|
@@ -3632,6 +3632,263 @@ void res_close(void)
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
+#ifdef __UCLIBC_HAS_BSD_B64_NTOP_B64_PTON__
|
|
|
+#define Assert(Cond) if (!(Cond)) abort()
|
|
|
+
|
|
|
+static const char Base64[] =
|
|
|
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
|
+static const char Pad64 = '=';
|
|
|
+
|
|
|
+
|
|
|
+ The following encoding technique is taken from RFC 1521 by Borenstein
|
|
|
+ and Freed. It is reproduced here in a slightly edited form for
|
|
|
+ convenience.
|
|
|
+
|
|
|
+ A 65-character subset of US-ASCII is used, enabling 6 bits to be
|
|
|
+ represented per printable character. (The extra 65th character, "=",
|
|
|
+ is used to signify a special processing function.)
|
|
|
+
|
|
|
+ The encoding process represents 24-bit groups of input bits as output
|
|
|
+ strings of 4 encoded characters. Proceeding from left to right, a
|
|
|
+ 24-bit input group is formed by concatenating 3 8-bit input groups.
|
|
|
+ These 24 bits are then treated as 4 concatenated 6-bit groups, each
|
|
|
+ of which is translated into a single digit in the base64 alphabet.
|
|
|
+
|
|
|
+ Each 6-bit group is used as an index into an array of 64 printable
|
|
|
+ characters. The character referenced by the index is placed in the
|
|
|
+ output string.
|
|
|
+
|
|
|
+ Table 1: The Base64 Alphabet
|
|
|
+
|
|
|
+ Value Encoding Value Encoding Value Encoding Value Encoding
|
|
|
+ 0 A 17 R 34 i 51 z
|
|
|
+ 1 B 18 S 35 j 52 0
|
|
|
+ 2 C 19 T 36 k 53 1
|
|
|
+ 3 D 20 U 37 l 54 2
|
|
|
+ 4 E 21 V 38 m 55 3
|
|
|
+ 5 F 22 W 39 n 56 4
|
|
|
+ 6 G 23 X 40 o 57 5
|
|
|
+ 7 H 24 Y 41 p 58 6
|
|
|
+ 8 I 25 Z 42 q 59 7
|
|
|
+ 9 J 26 a 43 r 60 8
|
|
|
+ 10 K 27 b 44 s 61 9
|
|
|
+ 11 L 28 c 45 t 62 +
|
|
|
+ 12 M 29 d 46 u 63 /
|
|
|
+ 13 N 30 e 47 v
|
|
|
+ 14 O 31 f 48 w (pad) =
|
|
|
+ 15 P 32 g 49 x
|
|
|
+ 16 Q 33 h 50 y
|
|
|
+
|
|
|
+ Special processing is performed if fewer than 24 bits are available
|
|
|
+ at the end of the data being encoded. A full encoding quantum is
|
|
|
+ always completed at the end of a quantity. When fewer than 24 input
|
|
|
+ bits are available in an input group, zero bits are added (on the
|
|
|
+ right) to form an integral number of 6-bit groups. Padding at the
|
|
|
+ end of the data is performed using the '=' character.
|
|
|
+
|
|
|
+ Since all base64 input is an integral number of octets, only the
|
|
|
+ -------------------------------------------------
|
|
|
+ following cases can arise:
|
|
|
+
|
|
|
+ (1) the final quantum of encoding input is an integral
|
|
|
+ multiple of 24 bits; here, the final unit of encoded
|
|
|
+ output will be an integral multiple of 4 characters
|
|
|
+ with no "=" padding,
|
|
|
+ (2) the final quantum of encoding input is exactly 8 bits;
|
|
|
+ here, the final unit of encoded output will be two
|
|
|
+ characters followed by two "=" padding characters, or
|
|
|
+ (3) the final quantum of encoding input is exactly 16 bits;
|
|
|
+ here, the final unit of encoded output will be three
|
|
|
+ characters followed by one "=" padding character.
|
|
|
+ */
|
|
|
+
|
|
|
+int
|
|
|
+b64_ntop(u_char const *src, size_t srclength, char *target, size_t targsize) {
|
|
|
+ size_t datalength = 0;
|
|
|
+ u_char input[3];
|
|
|
+ u_char output[4];
|
|
|
+ size_t i;
|
|
|
+
|
|
|
+ while (2 < srclength) {
|
|
|
+ input[0] = *src++;
|
|
|
+ input[1] = *src++;
|
|
|
+ input[2] = *src++;
|
|
|
+ srclength -= 3;
|
|
|
+
|
|
|
+ output[0] = input[0] >> 2;
|
|
|
+ output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
|
|
|
+ output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
|
|
|
+ output[3] = input[2] & 0x3f;
|
|
|
+ Assert(output[0] < 64);
|
|
|
+ Assert(output[1] < 64);
|
|
|
+ Assert(output[2] < 64);
|
|
|
+ Assert(output[3] < 64);
|
|
|
+
|
|
|
+ if (datalength + 4 > targsize)
|
|
|
+ return (-1);
|
|
|
+ target[datalength++] = Base64[output[0]];
|
|
|
+ target[datalength++] = Base64[output[1]];
|
|
|
+ target[datalength++] = Base64[output[2]];
|
|
|
+ target[datalength++] = Base64[output[3]];
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (0 != srclength) {
|
|
|
+
|
|
|
+ input[0] = input[1] = input[2] = '\0';
|
|
|
+ for (i = 0; i < srclength; i++)
|
|
|
+ input[i] = *src++;
|
|
|
+
|
|
|
+ output[0] = input[0] >> 2;
|
|
|
+ output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
|
|
|
+ output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
|
|
|
+ Assert(output[0] < 64);
|
|
|
+ Assert(output[1] < 64);
|
|
|
+ Assert(output[2] < 64);
|
|
|
+
|
|
|
+ if (datalength + 4 > targsize)
|
|
|
+ return (-1);
|
|
|
+ target[datalength++] = Base64[output[0]];
|
|
|
+ target[datalength++] = Base64[output[1]];
|
|
|
+ if (srclength == 1)
|
|
|
+ target[datalength++] = Pad64;
|
|
|
+ else
|
|
|
+ target[datalength++] = Base64[output[2]];
|
|
|
+ target[datalength++] = Pad64;
|
|
|
+ }
|
|
|
+ if (datalength >= targsize)
|
|
|
+ return (-1);
|
|
|
+ target[datalength] = '\0';
|
|
|
+ return (datalength);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ converts characters, four at a time, starting at (or after)
|
|
|
+ src from base - 64 numbers into three 8 bit bytes in the target area.
|
|
|
+ it returns the number of data bytes stored at the target, or -1 on error.
|
|
|
+ */
|
|
|
+
|
|
|
+int
|
|
|
+b64_pton (char const *src, u_char *target, size_t targsize)
|
|
|
+{
|
|
|
+ int tarindex, state, ch;
|
|
|
+ char *pos;
|
|
|
+
|
|
|
+ state = 0;
|
|
|
+ tarindex = 0;
|
|
|
+
|
|
|
+ while ((ch = *src++) != '\0') {
|
|
|
+ if (isspace(ch))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (ch == Pad64)
|
|
|
+ break;
|
|
|
+
|
|
|
+ pos = strchr(Base64, ch);
|
|
|
+ if (pos == 0)
|
|
|
+ return (-1);
|
|
|
+
|
|
|
+ switch (state) {
|
|
|
+ case 0:
|
|
|
+ if (target) {
|
|
|
+ if ((size_t)tarindex >= targsize)
|
|
|
+ return (-1);
|
|
|
+ target[tarindex] = (pos - Base64) << 2;
|
|
|
+ }
|
|
|
+ state = 1;
|
|
|
+ break;
|
|
|
+ case 1:
|
|
|
+ if (target) {
|
|
|
+ if ((size_t)tarindex + 1 >= targsize)
|
|
|
+ return (-1);
|
|
|
+ target[tarindex] |= (pos - Base64) >> 4;
|
|
|
+ target[tarindex+1] = ((pos - Base64) & 0x0f)
|
|
|
+ << 4 ;
|
|
|
+ }
|
|
|
+ tarindex++;
|
|
|
+ state = 2;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ if (target) {
|
|
|
+ if ((size_t)tarindex + 1 >= targsize)
|
|
|
+ return (-1);
|
|
|
+ target[tarindex] |= (pos - Base64) >> 2;
|
|
|
+ target[tarindex+1] = ((pos - Base64) & 0x03)
|
|
|
+ << 6;
|
|
|
+ }
|
|
|
+ tarindex++;
|
|
|
+ state = 3;
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ if (target) {
|
|
|
+ if ((size_t)tarindex >= targsize)
|
|
|
+ return (-1);
|
|
|
+ target[tarindex] |= (pos - Base64);
|
|
|
+ }
|
|
|
+ tarindex++;
|
|
|
+ state = 0;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ abort();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ * We are done decoding Base-64 chars. Let's see if we ended
|
|
|
+ * on a byte boundary, and/or with erroneous trailing characters.
|
|
|
+ */
|
|
|
+
|
|
|
+ if (ch == Pad64) {
|
|
|
+ ch = *src++;
|
|
|
+ switch (state) {
|
|
|
+ case 0:
|
|
|
+ case 1:
|
|
|
+ return (-1);
|
|
|
+
|
|
|
+ case 2:
|
|
|
+
|
|
|
+ for ((void)NULL; ch != '\0'; ch = *src++)
|
|
|
+ if (!isspace(ch))
|
|
|
+ break;
|
|
|
+
|
|
|
+ if (ch != Pad64)
|
|
|
+ return (-1);
|
|
|
+ ch = *src++;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ case 3:
|
|
|
+
|
|
|
+ * We know this char is an =. Is there anything but
|
|
|
+ * whitespace after it?
|
|
|
+ */
|
|
|
+ for ((void)NULL; ch != '\0'; ch = *src++)
|
|
|
+ if (!isspace(ch))
|
|
|
+ return (-1);
|
|
|
+
|
|
|
+
|
|
|
+ * Now make sure for cases 2 and 3 that the "extra"
|
|
|
+ * bits that slopped past the last full byte were
|
|
|
+ * zeros. If we don't check them, they become a
|
|
|
+ * subliminal channel.
|
|
|
+ */
|
|
|
+ if (target && target[tarindex] != 0)
|
|
|
+ return (-1);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+
|
|
|
+ * We ended by seeing the end of the string. Make sure we
|
|
|
+ * have no partial bytes lying around.
|
|
|
+ */
|
|
|
+ if (state != 0)
|
|
|
+ return (-1);
|
|
|
+ }
|
|
|
+
|
|
|
+ return (tarindex);
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
|
|
|
#undef _res
|
|
|
|