-58.45. In
|
|
|
+ * other words,
|
|
|
+ * 2 4 6 8 10 12 14
|
|
|
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
|
|
+ * (the values of Lg1 to Lg7 are listed in the program)
|
|
|
+ * and
|
|
|
+ * | 2 14 | -58.45
|
|
|
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
|
|
|
+ * | |
|
|
|
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|
|
+ * In order to guarantee error in log below 1ulp, we compute log
|
|
|
+ * by
|
|
|
+ * log(1+f) = f - s*(f - R) (if f is not too large)
|
|
|
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
|
|
+ *
|
|
|
+ * 3. Finally, log(x) = k + log(1+f).
|
|
|
+ * = k+(f-(hfsq-(s*(hfsq+R))))
|
|
|
+ *
|
|
|
+ * Special cases:
|
|
|
+ * log2(x) is NaN with signal if x < 0 (including -INF) ;
|
|
|
+ * log2(+INF) is +INF; log(0) is -INF with signal;
|
|
|
+ * log2(NaN) is that NaN with no signal.
|
|
|
+ *
|
|
|
+ * Constants:
|
|
|
+ * The hexadecimal values are the intended ones for the following
|
|
|
+ * constants. The decimal values may be used, provided that the
|
|
|
+ * compiler will convert from decimal to binary accurately enough
|
|
|
+ * to produce the hexadecimal values shown.
|
|
|
+ */
|
|
|
+
|
|
|
+#include "math.h"
|
|
|
+#include "math_private.h"
|
|
|
+
|
|
|
+#ifdef __STDC__
|
|
|
+static const double
|
|
|
+#else
|
|
|
+static double
|
|
|
+#endif
|
|
|
+ln2 = 0.69314718055994530942,
|
|
|
+two54 = 1.80143985094819840000e+16,
|
|
|
+Lg1 = 6.666666666666735130e-01,
|
|
|
+Lg2 = 3.999999999940941908e-01,
|
|
|
+Lg3 = 2.857142874366239149e-01,
|
|
|
+Lg4 = 2.222219843214978396e-01,
|
|
|
+Lg5 = 1.818357216161805012e-01,
|
|
|
+Lg6 = 1.531383769920937332e-01,
|
|
|
+Lg7 = 1.479819860511658591e-01;
|
|
|
+
|
|
|
+#ifdef __STDC__
|
|
|
+static const double zero = 0.0;
|
|
|
+#else
|
|
|
+static double zero = 0.0;
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifdef __STDC__
|
|
|
+ double __ieee754_log2(double x)
|
|
|
+#else
|
|
|
+ double __ieee754_log2(x)
|
|
|
+ double x;
|
|
|
+#endif
|
|
|
+{
|
|
|
+ double hfsq,f,s,z,R,w,t1,t2,dk;
|
|
|
+ int32_t k,hx,i,j;
|
|
|
+ u_int32_t lx;
|
|
|
+
|
|
|
+ EXTRACT_WORDS(hx,lx,x);
|
|
|
+
|
|
|
+ k=0;
|
|
|
+ if (hx < 0x00100000) {
|
|
|
+ if (((hx&0x7fffffff)|lx)==0)
|
|
|
+ return -two54/(x-x);
|
|
|
+ if (hx<0) return (x-x)/(x-x);
|
|
|
+ k -= 54; x *= two54;
|
|
|
+ GET_HIGH_WORD(hx,x);
|
|
|
+ }
|
|
|
+ if (hx >= 0x7ff00000) return x+x;
|
|
|
+ k += (hx>>20)-1023;
|
|
|
+ hx &= 0x000fffff;
|
|
|
+ i = (hx+0x95f64)&0x100000;
|
|
|
+ SET_HIGH_WORD(x,hx|(i^0x3ff00000));
|
|
|
+ k += (i>>20);
|
|
|
+ dk = (double) k;
|
|
|
+ f = x-1.0;
|
|
|
+ if((0x000fffff&(2+hx))<3) {
|
|
|
+ if(f==zero) return dk;
|
|
|
+ R = f*f*(0.5-0.33333333333333333*f);
|
|
|
+ return dk-(R-f)/ln2;
|
|
|
+ }
|
|
|
+ s = f/(2.0+f);
|
|
|
+ z = s*s;
|
|
|
+ i = hx-0x6147a;
|
|
|
+ w = z*z;
|
|
|
+ j = 0x6b851-hx;
|
|
|
+ t1= w*(Lg2+w*(Lg4+w*Lg6));
|
|
|
+ t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
|
|
+ i |= j;
|
|
|
+ R = t2+t1;
|
|
|
+ if(i>0) {
|
|
|
+ hfsq=0.5*f*f;
|
|
|
+ return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;
|
|
|
+ } else {
|
|
|
+ return dk-((s*(f-R))-f)/ln2;
|
|
|
+ }
|
|
|
+}
|