Browse Source

Rework the math library tests per the glibc math test code, with
many unsupported tests disabled for the moment.
-Erik

Eric Andersen 22 years ago
parent
commit
e4071b93db

+ 8 - 0
test/math/.cvsignore

@@ -0,0 +1,8 @@
+libm-test-ulps.h
+libm-test.c
+test-double
+test-idouble
+test-float
+test-ifloat
+test-ldouble
+test-ildouble

+ 48 - 65
test/math/Makefile

@@ -18,74 +18,57 @@
 
 
 
-# Unix makefile for ieetst, eparanoi.
-# Set LARGEMEM 1 in qcalc.h for 32-bit memory addresses.
-# Define computer type and/or endianness in mconf.h.
-#
-# Configure eparanoi.c for desired arithmetic test;
-# also define appropriate version of setprec.o, or use a stub that
-# does no FPU setup.  To test native arithmetic, eparanoi uses
-# the system libraries only; compile simply by `cc eparanoi.c -lm'.
-#
-
 TESTDIR=../
 include $(TESTDIR)/Rules.mak
-
-
-#CC = gcc
-#CFLAGS= -O
-INCS= mconf.h ehead.h
-OBJS = ieee.o econst.o eexp.o elog.o epow.o etanh.o etodec.o mtherr.o #setprec.o
-TARGETS=ieetst eparanoi
-
-all: $(TARGETS)
-
-ieetst: ieetst.o $(OBJS) drand.o $(INCS)
-	$(CC) -o ieetst ieetst.o $(OBJS) drand.o -lc -lm
-
-eparanoi: eparanoi.o $(OBJS) $(INCS)
-	$(CC) -o eparanoi  eparanoi.o $(OBJS) -lc -lm
-
-#setprec.o: setprec.387
-#	as -o setprec.o setprec.387
-
-#setprec.o: setprec.688
-#	as -o setprec.o setprec.688
-
-ieee.o: ieee.c $(INCS)
-	$(CC) $(CFLAGS) -c ieee.c
-
-econst.o: econst.c $(INCS)
-	$(CC) $(CFLAGS) -c econst.c
-
-elog.o: elog.c $(INCS)
-	$(CC) $(CFLAGS) -c elog.c
-
-eexp.o: eexp.c $(INCS)
-	$(CC) $(CFLAGS) -c eexp.c
-
-etanh.o: etanh.c $(INCS)
-	$(CC) $(CFLAGS) -c etanh.c
-
-epow.o: epow.c $(INCS)
-	$(CC) $(CFLAGS) -c epow.c
-
-mtherr.o: mtherr.c $(INCS)
-	$(CC) $(CFLAGS) -c mtherr.c
-
-ieetst.o: ieetst.c $(INCS)
-	$(CC) $(CFLAGS) -c ieetst.c
-
-drand.o: drand.c $(INCS)
-	$(CC) $(CFLAGS) -c drand.c
-
-etodec.o: etodec.c $(INCS)
-	$(CC) $(CFLAGS) -c etodec.c
-
-eparanoi.o: eparanoi.c $(INCS)
-	$(CC) $(CFLAGS) -c eparanoi.c
+CFLAGS+=-D_GNU_SOURCE -DNO_LONG_DOUBLE
+EXTRA_LIBS=-lm
+PERL=/usr/bin/perl
+
+TARGETS:=
+libm-tests:=
+libm-tests+= test-double test-idouble
+#libm-tests+= test-float test-ifloat
+#libm-tests+= test-ldouble test-ildouble
+libm-tests.o = $(addsuffix .o,$(libm-tests))
+
+libm-tests-generated = libm-test-ulps.h libm-test.c
+generated += $(libm-tests-generated) libm-test.stmp
+TARGETS += $(libm-tests) #$(libm-tests-generated)
+
+all: libm-test.c $(TARGETS)
+	
+test-double: test-double.o
+	$(CC) $(LDFLAGS) $@.o -o $@ $(EXTRA_LIBS)
+	-./$@
+test-idouble: test-idouble.o
+	$(CC) $(LDFLAGS) $@.o -o $@ $(EXTRA_LIBS)
+	-./$@
+test-float: test-float.o
+	$(CC) $(LDFLAGS) $@.o -o $@ $(EXTRA_LIBS)
+	-./$@
+test-ifloat: test-ifloat.o
+	$(CC) $(LDFLAGS) $@.o -o $@ $(EXTRA_LIBS)
+	-./$@
+test-ldouble: test-ldouble.o
+	$(CC) $(LDFLAGS) $@.o -o $@ $(EXTRA_LIBS)
+	-./$@
+test-ildouble: test-ildoubl.o
+	$(CC) $(LDFLAGS) $@.o -o $@ $(EXTRA_LIBS)
+	-./$@
+
+test-float.o: libm-test.c
+test-ifloat.o: libm-test.c 
+test-double.o: libm-test.c
+test-idouble.o: libm-test.c
+test-ldouble.o: libm-test.c
+test-ildoubl.o: libm-test.c
+
+ulps-file = $(firstword $(wildcard $(config-sysdirs:%=$(..)%/libm-test-ulps)))
+
+libm-test.c: $(ulps-file) libm-test.inc gen-libm-test.pl
+	$(PERL) ./gen-libm-test.pl -u $< ./libm-test.inc -o "." 2>&1 > /dev/null
 
 clean:
-	rm -f *.[oa] *~ core $(TARGETS)
+	rm -f *.[oa] *~ core $(TARGETS) $(generated)
 
 

+ 0 - 158
test/math/drand.c

@@ -1,158 +0,0 @@
-/*							drand.c
- *
- *	Pseudorandom number generator
- *
- *
- *
- * SYNOPSIS:
- *
- * double y, drand();
- *
- * drand( &y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Yields a random number 1.0 <= y < 2.0.
- *
- * The three-generator congruential algorithm by Brian
- * Wichmann and David Hill (BYTE magazine, March, 1987,
- * pp 127-8) is used. The period, given by them, is
- * 6953607871644.
- *
- * Versions invoked by the different arithmetic compile
- * time options DEC, IBMPC, and MIEEE, produce
- * approximately the same sequences, differing only in the
- * least significant bits of the numbers. The UNK option
- * implements the algorithm as recommended in the BYTE
- * article.  It may be used on all computers. However,
- * the low order bits of a double precision number may
- * not be adequately random, and may vary due to arithmetic
- * implementation details on different computers.
- *
- * The other compile options generate an additional random
- * integer that overwrites the low order bits of the double
- * precision number.  This reduces the period by a factor of
- * two but tends to overcome the problems mentioned.
- *
- */
-
-
-
-#include "mconf.h"
-
-
-/*  Three-generator random number algorithm
- * of Brian Wichmann and David Hill
- * BYTE magazine, March, 1987 pp 127-8
- *
- * The period, given by them, is (p-1)(q-1)(r-1)/4 = 6.95e12.
- */
-
-static int sx = 1;
-static int sy = 10000;
-static int sz = 3000;
-
-static union {
- double d;
- unsigned short s[4];
-} unkans;
-
-/* This function implements the three
- * congruential generators.
- */
- 
-int ranwh()
-{
-int r, s;
-
-/*  sx = sx * 171 mod 30269 */
-r = sx/177;
-s = sx - 177 * r;
-sx = 171 * s - 2 * r;
-if( sx < 0 )
-	sx += 30269;
-
-
-/* sy = sy * 172 mod 30307 */
-r = sy/176;
-s = sy - 176 * r;
-sy = 172 * s - 35 * r;
-if( sy < 0 )
-	sy += 30307;
-
-/* sz = 170 * sz mod 30323 */
-r = sz/178;
-s = sz - 178 * r;
-sz = 170 * s - 63 * r;
-if( sz < 0 )
-	sz += 30323;
-/* The results are in static sx, sy, sz. */
-return 0;
-}
-
-/*	drand.c
- *
- * Random double precision floating point number between 1 and 2.
- *
- * C callable:
- *	drand( &x );
- */
-
-int drand( a )
-double *a;
-{
-unsigned short r;
-#ifdef DEC
-unsigned short s, t;
-#endif
-
-/* This algorithm of Wichmann and Hill computes a floating point
- * result:
- */
-ranwh();
-unkans.d = sx/30269.0  +  sy/30307.0  +  sz/30323.0;
-r = unkans.d;
-unkans.d -= r;
-unkans.d += 1.0;
-
-/* if UNK option, do nothing further.
- * Otherwise, make a random 16 bit integer
- * to overwrite the least significant word
- * of unkans.
- */
-#ifdef UNK
-/* do nothing */
-#else
-ranwh();
-r = sx * sy + sz;
-#endif
-
-#ifdef DEC
-/* To make the numbers as similar as possible
- * in all arithmetics, the random integer has
- * to be inserted 3 bits higher up in a DEC number.
- * An alternative would be put it 3 bits lower down
- * in all the other number types.
- */
-s = unkans.s[2];
-t = s & 07;	/* save these bits to put in at the bottom */
-s &= 0177770;
-s |= (r >> 13) & 07;
-unkans.s[2] = s;
-t |= r << 3;
-unkans.s[3] = t;
-#endif
-
-#ifdef IBMPC
-unkans.s[0] = r;
-#endif
-
-#ifdef MIEEE
-unkans.s[3] = r;
-#endif
-
-*a = unkans.d;
-return 0;
-}

+ 0 - 96
test/math/econst.c

@@ -1,96 +0,0 @@
-/*							econst.c	*/
-/*  e type constants used by high precision check routines */
-
-#include "ehead.h"
-
-
-#if NE == 10
-/* 0.0 */
-unsigned short ezero[NE] =
- {0x0000, 0x0000, 0x0000, 0x0000,
-  0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,};
-
-/* 5.0E-1 */
-unsigned short ehalf[NE] =
- {0x0000, 0x0000, 0x0000, 0x0000,
-  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,};
-
-/* 1.0E0 */
-unsigned short eone[NE] =
- {0x0000, 0x0000, 0x0000, 0x0000,
-  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,};
-
-/* 2.0E0 */
-unsigned short etwo[NE] =
- {0x0000, 0x0000, 0x0000, 0x0000,
-  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,};
-
-/* 3.2E1 */
-unsigned short e32[NE] =
- {0x0000, 0x0000, 0x0000, 0x0000,
-  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,};
-
-/* 6.93147180559945309417232121458176568075500134360255E-1 */
-unsigned short elog2[NE] =
- {0x40f3, 0xf6af, 0x03f2, 0xb398,
-  0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
-
-/* 1.41421356237309504880168872420969807856967187537695E0 */
-unsigned short esqrt2[NE] =
- {0x1d6f, 0xbe9f, 0x754a, 0x89b3,
-  0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
-
-/* 3.14159265358979323846264338327950288419716939937511E0 */
-unsigned short epi[NE] =
- {0x2902, 0x1cd1, 0x80dc, 0x628b,
-  0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
-  
-/* 5.7721566490153286060651209008240243104215933593992E-1 */
-unsigned short eeul[NE] = {
-0xd1be,0xc7a4,0076660,0063743,0111704,0x3ffe,};
-
-#else
-
-/* 0.0 */
-unsigned short ezero[NE] = {
-0, 0000000,0000000,0000000,0000000,0000000,};
-/* 5.0E-1 */
-unsigned short ehalf[NE] = {
-0, 0000000,0000000,0000000,0100000,0x3ffe,};
-/* 1.0E0 */
-unsigned short eone[NE] = {
-0, 0000000,0000000,0000000,0100000,0x3fff,};
-/* 2.0E0 */
-unsigned short etwo[NE] = {
-0, 0000000,0000000,0000000,0100000,0040000,};
-/* 3.2E1 */
-unsigned short e32[NE] = {
-0, 0000000,0000000,0000000,0100000,0040004,};
-/* 6.93147180559945309417232121458176568075500134360255E-1 */
-unsigned short elog2[NE] = {
-0xc9e4,0x79ab,0150717,0013767,0130562,0x3ffe,};
-/* 1.41421356237309504880168872420969807856967187537695E0 */
-unsigned short esqrt2[NE] = {
-0x597e,0x6484,0174736,0171463,0132404,0x3fff,};
-/* 2/sqrt(PI) =
- * 1.12837916709551257389615890312154517168810125865800E0 */
-unsigned short eoneopi[NE] = {
-0x71d5,0x688d,0012333,0135202,0110156,0x3fff,};
-/* 3.14159265358979323846264338327950288419716939937511E0 */
-unsigned short epi[NE] = {
-0xc4c6,0xc234,0020550,0155242,0144417,0040000,};
-/* 5.7721566490153286060651209008240243104215933593992E-1 */
-unsigned short eeul[NE] = {
-0xd1be,0xc7a4,0076660,0063743,0111704,0x3ffe,};
-#endif
-extern unsigned short ezero[];
-extern unsigned short ehalf[];
-extern unsigned short eone[];
-extern unsigned short etwo[];
-extern unsigned short e32[];
-extern unsigned short elog2[];
-extern unsigned short esqrt2[];
-extern unsigned short eoneopi[];
-extern unsigned short epi[];
-extern unsigned short eeul[];
-

+ 0 - 77
test/math/eexp.c

@@ -1,77 +0,0 @@
-/*							xexp.c		*/
-/* exponential function check routine */
-/* by Stephen L. Moshier. */
-
-
-#include "ehead.h"
-
-/*
-extern int powinited;
-extern short maxposint[], maxnegint[];
-*/
-
-void eexp( x, y )
-unsigned short *x, *y;
-{
-unsigned short num[NE], den[NE], x2[NE];
-long i;
-unsigned short sign, expchk;
-
-/* range reduction theory: x = i + f, 0<=f<1;
- * e**x = e**i * e**f 
- * e**i = 2**(i/log 2).
- * Let i/log2 = i1 + f1, 0<=f1<1.
- * Then e**i = 2**i1 * 2**f1, so
- * e**x = 2**i1 * e**(log 2 * f1) * e**f.
- */
-/*
-if( powinited == 0 )
-	initpow();
-*/
-if( ecmp(x, ezero) == 0 )
-	{
-	emov( eone, y );
-	return;
-	}
-emov(x, x2);
-expchk = x2[NE-1];
-sign = expchk & 0x8000;
-x2[NE-1] &= 0x7fff;
-
-/* Test for excessively large argument */
-expchk &= 0x7fff;
-if( expchk > (EXONE + 15) )
-	{
-	eclear( y );
-	if( sign == 0 )
-		einfin( y );
-	return;
-	}
-
-eifrac( x2, &i, num );		/* x = i + f		*/
-
-if( i != 0 )
- {
- ltoe( &i, den );		/* floating point i	*/
- ediv( elog2, den, den );	/* i/log 2		*/
- eifrac( den, &i, den );	/* i/log 2  =  i1 + f1	*/
- emul( elog2, den, den );	/* log 2 * f1		*/
- eadd( den, num, x2 );		/* log 2 * f1  + f	*/
- }
-
-/*x2[NE-1] -= 1;*/
-eldexp( x2, -1L, x2 ); /* divide by 2 */
-etanh( x2, x2 );	/* tanh( x/2 )			*/
-eadd( x2, eone, num );	/* 1 + tanh			*/
-eneg( x2 );
-eadd( x2, eone, den );	/* 1 - tanh			*/
-ediv( den, num, y );	/* (1 + tanh)/(1 - tanh)	*/
-
-/*y[NE-1] += i;*/
-if( sign )
-	{
-	ediv( y, eone, y );
-	i = -i;
-	}
-eldexp( y, i, y );	/* multiply by 2**i */
-}

+ 0 - 42
test/math/ehead.h

@@ -1,42 +0,0 @@
-
-/* Include file for extended precision arithmetic programs.
- */
-
-/* Number of 16 bit words in external x type format */
-#define NE 6
-
-/* Number of 16 bit words in internal format */
-#define NI (NE+3)
-
-/* Array offset to exponent */
-#define E 1
-
-/* Array offset to high guard word */
-#define M 2
-
-/* Number of bits of precision */
-#define NBITS ((NI-4)*16)
-
-/* Maximum number of decimal digits in ASCII conversion
- * = NBITS*log10(2)
- */
-#define NDEC (NBITS*8/27)
-
-/* The exponent of 1.0 */
-#define EXONE (0x3fff)
-
-void eadd(), esub(), emul(), ediv();
-int ecmp(), enormlz(), eshift();
-void eshup1(), eshup8(), eshup6(), eshdn1(), eshdn8(), eshdn6();
-void eabs(), eneg(), emov(), eclear(), einfin(), efloor();
-void eldexp(), efrexp(), eifrac(), ltoe();
-void esqrt(), elog(), eexp(), etanh(), epow();
-void asctoe(), asctoe24(), asctoe53(), asctoe64();
-void etoasc(), e24toasc(), e53toasc(), e64toasc();
-void etoe64(), etoe53(), etoe24(), e64toe(), e53toe(), e24toe();
-void mtherr();
-extern unsigned short ezero[], ehalf[], eone[], etwo[];
-extern unsigned short elog2[], esqrt2[];
-
-
-/* by Stephen L. Moshier. */

+ 0 - 92
test/math/elog.c

@@ -1,92 +0,0 @@
-/*						xlog.c	*/
-/* natural logarithm */
-/* by Stephen L. Moshier. */
-
-#include "mconf.h"
-#include "ehead.h"
-
-
-
-void elog( x, y )
-unsigned short *x, *y;
-{
-unsigned short xx[NE], z[NE], a[NE], b[NE], t[NE], qj[NE];
-long ex;
-int fex;
-
-
-if( x[NE-1] & (unsigned short )0x8000 )
-	{
-	eclear(y);
-	mtherr( "elog", DOMAIN );
-	return;
-	}
-if( ecmp( x, ezero ) == 0 )
-	{
-	einfin( y );
-	eneg(y);
-	mtherr( "elog", SING );
-	return;
-	}
-if( ecmp( x, eone ) == 0 )
-	{
-	eclear( y );
-	return;
-	}
-
-/* range reduction: log x = log( 2**ex * m ) = ex * log2 + log m */
-efrexp( x, &fex, xx );
-/*
-emov(x, xx );
-ex = xx[NX-1] & 0x7fff;
-ex -= 0x3ffe;
-xx[NX-1] = 0x3ffe;
-*/
-
-/* Adjust range to 1/sqrt(2), sqrt(2) */
-esqrt2[NE-1] -= 1;
-if( ecmp( xx, esqrt2 ) < 0 )
-	{
-	fex -= 1;
-	emul( xx, etwo, xx );
-	}
-esqrt2[NE-1] += 1;
-
-esub( eone, xx, a );
-if( a[NE-1] == 0 )
-	{
-	eclear( y );
-	goto logdon;
-	}
-eadd( eone, xx, b );
-ediv( b, a, y );	/* store (x-1)/(x+1) in y */
-
-emul( y, y, z );
-
-emov( eone, a );
-emov( eone, b );
-emov( eone, qj );
-do
-	{
-	eadd( etwo, qj, qj );	/* 2 * i + 1		*/
-	emul( z, a, a );
-	ediv( qj, a, t );
-	eadd( t, b, b );
-	}
-while( ((b[NE-1] & 0x7fff) - (t[NE-1] & 0x7fff)) < NBITS );
-
-
-emul( b, y, y );
-emul( y, etwo, y );
-
-logdon:
-
-/* now add log of 2**ex */
-if( fex != 0 )
-	{
-	ex = fex;
-	ltoe( &ex, b );
-	emul( elog2, b, b );
-	eadd( b, y, y );
-	}
-}

+ 0 - 3550
test/math/eparanoi.c

@@ -1,3550 +0,0 @@
-/* paranoia.c arithmetic tester
- *
- * This is an implementation of the PARANOIA program.  It substitutes
- * subroutine calls for ALL floating point arithmetic operations.
- * This permits you to substitute your own experimental versions of
- * arithmetic routines.  It also defeats compiler optimizations,
- * so for native arithmetic you can be pretty sure you are testing
- * the arithmetic and not the compiler.
- *
- * This version of PARANOIA omits the display of division by zero.
- * It also omits the test for extra precise subexpressions, since
- * they cannot occur in this context.  Otherwise it includes all the
- * tests of the 27 Jan 86 distribution, plus a few additional tests.
- * Commentary has been reduced to a minimum in order to make the program
- * smaller.
- *
- * The original PARANOIA program, written by W. Kahan, C version
- * by Thos Sumner and David Gay, can be downloaded free from the
- * Internet NETLIB.  An MSDOS disk can be obtained for $15 from:
- *   Richard Karpinski
- *   6521 Raymond Street
- *   Oakland, CA 94609
- *
- * Steve Moshier, 28 Oct 88
- * last rev: 23 May 92
- */
-
-#define DEBUG 0
-
-/* To use the native arithmetic of the computer, define NATIVE
- * to be 1.  To use your own supplied arithmetic routines, NATIVE is 0.
- */
-#define NATIVE 0
-
-/* gcc real.c interface */
-#define L128DOUBLE 0
-
-#include <stdio.h>
-
-
-
-
-/* Data structure of floating point number.  If NATIVE was
- * selected above, you can define LDOUBLE 1 to test 80-bit long double
- * precision or define it 0 to test 64-bit double precision.
-*/
-#define LDOUBLE 0
-#if NATIVE
-
-#define NE 1
-#if LDOUBLE
-#define FSIZE long double
-#define FLOAT(x) FSIZE x[NE]
-static FSIZE eone[NE] = {1.0L};	/* The constant 1.0 */
-#define ZSQRT sqrtl
-#define ZLOG logl
-#define ZFLOOR floorl
-#define ZPOW powl
-long double sqrtl(), logl(), floorl(), powl();
-#define FSETUP einit
-#else /* not LDOUBLE */
-#define FSIZE double
-#define FLOAT(x) FSIZE x[NE]
-static FSIZE eone[NE] = {1.0};	/* The constant 1.0 */
-#define ZSQRT sqrt
-#define ZLOG log
-#define ZFLOOR floor
-#define ZPOW pow
-double sqrt(), log(), floor(), pow();
-/* Coprocessor initialization,
- * defeat underflow trap or what have you.
- * This is required mainly on i386 and 68K processors.
- */
-#define FSETUP dprec
-#endif /* double, not LDOUBLE */
-
-#else /* not NATIVE */
-
-/* Setup for extended double type.
- * Put NE = 10 for real.c operating with TFmode support (16-byte reals)
- * Put NE = 6 for real.c operating with XFmode support (10- or 12-byte reals)
- * The value of NE must agree with that in ehead.h, if ieee.c is used.
- */
-#define NE 6
-#define FSIZE unsigned short
-#define FLOAT(x) unsigned short x[NE]
-extern unsigned short eone[];
-#define FSETUP einit
-
-/* default for FSETUP */
-/*
-einit()
-{}
-*/
-
-error(s)
-char *s;
-{
-printf( "error: %s\n", s );
-}
-
-#endif	/* not NATIVE */
-
-
-
-#if L128DOUBLE
-/* real.c interface */
-
-#undef FSETUP
-#define FSETUP efsetup
-
-FLOAT(enone);
-
-#define ONE enone
-
-/* Use emov to convert from widest type to widest type, ... */
-/*
-#define ENTOE emov
-#define ETOEN emov
-*/
-
-/*                 ... else choose e24toe, e53toe, etc. */
-#define ENTOE e64toe
-#define ETOEN etoe64
-#define NNBITS 64
-
-#define NIBITS ((NE-1)*16)
-extern int rndprc;
-
-efsetup()
-{
-rndprc = NNBITS;
-ETOEN(eone, enone);
-}
-
-add(a,b,c)
-FLOAT(a);
-FLOAT(b);
-FLOAT(c);
-{
-unsigned short aa[10], bb[10], cc[10];
-
-ENTOE(a,aa);
-ENTOE(b,bb);
-eadd(aa,bb,cc);
-ETOEN(cc,c);
-}
-
-sub(a,b,c)
-FLOAT(a);
-FLOAT(b);
-FLOAT(c);
-{
-unsigned short aa[10], bb[10], cc[10];
-
-ENTOE(a,aa);
-ENTOE(b,bb);
-esub(aa,bb,cc);
-ETOEN(cc,c);
-}
-
-mul(a,b,c)
-FLOAT(a);
-FLOAT(b);
-FLOAT(c);
-{
-unsigned short aa[10], bb[10], cc[10];
-
-ENTOE(a,aa);
-ENTOE(b,bb);
-emul(aa,bb,cc);
-ETOEN(cc,c);
-}
-
-div(a,b,c)
-FLOAT(a);
-FLOAT(b);
-FLOAT(c);
-{
-unsigned short aa[10], bb[10], cc[10];
-
-ENTOE(a,aa);
-ENTOE(b,bb);
-ediv(aa,bb,cc);
-ETOEN(cc,c);
-}
-
-int cmp(a,b)
-FLOAT(a);
-FLOAT(b);
-{
-unsigned short aa[10], bb[10];
-int c;
-int ecmp();
-
-ENTOE(a,aa);
-ENTOE(b,bb);
-c = ecmp(aa,bb);
-return(c);
-}
-
-mov(a,b)
-FLOAT(a);
-FLOAT(b);
-{
-int i;
-
-for( i=0; i<NE; i++ )
-	b[i] = a[i];
-}
-
-
-neg(a)
-FLOAT(a);
-{
-unsigned short aa[10];
-
-ENTOE(a,aa);
-eneg(aa);
-ETOEN(aa,a);
-}
-
-clear(a)
-FLOAT(a);
-{
-int i;
-
-for( i=0; i<NE; i++ )
-	a[i] = 0;
-}
-
-FABS(a)
-FLOAT(a);
-{
-unsigned short aa[10];
-
-ENTOE(a,aa);
-eabs(aa);
-ETOEN(aa,a);
-}
-
-FLOOR(a,b)
-FLOAT(a);
-FLOAT(b);
-{
-unsigned short aa[10], bb[10];
-
-ENTOE(a,aa);
-efloor(aa,bb);
-ETOEN(bb,b);
-}
-
-LOG(a,b)
-FLOAT(a);
-FLOAT(b);
-{
-unsigned short aa[10], bb[10];
-int rndsav;
-
-ENTOE(a,aa);
-rndsav = rndprc;
-rndprc = NIBITS;
-elog(aa,bb);
-rndprc = rndsav;
-ETOEN(bb,b);
-}
-
-POW(a,b,c)
-FLOAT(a);
-FLOAT(b);
-FLOAT(c);
-{
-unsigned short aa[10], bb[10], cc[10];
-int rndsav;
-
-ENTOE(a,aa);
-ENTOE(b,bb);
-rndsav = rndprc;
-rndprc = NIBITS;
-epow(aa,bb,cc);
-rndprc = rndsav;
-ETOEN(cc,c);
-}
-
-SQRT(a,b)
-FLOAT(a);
-FLOAT(b);
-{
-unsigned short aa[10], bb[10];
-
-ENTOE(a,aa);
-esqrt(aa,bb);
-ETOEN(bb,b);
-}
-
-FTOL(x,ip,f)
-FLOAT(x);
-long *ip;
-FLOAT(f);
-{
-unsigned short xx[10], ff[10];
-
-ENTOE(x,xx);
-eifrac(xx,ip,ff);
-ETOEN(ff,f);
-}
-
-LTOF(ip,x)
-long *ip;
-FLOAT(x);
-{
-unsigned short xx[10];
-ltoe(ip,xx);
-ETOEN(xx,x);
-}
-
-TOASC(a,b,c)
-FLOAT(a);
-int b;
-char *c;
-{
-unsigned short xx[10];
-
-ENTOE(a,xx);
-etoasc(xx,b,c);
-}
-
-#else /* not L128DOUBLE */
-
-#define ONE eone
-
-/* Note all arguments of operation subroutines are pointers. */
-/* c = b + a */
-#define add(a,b,c) eadd(a,b,c)
-/* c = b - a */
-#define sub(a,b,c) esub(a,b,c)
-/* c = b * a */
-#define mul(a,b,c) emul(a,b,c)
-/* c = b / a */
-#define div(a,b,c) ediv(a,b,c)
-/* 1 if a>b, 0 if a==b, -1 if a<b */
-#define cmp(a,b) ecmp(a,b)
-/* b = a */
-#define mov(a,b) emov(a,b)
-/* a = -a */
-#define neg(a) eneg(a)
-/* a = 0 */
-#define clear(a) eclear(a)
-
-#define FABS(x) eabs(x)
-#define FLOOR(x,y) efloor(x,y)
-#define LOG(x,y) elog(x,y)
-#define POW(x,y,z) epow(x,y,z)
-#define SQRT(x,y) esqrt(x,y)
-
-/* x = &FLOAT input, i = &long integer part, f = &FLOAT fractional part */
-#define FTOL(x,i,f) eifrac(x,i,f)
-
-/* i = &long integer input, x = &FLOAT output */
-#define LTOF(i,x) ltoe(i,x)
-
-/* Convert FLOAT a to decimal ASCII string with b digits */
-#define TOASC(a,b,c) etoasc(a,b,c)
-#endif /* not L128DOUBLE */
-
-
-
-/* The following subroutines are implementations of the above
- * named functions, using the native or default arithmetic.
- */
-#if NATIVE
-eadd(a,b,c)
-FSIZE *a, *b, *c;
-{
-*c = *b + *a;
-}
-
-esub(a,b,c)
-FSIZE *a, *b, *c;
-{
-*c = *b - *a;
-}
-
-emul(a,b,c)
-FSIZE *a, *b, *c;
-{
-*c = (*b) * (*a);
-}
-
-ediv(a,b,c)
-FSIZE *a, *b, *c;
-{
-*c = (*b) / (*a);
-}
-
-
-/* Important note: comparison can be done by subracting
- * or by a compare instruction that may or may not be
- * equivalent to subtracting.
- */
-ecmp(a,b)
-FSIZE *a, *b;
-{
-if( (*a) > (*b) )
-	return( 1 );
-if( (*a) < (*b) )
-	return( -1 );
-if( (*a) != (*b) )
-	goto cmpf;
-if( (*a) == (*b) )
-	return( 0 );
-cmpf:
-printf( "Compare fails\n" );
-return(0);
-}
-
-
-emov( a, b )
-FSIZE *a, *b;
-{
-*b = *a;
-}
-
-eneg( a )
-FSIZE *a;
-{
-*a = -(*a);
-}
-
-eclear(a)
-FSIZE *a;
-{
-*a = 0.0;
-}
-
-eabs(x)
-FSIZE *x;
-{
-if( (*x) < 0.0 )
-	*x = -(*x);
-}
-
-efloor(x,y)
-FSIZE *x, *y;
-{
-
-*y = (FSIZE )ZFLOOR( *x );
-}
-
-elog(x,y)
-FSIZE *x, *y;
-{
-
-*y = (FSIZE )ZLOG( *x );
-}
-
-epow(x,y,z)
-FSIZE *x, *y, *z;
-{
-
-*z = (FSIZE )ZPOW( *x, *y );
-}
-
-esqrt(x,y)
-FSIZE *x, *y;
-{
-
-*y = (FSIZE )ZSQRT( *x );
-}
-
-
-eifrac(x,i,f)
-FSIZE *x;
-long *i;
-FSIZE *f;
-{
-FSIZE y;
-
-y = (FSIZE )ZFLOOR( *x );
-if( y < 0.0 )
-	{
-	*f = y - *x;
-	*i = -y;
-	}
-else
-	{
-	*f = *x - y;
-	*i = y;
-	}
-}
-
-
-ltoe(i,x)
-long *i;
-FSIZE *x;
-{
-*x = *i;
-}
-
-
-etoasc(a,str,n)
-FSIZE *a;
-char *str;
-int n;
-{
-double x;
-
-x = (double )(*a);
-sprintf( str, " %.17e ", x );
-}
-
-/* default for FSETUP */
-einit()
-{}
-
-#endif	/* NATIVE */
-
-
-
-
-FLOAT(Radix);
-FLOAT(BInvrse);
-FLOAT(RadixD2);
-FLOAT(BMinusU2);
-/*Small floating point constants.*/
-FLOAT(Zero);
-FLOAT(Half);
-FLOAT(One);
-FLOAT(Two);
-FLOAT(Three);
-FLOAT(Four);
-FLOAT(Five);
-FLOAT(Six);
-FLOAT(Eight);
-FLOAT(Nine);
-FLOAT(Ten);
-FLOAT(TwentySeven);
-FLOAT(ThirtyTwo);
-FLOAT(TwoForty);
-FLOAT(MinusOne );
-FLOAT(OneAndHalf);
-
-/*Integer constants*/
-int NoTrials = 20; /*Number of tests for commutativity. */
-#define False 0
-#define True 1
-
-/* Definitions for declared types 
-	Guard == (Yes, No);
-	Rounding == (Chopped, Rounded, Other);
-	Message == packed array [1..40] of char;
-	Class == (Flaw, Defect, Serious, Failure);
-	  */
-#define Yes 1
-#define No  0
-#define Chopped 2
-#define Rounded 1
-#define Other   0
-#define Flaw    3
-#define Defect  2
-#define Serious 1
-#define Failure 0
-
-typedef int Guard, Rounding, Class;
-typedef char Message;
-
-/* Declarations of Variables */
-FLOAT(AInvrse);
-FLOAT(A1);
-FLOAT(C);
-FLOAT(CInvrse);
-FLOAT(D);
-FLOAT(FourD);
-FLOAT(E0);
-FLOAT(E1);
-FLOAT(Exp2);
-FLOAT(E3);
-FLOAT(MinSqEr);
-FLOAT(SqEr);
-FLOAT(MaxSqEr);
-FLOAT(E9);
-FLOAT(Third);
-FLOAT(F6);
-FLOAT(F9);
-FLOAT(H);
-FLOAT(HInvrse);
-FLOAT(StickyBit);
-FLOAT(J);
-FLOAT(MyZero);
-FLOAT(Precision);
-FLOAT(Q);
-FLOAT(Q9);
-FLOAT(R);
-FLOAT(Random9);
-FLOAT(T);
-FLOAT(Underflow);
-FLOAT(S);
-FLOAT(OneUlp);
-FLOAT(UfThold);
-FLOAT(U1);
-FLOAT(U2);
-FLOAT(V);
-FLOAT(V0);
-FLOAT(V9);
-FLOAT(W);
-FLOAT(X);
-FLOAT(X1);
-FLOAT(X2);
-FLOAT(X8);
-FLOAT(Random1);
-FLOAT(Y);
-FLOAT(YY1);
-FLOAT(Y2);
-FLOAT(Random2);
-FLOAT(Z);
-FLOAT(PseudoZero);
-FLOAT(Z1);
-FLOAT(Z2);
-FLOAT(Z9);
-static FLOAT(t);
-FLOAT(t2);
-FLOAT(Sqarg);
-int ErrCnt[4];
-int fpecount;
-int Milestone;
-int PageNo;
-int I, M, N, N1, stkflg;
-Guard GMult, GDiv, GAddSub;
-Rounding RMult, RDiv, RAddSub, RSqrt;
-int Break, Done, NotMonot, Monot, Anomaly, IEEE;
-int SqRWrng, UfNGrad;
-int k, k2;
-int Indx;
-char ch[8];
-
-long lngint, lng2; /* intermediate for conversion between int and FLOAT */
-
-/* Computed constants. */
-/*U1  gap below 1.0, i.e, 1.0-U1 is next number below 1.0 */
-/*U2  gap above 1.0, i.e, 1.0+U2 is next number above 1.0 */
-
-
-show( x )
-short x[];
-{
-int i;
-char s[80];
-
-/* Number of 16-bit groups to display */
-#if NATIVE
-#if LDOUBLE
-#define NPRT (sizeof( long double )/2)
-#else
-#define NPRT (sizeof( double )/2)
-#endif
-#else
-#define NPRT NE
-#endif
-
-TOASC( x, s, 70 );
-printf( "%s\n", s );
-for( i=0; i<NPRT; i++ )
-	printf( "%04x ", x[i] & 0xffff );
-printf( "\n" );
-}
-
-/* define NOSIGNAL */
-#ifndef NOSIGNAL
-#include <signal.h>
-#endif
-#include <setjmp.h>
-jmp_buf ovfl_buf;
-/*typedef int (*Sig_type)();*/
-typedef void (*Sig_type)();
-Sig_type sigsave;
-
-/* Floating point exception receiver */
-void sigfpe()
-{
-fpecount++;
-printf( "\n* * * FLOATING-POINT ERROR * * *\n" );
-/* reinitialize the floating point unit */
-FSETUP();
-fflush(stdout);
-if( sigsave )
-	{
-#ifndef NOSIGNAL
-	signal( SIGFPE, sigsave );
-#endif
-	sigsave = 0;
-	longjmp( ovfl_buf, 1 );
-	}
-abort();
-}
-
-
-main()
-{
-
-/* Do coprocessor or other initializations */
-FSETUP();
-
-printf(
- "This version of paranoia omits test for extra precise subexpressions\n" );
-printf( "and includes a few additional tests.\n" );
-
-clear(Zero);
-printf( "0 = " );
-show( Zero );
-mov( ONE, One);
-printf( "1 = " );
-show( One );
-add( One, One, Two );
-printf( "1+1 = " );
-show( Two );
-add( Two, One, Three );
-add( Three, One, Four );
-add( Four, One, Five );
-add( Five, One, Six );
-add( Four, Four, Eight );
-mul( Three, Three, Nine );
-add( Nine, One, Ten );
-mul( Nine, Three, TwentySeven );
-mul( Four, Eight, ThirtyTwo );
-mul( Four, Five, t );
-mul( t, Three, t );
-mul( t, Four, TwoForty );
-mov( One, MinusOne );
-neg( MinusOne );
-div( Two, One, Half );
-add( One, Half, OneAndHalf );
-ErrCnt[Failure] = 0;
-ErrCnt[Serious] = 0;
-ErrCnt[Defect] = 0;
-ErrCnt[Flaw] = 0;
-PageNo = 1;
-#ifndef NOSIGNAL
-signal( SIGFPE, sigfpe );
-#endif
-printf("Program is now RUNNING tests on small integers:\n");
-
-add( Zero, Zero, t );
-if( cmp( t, Zero ) != 0)
-	{
-	printf( "0+0 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-sub( One, One, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "1-1 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-if( cmp( One, Zero ) <= 0 )
-	{
-	printf( "1 <= 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-add( One, One, t );
-if( cmp( t, Two ) != 0 )
-	{
-	printf( "1+1 != 2\n" );
-	ErrCnt[Failure] += 1;
-	}
-mov( Zero, Z );
-neg( Z );
-FLOOR( Z, t );
-if( cmp(t,Zero) != 0 )
-	{
-	ErrCnt[Serious] += 1;
-	printf( "FLOOR(-0) should equal 0, is = " );
-	show( t );
-	}
-if( cmp(Z, Zero) != 0)
-	{
-	ErrCnt[Failure] += 1;
-	printf("Comparison alleges that -0.0 is Non-zero!\n");
-	}
-else
-	{
-	div( TwoForty, One, U1 ); /* U1 = 0.001 */
-	mov( One, Radix );
-	TstPtUf();
-	}
-add( Two, One, t );
-if( cmp( t, Three ) != 0 )
-	{
-	printf( "2+1 != 3\n" );
-	ErrCnt[Failure] += 1;
-	}
-add( Three, One, t );
-if( cmp( t, Four ) != 0 )
-	{
-	printf( "3+1 != 4\n" );
-	ErrCnt[Failure] += 1;
-	}
-mov( Two, t );
-neg( t );
-mul( Two, t, t );
-add( Four, t, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "4+2*(-2) != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-sub( Three, Four, t );
-sub( One, t, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "4-3-1 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-	sub( One, Zero, t );
-if( cmp( t, MinusOne ) != 0 )
-	{
-	printf( "-1 != 0-1\n" );
-	ErrCnt[Failure] += 1;
-	}
-add( One, MinusOne, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "1+(-1) != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-mov( One, t );
-FABS( t );
-add( MinusOne, t, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "-1+abs(1) != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-mul( MinusOne, MinusOne, t );
-add( MinusOne, t, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "-1+(-1)*(-1) != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-add( Half, MinusOne, t );
-add( Half, t, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "1/2 + (-1) + 1/2 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-Milestone = 10;
-mul( Three, Three, t );
-if( cmp( t, Nine ) != 0 )
-	{
-	printf( "3*3 != 9\n" );
-	ErrCnt[Failure] += 1;
-	}
-mul( Nine, Three, t );
-if( cmp( t, TwentySeven ) != 0 )
-	{
-	printf( "3*9 != 27\n" );
-	ErrCnt[Failure] += 1;
-	}
-add( Four, Four, t );
-if( cmp( t, Eight ) != 0 )
-	{
-	printf( "4+4 != 8\n" );
-	ErrCnt[Failure] += 1;
-	}
-mul( Eight, Four, t );
-if( cmp( t, ThirtyTwo ) != 0 )
-	{
-	printf( "8*4 != 32\n" );
-	ErrCnt[Failure] += 1;
-	}
-sub( TwentySeven, ThirtyTwo, t );
-sub( Four, t, t );
-sub( One, t, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "32-27-4-1 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-add( Four, One, t );
-if( cmp( t, Five ) != 0 )
-	{
-	printf( "4+1 != 5\n" );
-	ErrCnt[Failure] += 1;
-	}
-mul( Four, Five, t );
-mul( Three, t, t );
-mul( Four, t, t );
-if( cmp( t, TwoForty ) != 0 )
-	{
-	printf( "4*5*3*4 != 240\n" );
-	ErrCnt[Failure] += 1;
-	}
-div( Three, TwoForty, t );
-mul( Four, Four, t2 );
-mul( Five, t2, t2 );
-sub( t2, t2, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "240/3 - 4*4*5 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-div( Four, TwoForty, t );
-mul( Five, Three, t2 );
-mul( Four, t2, t2 );
-sub( t2, t, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "240/4 - 5*3*4 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-div( Five, TwoForty, t );
-mul( Four, Three, t2 );
-mul( Four, t2, t2 );
-sub( t2, t, t );
-if( cmp( t, Zero ) != 0 )
-	{
-	printf( "240/5 - 4*3*4 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-if(ErrCnt[Failure] == 0)
-	{
-printf("-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.\n\n");
-	}
-printf("Searching for Radix and Precision.\n");
-mov( One, W );
-do
-	{
-	add( W, W, W );
-	add( W, One, Y );
-	sub( W, Y, Z );
-	sub( One, Z, Y );
-	mov( Y, t );
-	FABS(t);
-	add( MinusOne, t, t );
-	k = cmp( t, Zero );
-	}
-while( k < 0 );
-/*.. now W is just big enough that |((W+1)-W)-1| >= 1 ...*/
-mov( Zero, Precision );
-mov( One, Y );
-do
-	{
-	add( W, Y, Radix );
-	add( Y, Y, Y );
-	sub( W, Radix, Radix );
-	k = cmp( Radix, Zero );
-	}
-while( k == 0);
-
-if( cmp(Radix, Two) < 0 )
-	mov( One, Radix );
-printf("Radix = " );
-show( Radix );
-if( cmp(Radix, One) != 0)
-	{
-	mov( One, W );
-	do
-		{
-		add( One, Precision, Precision );
-		mul( W, Radix, W );
-		add( W, One, Y );
-		sub( W, Y, t );
-		k = cmp( t, One );
-		}
-	while( k == 0 );
-	}
-/* now W == Radix^Precision is barely too big to satisfy (W+1)-W == 1 */
-div( W, One, U1 );
-mul( Radix, U1, U2 );
-printf( "Closest relative separation found is U 1 = " );
-show( U1 );
-printf( "Recalculating radix and precision." );
-	
-/*save old values*/
-mov( Radix, E0 );
-mov( U1, E1 );
-mov( U2, E9 );
-mov( Precision, E3 );
-	
-div( Three, Four, X );
-sub( One, X, Third );
-sub( Third, Half, F6 );
-add( F6, F6, X );
-sub( Third, X, X );
-FABS( X );
-if( cmp(X, U2) < 0 )
-	mov( U2, X );
-	
-/*... now X = (unknown no.) ulps of 1+...*/
-do
-	{
-	mov( X, U2 );
-/* Y = Half * U2 + ThirtyTwo * U2 * U2; */
-	mul( ThirtyTwo, U2, t );
-	mul( t, U2, t );
-	mul( Half, U2, Y );
-	add( t, Y, Y );
-	add( One, Y, Y );
-	sub( One, Y, X );
-	k = cmp( U2, X );
-	k2 = cmp( X, Zero );
-	}
-while ( ! ((k <= 0) || (k2 <= 0)));
-	
-/*... now U2 == 1 ulp of 1 + ... */
-div( Three, Two, X );
-sub( Half, X, F6 );
-add( F6, F6, Third );
-sub( Half, Third, X );
-add( F6, X, X );
-FABS( X );
-if( cmp(X, U1) < 0 )
-	mov( U1, X );
-	
-/*... now  X == (unknown no.) ulps of 1 -... */
-do
-	{
-	mov( X, U1 );
- /* Y = Half * U1 + ThirtyTwo * U1 * U1;*/
-	mul( ThirtyTwo, U1, t );
-	mul( U1, t, t );
-	mul( Half, U1, Y );
-	add( t, Y, Y );
-	sub( Y, Half, Y );
-	add( Half, Y, X );
-	sub( X, Half, Y );
-	add( Half, Y, X );
-	k = cmp( U1, X );
-	k2 = cmp( X, Zero );
-	} while ( ! ((k <= 0) || (k2 <= 0)));
-/*... now U1 == 1 ulp of 1 - ... */
-if( cmp( U1, E1 ) == 0 )
-	printf("confirms closest relative separation U1 .\n");
-else
-	{
-	printf("gets better closest relative separation U1 = " );
-	show( U1 );
-	}
-div( U1, One, W );
-sub( U1, Half, F9 );
-add( F9, Half, F9 );
-div( U1, U2, t );
-div( TwoForty, One, t2 );
-add( t2, t, t );
-FLOOR( t, Radix );
-if( cmp(Radix, E0) == 0 )
-	printf("Radix confirmed.\n");
-else
-	{
-	printf("MYSTERY: recalculated Radix = " );
-	show( Radix );
-	mov( E0, Radix );
-	}
-add( Eight, Eight, t );
-if( cmp( Radix, t ) > 0 )
-	{
-	printf( "Radix is too big: roundoff problems\n" );
-	ErrCnt[Defect] += 1;
-	}
-k = 1;
-if( cmp( Radix, Two ) == 0 )
-	k = 0;
-if( cmp( Radix, Ten ) == 0 )
-	k = 0;
-if( cmp( Radix, One ) == 0 )
-	k = 0;
-if( k != 0 )
-	{
-	printf( "Radix is not as good as 2 or 10\n" );
-	ErrCnt[Flaw] += 1;
-	}
-/*=============================================*/
-Milestone = 20;
-/*=============================================*/
-sub( Half, F9, t );
-if( cmp( t, Half ) >= 0 )
-	{
-	printf( "(1-U1)-1/2 < 1/2 is FALSE, prog. fails?\n" );
-	ErrCnt[Failure] += 1;
-	}
-mov( F9, X );
-I = 1;
-sub( Half, X, Y );
-sub( Half, Y, Z );
-if( (cmp( X, One ) == 0) && (cmp( Z, Zero) != 0) )
-	{
-	printf( "Comparison is fuzzy ,X=1 but X-1/2-1/2 != 0\n" );
-	ErrCnt[Failure] += 1;
-	}
-add( One, U2, X );
-I = 0;
-/*=============================================*/
-Milestone = 25;
-/*=============================================*/
-/*... BMinusU2 = nextafter(Radix, 0) */
-
-sub( One, Radix, BMinusU2 );
-sub( U2, BMinusU2, t );
-add( One, t, BMinusU2 );
-/* Purify Integers */
-if( cmp(Radix,One) != 0 )
-	{
-/*X = - TwoForty * LOG(U1) / LOG(Radix);*/
-	LOG( U1, X );
-	LOG( Radix, t );
-	div( t, X, X );
-	mul( TwoForty, X, X );
-	neg( X );	
-
-	add( Half, X, Y );
-	FLOOR( Y, Y );
-	sub( Y, X, t );
-	FABS( t );
-	mul( Four, t, t );
-	if( cmp( t, One ) < 0 )
-		mov( Y, X );
-	div( TwoForty, X, Precision );
-	add( Half, Precision, Y );
-	FLOOR( Y, Y );
-	sub( Y, Precision, t );
-	FABS( t );
-	mul( TwoForty, t, t );
-	if( cmp( t, Half ) < 0 )
-		mov( Y, Precision );
-	}
-FLOOR( Precision, t );
-if( (cmp( Precision, t ) != 0) || (cmp( Radix, One ) == 0) )
-	{
-	printf("Precision cannot be characterized by an Integer number\n");
-	printf("of significant digits but, by itself, this is a minor flaw.\n");
-	}
-if( cmp(Radix, One) == 0 ) 
-	printf("logarithmic encoding has precision characterized solely by U1.\n");
-else
-	{
-	printf("The number of significant digits of the Radix is " );
-	show( Precision );
-	}
-mul( U2, Nine, t );
-mul( Nine, t, t );
-mul( TwoForty, t, t );
-if( cmp( t, One ) >= 0 )
-	{
-	printf( "Precision worse than 5 decimal figures\n" );
-	ErrCnt[Serious] += 1;
-	}
-/*=============================================*/
-Milestone = 30;
-/*=============================================*/
-/* Test for extra-precise subepressions has been deleted. */
-Milestone = 35;
-/*=============================================*/
-if( cmp(Radix,Two) >= 0 )
-	{
-	mul( Radix, Radix, t );
-	div( t, W, X );
-	add( X, One, Y );
-	sub( X, Y, Z );
-	add( Z, U2, T );
-	sub( Z, T, X );
-	if( cmp( X, U2 ) != 0 )
-		{
-		printf( "Subtraction is not normalized X=Y,X+Z != Y+Z!\n" );
-		ErrCnt[Failure] += 1;
-		}
-	if( cmp(X,U2) == 0 )
-	 printf("Subtraction appears to be normalized, as it should be.");
-	}
-
-printf("\nChecking for guard digit in *, /, and -.\n");
-mul( F9, One, Y );
-mul( One, F9, Z );
-sub( Half, F9, X );
-sub( Half, Y, Y );
-sub( X, Y, Y );
-sub( Half, Z, Z );
-sub( X, Z, Z );
-add( One, U2, X );
-mul( X, Radix, T );
-mul( Radix, X, R );
-sub( Radix, T, X );
-mul( Radix, U2, t );
-sub( t, X, X );
-sub( Radix, R, T );
-mul( Radix, U2, t );
-sub( t, T, T );
-sub( One, Radix, t );
-mul( t, X, X );
-sub( One, Radix, t );
-mul( t, T, T );
-
-k = cmp(X,Zero);
-k |= cmp(Y,Zero);
-k |= cmp(Z,Zero);
-k |= cmp(T,Zero);
-if( k == 0 )
-	GMult = Yes;
-else
-	{
-	GMult = No;
-	ErrCnt[Serious] += 1;
-	printf( "* lacks a Guard Digit, so 1*X != X\n" );
-	}
-mul( Radix, U2, Z );
-add( One, Z, X );
-add( X, Z, Y );
-mul( X, X, t );
-sub( t, Y, Y );
-FABS( Y );
-sub( U2, Y, Y );
-sub( U2, One, X );
-sub( U2, X, Z );
-mul( X, X, t );
-sub( t, Z, Z );
-FABS( Z );
-sub( U1, Z, Z );
-if( (cmp(Y,Zero) > 0) || (cmp(Z,Zero) > 0) )
-	{
-	ErrCnt[Failure] += 1;
-	printf( "* gets too many final digits wrong.\n" );
-	}
-sub( U2, One, Y );
-add( One, U2, X );
-div( Y, One, Z );
-sub( X, Z, Y );
-div( Three, One, X );
-div( Nine, Three, Z );
-sub( Z, X, X );
-div( TwentySeven, Nine, T );
-sub( T, Z, Z );
-k = cmp( X, Zero );
-k |= cmp( Y, Zero );
-k |= cmp( Z, Zero );
-if( k )
-	{
-	ErrCnt[Defect] += 1;
-printf( "Division lacks a Guard Digit, so error can exceed 1 ulp\n" );
-printf( "or  1/3  and  3/9  and  9/27 may disagree\n" );
-	}
-div( One, F9, Y );
-sub( Half, F9, X );
-sub( Half, Y, Y );
-sub( X, Y, Y );
-add( One, U2, X );
-div( One, X, T );
-sub( X, T, X );
-k = cmp( X, Zero );
-k |= cmp( Y, Zero );
-k |= cmp( Z, Zero );
-if( k == 0 )
-	GDiv = Yes;
-else
-	{
-	GDiv = No;
-	ErrCnt[Serious] += 1;
-	printf( "Division lacks a Guard Digit, so X/1 != X\n" );
-	}
-add( One, U2, X );
-div( X, One, X );
-sub( Half, X, Y );
-sub( Half, Y, Y );
-if( cmp(Y,Zero) >= 0 )
-	{
-	ErrCnt[Serious] += 1;
-	printf( "Computed value of 1/1.000..1 >= 1\n" );
-	}
-sub( U2, One, X );
-mul( Radix, U2, Y );
-add( One, Y, Y );
-mul( X, Radix, Z );
-mul( Y, Radix, T );
-div( Radix, Z, R );
-div( Radix, T, StickyBit );
-sub( X, R, X );
-sub( Y, StickyBit, Y );
-k = cmp( X, Zero );
-k |= cmp( Y, Zero );
-if( k )
-	{
-	ErrCnt[Failure] += 1;
-	printf( "* and/or / gets too many last digits wrong\n" );
-	}
-sub( U1, One, Y );
-sub( F9, One, X );
-sub( Y, One, Y );
-sub( U2, Radix, T );
-sub( BMinusU2, Radix, Z );
-sub( T, Radix, T );
-k = cmp( X, U1 );
-k |= cmp( Y, U1 );
-k |= cmp( Z, U2 );
-k |= cmp( T, U2 );
-if( k == 0 )
-	GAddSub = Yes;
-else
-	{
-	GAddSub = No;
-	ErrCnt[Serious] += 1;
-	printf( "- lacks Guard Digit, so cancellation is obscured\n" );
-	}
-sub( One, F9, t );
-if( (cmp(F9,One) != 0) && (cmp(t,Zero) >= 0) )
-	{
-	ErrCnt[Serious] += 1;
-	printf("comparison alleges  (1-U1) < 1  although\n");
-	printf("  subtration yields  (1-U1) - 1 = 0 , thereby vitiating\n");
-	printf("  such precautions against division by zero as\n");
-	printf("  ...  if (X == 1.0) {.....} else {.../(X-1.0)...}\n");
-	}
-if (GMult == Yes && GDiv == Yes && GAddSub == Yes)
-	printf(" *, /, and - appear to have guard digits, as they should.\n");
-/*=============================================*/
-Milestone = 40;
-/*=============================================*/
-printf("Checking rounding on multiply, divide and add/subtract.\n");
-RMult = Other;
-RDiv = Other;
-RAddSub = Other;
-div( Two, Radix, RadixD2 );
-mov( Two, A1 );
-Done = False;
-do
-	{
-	mov( Radix, AInvrse );
-	do
-		{
-		mov( AInvrse, X );
-		div( A1, AInvrse, AInvrse );
-		FLOOR( AInvrse, t );
-		k = cmp( t, AInvrse );
-		}
-	while( ! (k != 0 ) );
-	k = cmp( X, One );
-	k2 = cmp( A1, Three );
-	Done = (k == 0) || (k2 > 0);
-	if(! Done)
-		add( Nine, One, A1 );
-	}
-while( ! (Done));
-if( cmp(X, One) == 0 )
-	mov( Radix, A1 );
-div( A1, One, AInvrse );
-mov( A1, X );
-mov( AInvrse, Y );
-Done = False;
-do
-	{
-	mul( X, Y, Z );
-	sub( Half, Z, Z );
-	if( cmp( Z, Half ) != 0 )
-		{
-		ErrCnt[Failure] += 1;
-		printf( "X * (1/X) differs from 1\n" );
-		}
-	k = cmp( X, Radix );
-	Done = (k == 0);
-	mov( Radix, X );
-	div( X, One, Y );
-	}
-while( ! (Done));
-
-add( One, U2, Y2 );
-sub( U2, One, YY1 );
-sub( U2, OneAndHalf, X );
-add( OneAndHalf, U2, Y );
-sub( U2, X, Z );
-mul( Z, Y2, Z );
-mul( Y, YY1, T );
-sub( X, Z, Z );
-sub( X, T, T );
-mul( X, Y2, X );
-add( Y, U2, Y );
-mul( Y, YY1, Y );
-sub( OneAndHalf, X, X );
-sub( OneAndHalf, Y, Y );
-k = cmp( X, Zero );
-k |= cmp( Y, Zero );
-k |= cmp( Z, Zero );
-if( cmp( T, Zero ) > 0 )
-	k = 1;
-if( k == 0 )
-	{
-	add( OneAndHalf, U2, X );
-	mul( X, Y2, X );
-	sub( U2, OneAndHalf, Y );
-	sub( U2, Y, Y );
-	add( OneAndHalf, U2, Z );
-	add( U2, Z, Z );
-	sub( U2, OneAndHalf, T );
-	mul( T, YY1, T );
-	add( Z, U2, t );
-	sub( t, X, X );
-	mul( Y, YY1, StickyBit );
-	mul( Z, Y2, S );
-	sub( Y, T, T );
-	sub( Y, U2, Y );
-	add( StickyBit, Y, Y );
-/* Z = S - (Z + U2 + U2); */
-	add( Z, U2, t );
-	add( t, U2, t );
-	sub( t, S, Z );
-	add( Y2, U2, t );
-	mul( t, YY1, StickyBit );
-	mul( Y2, YY1, YY1 );
-	sub( Y2, StickyBit, StickyBit );
-	sub( Half, YY1, YY1 );
-	k = cmp( X, Zero );
-	k |= cmp( Y, Zero );
-	k |= cmp( Z, Zero );
-	k |= cmp( T, Zero );
-	k |= cmp( StickyBit, Zero );
-	k |= cmp( YY1, Half );
-	if( k == 0 )
-		{
-		RMult = Rounded;
-		printf("Multiplication appears to round correctly.\n");
-		}
-	else
-		{
-		add( X, U2, t );
-		k = cmp( t, Zero );
-		if( cmp( Y, Zero ) >= 0 )
-			k |= 1;
-		add( Z, U2, t );
-		k |= cmp( t, Zero );
-		if( cmp( T, Zero ) >= 0 )
-			k |= 1;
-		add( StickyBit, U2, t );
-		k |= cmp( t, Zero );
-		if( cmp(YY1, Half) >= 0 )
-			k |= 1;
-		if( k == 0 )
-			{
-			printf("Multiplication appears to chop.\n");
-			}
-		else
-			{
-		printf("* is neither chopped nor correctly rounded.\n");
-			}
-		if( (RMult == Rounded) && (GMult == No) )
-			printf("Multiplication has inconsistent result");
-		}
-	}
-else
-	printf("* is neither chopped nor correctly rounded.\n");
-
-/*=============================================*/
-Milestone = 45;
-/*=============================================*/
-add( One, U2, Y2 );
-sub( U2, One, YY1 );
-add( OneAndHalf, U2, Z );
-add( Z, U2, Z );
-div( Y2, Z, X );
-sub( U2, OneAndHalf, T );
-sub( U2, T, T );
-sub( U2, T, Y );
-div( YY1, Y, Y );
-add( Z, U2, Z );
-div( Y2, Z, Z );
-sub( OneAndHalf, X, X );
-sub( T, Y, Y );
-div( YY1, T, T );
-add( OneAndHalf, U2, t );
-sub( t, Z, Z );
-sub( OneAndHalf, U2, t );
-add( t, T, T );
-k = 0;
-if( cmp( X, Zero ) > 0 )
-	k = 1;
-if( cmp( Y, Zero ) > 0 )
-	k = 1;
-if( cmp( Z, Zero ) > 0 )
-	k = 1;
-if( cmp( T, Zero ) > 0 )
-	k = 1;
-if( k == 0 )
-	{
-	div( Y2, OneAndHalf, X );
-	sub( U2, OneAndHalf, Y );
-	add( U2, OneAndHalf, Z );
-	sub( Y, X, X );
-	div( YY1, OneAndHalf, T );
-	div( YY1, Y, Y );
-	add( Z, U2, t );
-	sub( t, T, T );
-	sub( Z, Y, Y );
-	div( Y2, Z, Z );
-	add( Y2, U2, YY1 );
-	div( Y2, YY1, YY1 );
-	sub( OneAndHalf, Z, Z );
-	sub( Y2, YY1, Y2 );
-	sub( U1, F9, YY1 );
-	div( F9, YY1, YY1 );
-	k = cmp( X, Zero );
-	k |= cmp( Y, Zero );
-	k |= cmp( Z, Zero );
-	k |= cmp( T, Zero );
-	k |= cmp( Y2, Zero );
-	sub( Half, YY1, t );
-	sub( Half, F9, t2 );
-	k |= cmp( t, t2 );
-	if( k == 0 )
-		{
-		RDiv = Rounded;
-		printf("Division appears to round correctly.\n");
-		if(GDiv == No)
-			printf("Division test inconsistent\n");
-		}
-	else
-		{
-		k = 0;
-		if( cmp( X, Zero ) >= 0 )
-			k = 1;
-		if( cmp( Y, Zero ) >= 0 )
-			k = 1;
-		if( cmp( Z, Zero ) >= 0 )
-			k = 1;
-		if( cmp( T, Zero ) >= 0 )
-			k = 1;
-		if( cmp( Y, Zero ) >= 0 )
-			k = 1;
-		sub( Half, YY1, t );
-		sub( Half, F9, t2 );
-		if( cmp( t, t2 ) >= 0 )
-			k = 1;
-		if( k == 0 )
-			{
-			RDiv = Chopped;
-			printf("Division appears to chop.\n");
-			}
-		}
-	}
-if(RDiv == Other)
-	printf("/ is neither chopped nor correctly rounded.\n");
-div( Radix, One, BInvrse );
-mul( BInvrse, Radix, t );
-sub( Half, t, t );
-if( cmp( t, Half ) != 0 )
-	{
-	ErrCnt[Failure] += 1;
-	printf( "Radix * ( 1 / Radix ) differs from 1\n" );
-	}
-
-Milestone = 50;
-/*=============================================*/
-add( F9, U1, t );
-sub( Half, t, t );
-k = cmp( t, Half );
-add( BMinusU2, U2, t );
-sub( One, t, t );
-sub( One, Radix, t2 );
-k |= cmp( t, t2 );
-if( k != 0 )
-	{
-	ErrCnt[Failure] += 1;
-	printf( "Incomplete carry-propagation in Addition\n" );
-	}
-mul( U1, U1, X );
-sub( X, One, X );
-sub( U2, One, Y );
-mul( U2, Y, Y );
-add( One, Y, Y );
-sub( Half, F9, Z );
-sub( Half, X, X );
-sub( Z, X, X );
-sub( One, Y, Y );
-if( (cmp(X,Zero) == 0) && (cmp(Y,Zero) == 0) )
-	{
-	RAddSub = Chopped;
-	printf("Add/Subtract appears to be chopped.\n");
-	}
-if(GAddSub == Yes)
-	{
-	add( Half, U2, X );
-	mul( X, U2, X );
-	sub( U2, Half, Y );
-	mul( Y, U2, Y );
-	add( One, X, X );
-	add( One, Y, Y );
-	add( One, U2, t );
-	sub( X, t, X );
-	sub( Y, One, Y );
-	k = cmp(X,Zero);
-	if( k )
-		printf( "1+U2-[u2(1/2+U2)+1] != 0\n" );
-	k2 = cmp(Y,Zero);
-	if( k2 )
-		printf( "1-[U2(1/2-U2)+1] != 0\n" );
-	k |= k2;
-	if( k == 0 )
-		{
-		add( Half, U2, X );
-		mul( X, U1, X );
-		sub( U2, Half, Y );
-		mul( Y, U1, Y );
-		sub( X, One, X );
-		sub( Y, One, Y );
-		sub( X, F9, X );
-		sub( Y, One, Y );
-		k = cmp(X,Zero);
-		if( k )
-			printf( "F9-[1-U1(1/2+U2)] != 0\n" );
-		k2 = cmp(Y,Zero);
-		if( k2 )
-			printf( "1-[1-U1(1/2-U2)] != 0\n" );
-		k |= k2;
-		if( k == 0 )
-			{
-			RAddSub = Rounded;
-		printf("Addition/Subtraction appears to round correctly.\n");
-			if(GAddSub == No)
-				printf( "Add/Subtract test inconsistent\n");
-			}
-		else
-			{
-		 printf("Addition/Subtraction neither rounds nor chops.\n");
-			}
-		}
-	else
-		printf("Addition/Subtraction neither rounds nor chops.\n");
-	}
-else
-	printf("Addition/Subtraction neither rounds nor chops.\n");
-
-mov( One, S );
-add( One, Half, X );
-mul( Half, X, X );
-add( One, X, X );
-add( One, U2, Y );
-mul( Y, Half, Y );
-sub( Y, X, Z );
-sub( X, Y, T );
-add( Z, T, StickyBit );
-if( cmp(StickyBit, Zero) != 0 )
-	{
-	mov( Zero, S );
-	ErrCnt[Flaw] += 1;
-	printf( "(X - Y) + (Y - X) is non zero!\n" );
-	}
-mov( Zero, StickyBit );
-FLOOR( RadixD2, t );
-k2 = cmp( t, RadixD2 );
-k = 1;
-if( (GMult == Yes) && (GDiv == Yes) && (GAddSub == Yes)
-	&& (RMult == Rounded) && (RDiv == Rounded)
-	&& (RAddSub == Rounded) && (k2 == 0) )
-	{
-	printf("Checking for sticky bit.\n");
-	k = 0;
-	add( Half, U1, X );
-	mul( X, U2, X );
-	mul( Half, U2, Y );
-	add( One, Y, Z );
-	add( One, X, T );
-	sub( One, Z, t );
-	sub( One, T, t2 );
-	if( cmp(t,Zero) > 0 )
-		{
-		k = 1;
-		printf( "[1+(1/2)U2]-1 > 0\n" );
-		}
-	if( cmp(t2,U2) < 0 )
-		{
-		k = 1;
-		printf( "[1+U2(1/2+U1)]-1 < U2\n" );
-		}
-	add( T, Y, Z );
-	sub( X, Z, Y );
-	sub( T, Z, t );
-	sub( T, Y, t2 );
-	if( cmp(t,U2) < 0 )
-		{
-		k = 1;
-		printf( "[[1+U2(1/2+U1)]+(1/2)U2]-[1+U2(1/2+U1)] < U2\n" );
-		}
-	if( cmp(t2,Zero) != 0 )
-		{
-		k = 1;
-		printf( "(1/2)U2-[1+U2(1/2+U1)] != 0\n" );
-		}
-	add( Half, U1, X );
-	mul( X, U1, X );
-	mul( Half, U1, Y );
-	sub( Y, One, Z );
-	sub( X, One, T );
-	sub( One, Z, t );
-	sub( F9, T, t2 );
-	if( cmp(t,Zero) != 0 )
-		{
-		k = 1;
-		printf( "(1-(1/2)U1)-1 != 0\n" );
-		}
-	if( cmp(t2,Zero) != 0 )
-		{
-		k = 1;
-		printf( "[1-U1(1/2+U1)]-F9 != 0\n" );
-		}
-	sub( U1, Half, Z );
-	mul( Z, U1, Z );
-	sub( Z, F9, T );
-	sub( Y, F9, Q );
-	sub( F9, T, t );
-	if( cmp( t, Zero ) != 0 )
-		{
-		k = 1;
-		printf( "[F9-U1(1/2-U1)]-F9 != 0\n" );
-		}
-	sub( U1, F9, t );
-	sub( Q, t, t );
-	if( cmp( t, Zero ) != 0 )
-		{
-		k = 1;
-		printf( "(F9-U1)-(F9-(1/2)U1) != 0\n" );
-		}
-	add( One, U2, Z );
-	mul( Z, OneAndHalf, Z );
-	add( OneAndHalf, U2, T );
-	sub( Z, T, T );
-	add( U2, T, T );
-	div( Radix, Half, X );
-	add( One, X, X );
-	mul( Radix, U2, Y );
-	add( One, Y, Y );
-	mul( X, Y, Z );
-	if( cmp( T, Zero ) != 0 )
-		{
-		k = 1;
-		printf( "(3/2+U2)-3/2(1+U2)+U2 != 0\n" );
-		}
-	mul( Radix, U2, t );
-	add( X, t, t );
-	sub( Z, t, t );
-	if( cmp( t, Zero ) != 0 )
-		{
-		k = 1;
-	printf( "(1+1/2Radix)+Radix*U2-[1+1/(2Radix)][1+Radix*U2] != 0\n" );
-		}
-	if( cmp(Radix, Two) != 0 )
-		{
-		add( Two, U2, X );
-		div( Two, X, Y );
-		sub( One, Y, t );
-		if( cmp( t, Zero) != 0 )
-			k = 1;
-		}
-	}
-if( k == 0 )
-	{
-	printf("Sticky bit apparently used correctly.\n");
-	mov( One, StickyBit );
-	}
-else
-	{
-	printf("Sticky bit used incorrectly or not at all.\n");
-	}
-
-if( GMult == No || GDiv == No || GAddSub == No ||
-		RMult == Other || RDiv == Other || RAddSub == Other)
-	{
-	ErrCnt[Flaw] += 1;
- printf("lack(s) of guard digits or failure(s) to correctly round or chop\n");
-printf( "(noted above) count as one flaw in the final tally below\n" );
-	}
-/*=============================================*/
-Milestone = 60;
-/*=============================================*/
-printf("\n");
-printf("Does Multiplication commute?  ");
-printf("Testing on %d random pairs.\n", NoTrials);
-SQRT( Three, Random9 );
-mov( Third, Random1 );
-I = 1;
-do
-	{
-	Random();
-	mov( Random1, X );
-	Random();
-	mov( Random1, Y );
-	mul( Y, X, Z9 );
-	mul( X, Y, Z );
-	sub( Z9, Z, Z9 );
-	I = I + 1;
-	}
-while ( ! ((I > NoTrials) || (cmp(Z9,Zero) != 0)));
-if(I == NoTrials)
-	{
-	div( Three, Half, t );
-	add( One, t, Random1 );
-	add( U2, U1, t );
-	add( t, One, Random2 );
-	mul( Random1, Random2, Z );
-	mul( Random2, Random1, Y );
-/* Z9 = (One + Half / Three) * ((U2 + U1) + One) - (One + Half /
- *			Three) * ((U2 + U1) + One);
- */
-	div( Three, Half, t2 );
-	add( One, t2, t2 );
-	add( U2, U1, t );
-	add( t, One, t );
-	mul( t2, t, Z9 );
-	mul( t2, t, t );
-	sub( t, Z9, Z9 );
-	}
-if(! ((I == NoTrials) || (cmp(Z9,Zero) == 0)))
-	{
-	ErrCnt[Defect] += 1;
-	printf( "X * Y == Y * X trial fails.\n");
-	}
-else
-	{
-	printf("     No failures found in %d integer pairs.\n", NoTrials);
-	}
-/*=============================================*/
-Milestone = 70;
-/*=============================================*/
-sqtest();
-Milestone = 90;
-pow1test();
-
-Milestone = 110;
-
-printf("Seeking Underflow thresholds UfThold and E0.\n");
-mov( U1, D );
-FLOOR( Precision, t );
-if( cmp(Precision, t) != 0 )
-	{
-	mov( BInvrse, D );
-	mov( Precision, X );
-	do
-		{
-		mul( D, BInvrse, D );
-		sub( One, X, X );
-		}
-	while( cmp(X, Zero) > 0 );
-	}
-mov( One, Y );
-mov( D, Z );
-/* ... D is power of 1/Radix < 1. */
-sigsave = sigfpe;
-if( setjmp(ovfl_buf) )
-	goto under0;
-do
-	{
-	mov( Y, C );
-	mov( Z, Y );
-	mul( Y, Y, Z );
-	add( Z, Z, t );
-	}
-while( (cmp(Y,Z) > 0) && (cmp(t,Z) > 0) );
-
-under0:
-sigsave = 0;
-
-mov( C, Y );
-mul( Y, D, Z );
-sigsave = sigfpe;
-if( setjmp(ovfl_buf) )
-	goto under1;
-do
-	{
-	mov( Y, C );
-	mov( Z, Y );
-	mul( Y, D, Z );
-	add( Z, Z, t );
-	}
-while( (cmp(Y,Z) > 0) && (cmp(t,Z) > 0) );
-
-under1:
-sigsave = 0;
-
-if( cmp(Radix,Two) < 0 )
-	mov( Two, HInvrse );
-else
-	mov( Radix, HInvrse );
-div( HInvrse, One, H );
-/* ... 1/HInvrse == H == Min(1/Radix, 1/2) */
-div( C, One, CInvrse );
-mov( C, E0 );
-mul( E0, H, Z );
-/* ...1/Radix^(BIG Integer) << 1 << CInvrse == 1/C */
-sigsave = sigfpe;
-if( setjmp(ovfl_buf) )
-	goto under2;
-do
-	{
-	mov( E0, Y );
-	mov( Z, E0 );
-	mul( E0, H, Z );
-	add( Z, Z, t );
-	}
-while( (cmp(E0,Z) > 0) && (cmp(t,Z) > 0) );
-
-under2:
-sigsave = 0;
-
-mov( E0, UfThold );
-mov( Zero, E1 );
-mov( Zero, Q );
-mov( U2, E9 );
-add( One, E9, S );
-mul( C, S, D );
-if( cmp(D,C) <= 0 )
-	{
-	mul( Radix, U2, E9 );
-	add( One, E9, S );
-	mul( C, S, D );
-	if( cmp(D, C) <= 0 )
-		{
-		ErrCnt[Failure] += 1;
-		printf( "multiplication gets too many last digits wrong.\n" );
-		mov( E0, Underflow );
-		mov( Zero, YY1 );
-		mov( Z, PseudoZero );
-		}
-	}
-else
-	{
-	mov( D, Underflow );
-	mul( Underflow, H, PseudoZero );
-	mov( Zero, UfThold );
-	do
-		{
-		mov( Underflow, YY1 );
-		mov( PseudoZero, Underflow );
-		add( E1, E1, t );
-		if( cmp(t, E1) <= 0)
-			{
-			mul( Underflow, HInvrse, Y2 );
-			sub( Y2, YY1, E1 );
-			FABS( E1 );
-			mov( YY1, Q );
-			if( (cmp( UfThold, Zero ) == 0)
-				&& (cmp(YY1, Y2) != 0) )
-				mov( YY1, UfThold );
-			}
-		mul( PseudoZero, H, PseudoZero );
-		add( PseudoZero, PseudoZero, t );
-		}
-	while( (cmp(Underflow, PseudoZero) > 0)
-		&& (cmp(t, PseudoZero) > 0) );
-	}
-/* Comment line 4530 .. 4560 */
-if( cmp(PseudoZero, Zero) != 0 )
-	{
-	printf("\n");
-	mov(PseudoZero, Z );
-/* ... Test PseudoZero for "phoney- zero" violates */
-/* ... PseudoZero < Underflow or PseudoZero < PseudoZero + PseudoZero
-		   ... */
-	if( cmp(PseudoZero, Zero) <= 0 )
-		{
-		ErrCnt[Failure] += 1;
-		printf("Positive expressions can underflow to an\n");
-		printf("allegedly negative value\n");
-		printf("PseudoZero that prints out as: " );
-		show( PseudoZero );
-		mov( PseudoZero, X );
-		neg( X );
-		if( cmp(X, Zero) <= 0 )
-			{
-			printf("But -PseudoZero, which should be\n");
-			printf("positive, isn't; it prints out as " );
-			show( X );
-			}
-		}
-	else
-		{
-		ErrCnt[Flaw] += 1;
-		printf( "Underflow can stick at an allegedly positive\n");
-		printf("value PseudoZero that prints out as " );
-		show( PseudoZero );
-		}
-/*	TstPtUf();*/
-	}
-
-/*=============================================*/
-Milestone = 120;
-/*=============================================*/
-mul( CInvrse, Y, t );
-mul( CInvrse, YY1, t2 );
-if( cmp(t,t2) > 0 )
-	{
-	mul( H, S, S );
-	mov( Underflow, E0 );
-	}
-if(! ((cmp(E1,Zero) == 0) || (cmp(E1,E0) == 0)) )
-	{
-	ErrCnt[Defect] += 1;
-	if( cmp(E1,E0) < 0 )
-		{
-		printf("Products underflow at a higher");
-		printf(" threshold than differences.\n");
-		if( cmp(PseudoZero,Zero) == 0 ) 
-			mov( E1, E0 );
-		}
-	else
-		{
-		printf("Difference underflows at a higher");
-		printf(" threshold than products.\n");
-		}
-	}
-printf("Smallest strictly positive number found is E0 = " );
-show( E0 );
-mov( E0, Z );
-TstPtUf();
-mov( E0, Underflow );
-if(N == 1)
-	mov( Y, Underflow );
-I = 4;
-if( cmp(E1,Zero) == 0 )
-	I = 3;
-if( cmp( UfThold,Zero) == 0 )
-	I = I - 2;
-UfNGrad = True;
-switch(I)
-	{
-	case 1:
-	mov( Underflow, UfThold );
-	mul( CInvrse, Q, t );
-	mul( CInvrse, Y, t2 );
-	mul( t2, S, t2 );
-	if( cmp( t, t2 ) != 0 )
-		{
-		mov( Y, UfThold );
-		ErrCnt[Failure] += 1;
-		printf( "Either accuracy deteriorates as numbers\n");
-		printf("approach a threshold = " );
-		show( UfThold );
-		printf(" coming down from " );
-		show( C );
-	printf(" or else multiplication gets too many last digits wrong.\n");
-		}
-	break;
-	
-	case	2:
-	ErrCnt[Failure] += 1;
-	printf( "Underflow confuses Comparison which alleges that\n");
-	printf("Q == Y while denying that |Q - Y| == 0; these values\n");
-	printf("print out as Q = " );
-	show( Q );
-	printf( ", Y = " );
-	show( Y );
-	sub( Y2, Q, t );
-	FABS(t);
-	printf ("|Q - Y| = " );
-	show( t );
-	mov( Q, UfThold );
-	break;
-	
-	case 3:
-	mov( X, X );
-	break;
-	
-	case 4:
-	div( E9, E1, t );
-	sub( t, UfThold, t );
-	FABS(t);
-	if( (cmp(Q,UfThold) == 0) && (cmp(E1,E0) == 0)
-		&& (cmp(t,E1) <= 0) )
-		{
-		UfNGrad = False;
-		printf("Underflow is gradual; it incurs Absolute Error =\n");
-		printf("(roundoff in UfThold) < E0.\n");
-		mul( E0, CInvrse, Y );
-		add( OneAndHalf, U2, t );
-		mul( Y, t, Y );
-		add( One, U2, X );
-		mul( CInvrse, X, X );
-		div( X, Y, t );
-		IEEE = (cmp(t,E0) == 0);
-		if( IEEE == 0 )
-			{
-		printf( "((CInvrse E0) (1.5+U2)) / (CInvrse (1+U2)) != E0\n" );
-			printf( "CInvrse = " );
-			show( CInvrse );
-			printf( "E0 = " );
-			show( E0 );
-			printf( "U2 = " );
-			show( U2 );
-			printf( "X = " );
-			show(X);
-			printf( "Y = " );
-			show(Y);
-			printf( "Y/X = " );
-			show(t);
-			}
-		}
-	}
-if(UfNGrad)
-	{
-	printf("\n");
-	div( UfThold, Underflow, R );
-	SQRT( R, R );
-	if( cmp(R,H) <= 0)
-		{
-		mul( R, UfThold, Z );
-/* X = Z * (One + R * H * (One + H));*/
-		add( One, H, X );
-		mul( H, X, X );
-		mul( R, X, X );
-		add( One, X, X );
-		mul( Z, X, X );
-		}
-	else
-		{
-		mov( UfThold, Z );
-/*X = Z * (One + H * H * (One + H));*/
-		add( One, H, X );
-		mul( H, X, X );
-		mul( H, X, X );
-		add( One, X, X );
-		mul( Z, X, X );
-		}
-	sub( Z, X, t );
-/*	if(! ((cmp(X,Z) == 0) || (cmp(t,Zero) != 0)) )*/
-	if( (cmp(X,Z) != 0) && (cmp(t,Zero) == 0) )
-		{
-/*		ErrCnt[Flaw] += 1;*/
-		ErrCnt[Serious] += 1;
-		printf("X = " );
-		show( X );
-		printf( "\tis not equal to Z = " );
-		show( Z );
-/*		sub( Z, X, Z9 );*/
-		printf("yet X - Z yields " );
-		show( t );
-		printf("which compares equal to " );
-		show( Zero );
-		printf("    Should this NOT signal Underflow, ");
-		printf("this is a SERIOUS DEFECT\nthat causes ");
-		printf("confusion when innocent statements like\n");;
-		printf("    if (X == Z)  ...  else");
-		printf("  ... (f(X) - f(Z)) / (X - Z) ...\n");
-		printf("encounter Division by Zero although actually\n");
-		printf("X / Z = 1 + " );
-		div( Z, X, t );
-		sub( Half, t, t );
-		sub( Half, t, t );
-		show(t);
-		}
-	}
-printf("The Underflow threshold is " );
-show( UfThold );
-printf( "below which calculation may suffer larger Relative error than" );
-printf( " merely roundoff.\n");
-mul( U1, U1, Y2 );
-mul( Y2, Y2, Y );
-mul( Y, U1, Y2 );
-if( cmp( Y2,UfThold) <= 0 )
-	{
-	if( cmp(Y,E0) > 0 )
-		{
-		ErrCnt[Defect] += 1;
-		I = 5;
-		}
-	else
-		{
-		ErrCnt[Serious] += 1;
-		I = 4;
-		}
-	printf("Range is too narrow; U1^%d Underflows.\n", I);
-	}
-Milestone = 130;
-
-/*Y = - FLOOR(Half - TwoForty * LOG(UfThold) / LOG(HInvrse)) / TwoForty;*/
-LOG( UfThold, Y );
-LOG( HInvrse, t );
-div( t, Y, Y );
-mul( TwoForty, Y, Y );
-sub( Y, Half, Y );
-FLOOR( Y, Y );
-div( TwoForty, Y, Y );
-neg(Y);
-sub( One, Y, Y2 ); /* ***** changed from Y2 = Y + Y */
-printf("Since underflow occurs below the threshold\n");
-printf("UfThold = " ); 
-show( HInvrse );
-printf( "\tto the power  " );
-show( Y );
-printf( "only underflow should afflict the expression " );
-show( HInvrse );
-printf( "\tto the power  " );
-show( Y2 );
-POW( HInvrse, Y2, V9 );
-printf("Actually calculating yields: " );
-show( V9 );
-add( Radix, Radix, t );
-add( t, E9, t );
-mul( t, UfThold, t );
-if( (cmp(V9,Zero) < 0) || (cmp(V9,t) > 0) )
-	{
-	ErrCnt[Serious] += 1;
-	printf( "this is not between 0 and underflow\n");
-	printf("   threshold = " );
-	show( UfThold );
-	}
-else
-	{
-	add( One, E9, t );
-	mul( UfThold, t, t );
-	if( cmp(V9,t) <= 0 )
-		printf("This computed value is O.K.\n");
-	else
-		{
-		ErrCnt[Defect] += 1;
-		printf( "this is not between 0 and underflow\n");
-		printf("   threshold = " );
-		show( UfThold );
-		}
-	}
-
-Milestone = 140;
-
-pow2test();
-	
-/*=============================================*/
-Milestone = 160;
-/*=============================================*/
-Pause();
-printf("Searching for Overflow threshold:\n");
-printf("This may generate an error.\n");
-sigsave = sigfpe;
-I = 0;
-mov( CInvrse, Y ); /* a large power of 2 */
-neg(Y);
-mul( HInvrse, Y, V9 ); /* HInvrse = 2 */
-if (setjmp(ovfl_buf))
-	goto overflow;
-do
-	{
-	mov( Y, V );
-	mov( V9, Y );
-	mul( HInvrse, Y, V9 );
-	}
-while( cmp(V9,Y) < 0 ); /* V9 = 2 * Y */
-I = 1;
-
-overflow:
-
-show( HInvrse );
-printf( "\ttimes " );
-show( Y );
-printf( "\tequals " );
-show( V9 );
-
-mov( V9, Z );
-printf("Can `Z = -Y' overflow?\n");
-printf("Trying it on Y = " );
-show(Y);
-mov( Y, V9 );
-neg( V9 );
-mov( V9, V0 );
-sub( Y, V, t );
-add( V, V0, t2 );
-if( cmp(t,t2) == 0 )
-	printf("Seems O.K.\n");
-else
-	{
-	printf("finds a Flaw, -(-Y) differs from Y.\n");
-	printf( "V-Y=t:" );
-	show(V);
-	show(Y);
-	show(t);
-	printf( "V+V0=t2:" );
-	show(V);
-	show(V0);
-	show(t2);
-	ErrCnt[Flaw] += 1;
-	}
-if( (cmp(Z, Y) != 0) && (I != 0) )
-	{
-	ErrCnt[Serious] += 1;
-	printf("overflow past " );
-	show( Y );
-	printf( "\tshrinks to " );
-	show( Z );
-	printf( "= Y * " );
-	show( HInvrse );
-	}
-/*Y = V * (HInvrse * U2 - HInvrse);*/
-mul( HInvrse, U2, Y );
-sub( HInvrse, Y, Y );
-mul( V, Y, Y );
-/*Z = Y + ((One - HInvrse) * U2) * V;*/
-sub( HInvrse, One, Z );
-mul( Z, U2, Z );
-mul( Z, V, Z );
-add( Y, Z, Z );
-if( cmp(Z,V0) < 0 )
-	mov( Z, Y );
-if( cmp(Y,V0) < 0)
-	mov( Y, V );
-sub( V, V0, t );
-if( cmp(t,V0) < 0 )
-	mov( V0, V );
-printf("Overflow threshold is V  = " );
-show( V );
-if(I)
-	{
-	printf("Overflow saturates at V0 = " );
-	show( V0 );
-	}
-else
-printf("There is no saturation value because the system traps on overflow.\n");
-
-mul( V, One, V9 );
-printf("No Overflow should be signaled for V * 1 = " );
-show( V9 );
-div( One, V, V9 );
-	printf("                           nor for V / 1 = " );
-	show( V9 );
-	printf("Any overflow signal separating this * from the one\n");
-	printf("above is a DEFECT.\n");
-/*=============================================*/
-Milestone = 170;
-/*=============================================*/
-mov( V, t );
-neg( t );
-k = 0;
-if( cmp(t,V) >= 0 )
-	k = 1;
-mov( V0, t );
-neg( t );
-if( cmp(t,V0) >= 0 )
-	k = 1;
-mov( UfThold, t );
-neg(t);
-if( cmp(t,V) >= 0 )
-	k = 1;
-if( cmp(UfThold,V) >= 0 )
-	k = 1;
-if( k != 0 )
-	{
-	ErrCnt[Failure] += 1;
-	printf( "Comparisons involving +-");
-	show( V );
-	show( V0 );
-	show( UfThold );
-	printf("are confused by Overflow." );
-	}
-/*=============================================*/
-Milestone = 175;
-/*=============================================*/
-printf("\n");
-for(Indx = 1; Indx <= 3; ++Indx) {
-	switch(Indx)
-		{
-		case 1: mov(UfThold, Z); break;
-		case 2: mov( E0, Z); break;
-		case 3: mov(PseudoZero, Z); break;
-		}
-if( cmp(Z, Zero) != 0 )
-	{
-	SQRT( Z, V9 );
-	mul( V9, V9, Y );
-	mul( Radix, E9, t );
-	sub( t, One, t );
-	div( t, Y, t );
-	add( One, Radix, t2 );
-	add( t2, E9, t2 );
-	mul( t2, Z, t2 );
-	if( (cmp(t,Z) < 0) || (cmp(Y,t2) > 0) )
-		{
-		if( cmp(V9,U1) > 0 )
-			ErrCnt[Serious] += 1;
-		else
-			ErrCnt[Defect] += 1;
-		printf("Comparison alleges that what prints as Z = " );
-		show( Z );
-		printf(" is too far from sqrt(Z) ^ 2 = " );
-		show( Y );
-		}
-	}
-}
-
-Milestone = 180;
-
-for(Indx = 1; Indx <= 2; ++Indx)
-	{
-	if(Indx == 1)
-		mov( V, Z );
-	else
-		mov( V0, Z );
-	SQRT( Z, V9 );
-	mul( Radix, E9, X );
-	sub( X, One, X );
-	mul( X, V9, X );
-	mul( V9, X, V9 );
-	mul( Two, Radix, t );
-	mul( t, E9, t );
-	sub( t, One, t );
-	mul( t, Z, t );
-	if( (cmp(V9,t) < 0) || (cmp(V9,Z) > 0) )
-		{
-		mov( V9, Y );
-		if( cmp(X,W) <  0 )
-			ErrCnt[Serious] += 1;
-		else
-			ErrCnt[Defect] += 1;
-		printf("Comparison alleges that Z = " );
-		show( Z );
-		printf(" is too far from sqrt(Z) ^ 2 :" );
-		show( Y );
-		}
-	}
-
-Milestone = 190;
-
-Pause();
-mul( UfThold, V, X ); 
-mul( Radix, Radix, Y );
-mul( X, Y, t );
-if( (cmp(t,One) < 0) || (cmp(X,Y) > 0) )
-	{
-	mul( X, Y, t );
-	div( U1, Y, t2 );
-	if( (cmp(t,U1) < 0) || (cmp(X,t2) > 0) )
-		{
-		ErrCnt[Defect] += 1;
-		printf( "Badly " );
-		}
-	else
-		{
-		ErrCnt[Flaw] += 1;
-		}
-	printf(" unbalanced range; UfThold * V = " );
-	show( X );
-	printf( "\tis too far from 1.\n");
-	}
-Milestone = 200;
-
-for(Indx = 1; Indx <= 5; ++Indx)
-	{
-	mov( F9, X );
-	switch(Indx)
-		{
-		case 2: add( One, U2, X ); break;
-		case 3: mov( V, X ); break;
-		case 4: mov(UfThold,X); break;
-		case 5: mov(Radix,X);
-		}
-	mov( X, Y );
-
-	sigsave = sigfpe;
-	if (setjmp(ovfl_buf))
-		{
-		printf("  X / X  traps when X = " );
-		show( X );
-		}
-	else
-		{
-/*V9 = (Y / X - Half) - Half;*/
-		div( X, Y, t );
-		sub( Half, t, t );
-		sub( Half, t, V9 );
-		if( cmp(V9,Zero) == 0 )
-			continue;
-		mov( U1, t );
-		neg(t);
-		if( (cmp(V9,t) == 0) && (Indx < 5) )
-			{
-			ErrCnt[Flaw] += 1;
-			}
-		else
-			{
-			ErrCnt[Serious] += 1;
-			}
-		printf("  X / X differs from 1 when X = " );
-		show( X );
-		printf("  instead, X / X - 1/2 - 1/2 = " );
-		show( V9 );
-		}
-	}
-
-	Pause();
-	printf("\n");
-	{
-		static char *msg[] = {
-			"FAILUREs  encountered =",
-			"SERIOUS DEFECTs  discovered =",
-			"DEFECTs  discovered =",
-			"FLAWs  discovered =" };
-		int i;
-		for(i = 0; i < 4; i++) if (ErrCnt[i])
-			printf("The number of  %-29s %d.\n",
-				msg[i], ErrCnt[i]);
-		}
-	printf("\n");
-	if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect]
-			+ ErrCnt[Flaw]) > 0) {
-		if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[
-			Defect] == 0) && (ErrCnt[Flaw] > 0)) {
-			printf("The arithmetic diagnosed seems ");
-			printf("satisfactory though flawed.\n");
-			}
-		if ((ErrCnt[Failure] + ErrCnt[Serious] == 0)
-			&& ( ErrCnt[Defect] > 0)) {
-			printf("The arithmetic diagnosed may be acceptable\n");
-			printf("despite inconvenient Defects.\n");
-			}
-		if ((ErrCnt[Failure] + ErrCnt[Serious]) > 0) {
-			printf("The arithmetic diagnosed has ");
-			printf("unacceptable serious defects.\n");
-			}
-		if (ErrCnt[Failure] > 0) {
-			printf("Fatal FAILURE may have spoiled this");
-			printf(" program's subsequent diagnoses.\n");
-			}
-		}
-	else {
-		printf("No failures, defects nor flaws have been discovered.\n");
-		if (! ((RMult == Rounded) && (RDiv == Rounded)
-			&& (RAddSub == Rounded) && (RSqrt == Rounded))) 
-			printf("The arithmetic diagnosed seems satisfactory.\n");
-		else {
-			k = 0;
-			if( cmp( Radix, Two ) == 0 )
-				k = 1;
-			if( cmp( Radix, Ten ) == 0 )
-				k = 1;
-			if( (cmp(StickyBit,One) >= 0) && (k == 1) )
-				{
-				printf("Rounding appears to conform to ");
-				printf("the proposed IEEE standard P");
-				k = 0;
-				k |= cmp( Radix, Two );
-				mul( Four, Three, t );
-				mul( t, Two, t );
-				sub( t, Precision, t );
-				sub( TwentySeven, Precision, t2 );
-				sub( TwentySeven, t2, t2 );
-				add( t2, One, t2 );
-				mul( t2, t, t );
-				if( (cmp(Radix,Two) == 0)
-					&& (cmp(t,Zero) == 0) )
-					printf("754");
-				else
-					printf("854");
-				if(IEEE)
-					printf(".\n");
-				else
-					{
-			printf(",\nexcept for possibly Double Rounding");
-			printf(" during Gradual Underflow.\n");
-					}
-				}
-		printf("The arithmetic diagnosed appears to be excellent!\n");
-			}
-		}
-	if (fpecount)
-		printf("\nA total of %d floating point exceptions were registered.\n",
-			fpecount);
-	printf("END OF TEST.\n");
-	}
-
-
-/* Random */
-/*  Random computes
-     X = (Random1 + Random9)^5
-     Random1 = X - FLOOR(X) + 0.000005 * X;
-   and returns the new value of Random1
-*/
-
-
-static int randflg = 0;
-FLOAT(C5em6);
-
-Random()
-{
-
-if( randflg == 0 )
-	{
-	mov( Six, t );
-	neg(t);
-	POW( Ten, t, t );
-	mul( Five, t, C5em6 );
-	randflg = 1;
-	}
-add( Random1, Random9, t );
-mul( t, t, t2 );
-mul( t2, t2, t2 );
-mul( t, t2, t );
-FLOOR(t, t2 );
-sub( t2, t, t2 );
-mul( t, C5em6, t );
-add( t, t2, Random1 );
-/*return(Random1);*/
-}
-
-/* SqXMinX */
-
-SqXMinX( ErrKind )
-int ErrKind;
-{
-mul( X, BInvrse, t2 );
-sub( t2, X, t );
-/*SqEr = ((SQRT(X * X) - XB) - XA) / OneUlp;*/
-mul( X, X, Sqarg );
-SQRT( Sqarg, SqEr );
-sub( t2, SqEr, SqEr );
-sub( t, SqEr, SqEr );
-div( OneUlp, SqEr, SqEr );
-if( cmp(SqEr,Zero) != 0)
-	{
-	Showsq( 0 );
-	add( J, One, J );
-	ErrCnt[ErrKind] += 1;
-	printf("sqrt of " );
-	mul( X, X, t );
-	show( t );
-	printf( "minus " );
-	show( X );
-	printf( "equals " );
-	mul( OneUlp, SqEr, t );
-	show( t );
-	printf("\tinstead of correct value 0 .\n");
-	}
-}
-
-/* NewD */
-
-NewD()
-{
-mul( Z1, Q, X );
-/*X = FLOOR(Half - X / Radix) * Radix + X;*/
-div( Radix, X, t );
-sub( t, Half, t );
-FLOOR( t, t );
-mul( t, Radix, t );
-add( t, X, X );
-/*Q = (Q - X * Z) / Radix + X * X * (D / Radix);*/
-mul( X, Z, t );
-sub( t, Q, t );
-div( Radix, t, t );
-div( Radix, D, t2 );
-mul( X, t2, t2 );
-mul( X, t2, t2 );
-add( t, t2, Q );
-/*Z = Z - Two * X * D;*/
-mul( Two, X, t );
-mul( t, D, t );
-sub( t, Z, Z );
-
-if( cmp(Z,Zero) <= 0)
-	{
-	neg(Z);
-	neg(Z1);
-	}
-mul( Radix, D, D );
-}
-
-/* SR3750 */
-
-SR3750()
-{
-sub( Radix, X, t );
-sub( Radix, Z2, t2 );
-k = 0;
-if( cmp(t,t2) < 0 )
-	k = 1;
-sub( Z2, X, t );
-sub( Z2, W, t2 );
-if( cmp(t,t2) > 0 )
-	k = 1;
-/*if (! ((X - Radix < Z2 - Radix) || (X - Z2 > W - Z2))) {*/
-if( k == 0 )
-	{
-	I = I + 1;
-	mul( X, D, X2 );
-	mov( X2, Sqarg );
-	SQRT( X2, X2 );
-/*Y2 = (X2 - Z2) - (Y - Z2);*/
-	sub( Z2, X2, Y2 );
-	sub( Z2, Y, t );
-	sub( t, Y2, Y2 );
-	sub( Half, Y, X2 );
-	div( X2, X8, X2 );
-	mul( Half, X2, t );
-	mul( t, X2, t );
-	sub( t, X2, X2 );
-/*SqEr = (Y2 + Half) + (Half - X2);*/
-	add( Y2, Half, SqEr );
-	sub( X2, Half, t );
-	add( t, SqEr, SqEr );
-	Showsq( -1 );
-	sub( X2, Y2, SqEr );
-	Showsq( 1 );
-	}
-}
-
-/* IsYeqX */
-
-IsYeqX()
-{
-if( cmp(Y,X) != 0 )
-	{
-	if (N <= 0)
-		{
-		if( (cmp(Z,Zero) == 0) && (cmp(Q,Zero) <= 0) )
-			printf("WARNING:  computing\n");
-		else
-			{
-			ErrCnt[Defect] += 1;
-			printf( "computing\n");
-			}
-		show( Z );
-		printf( "\tto the power " );
-		show( Q );
-		printf("\tyielded " );
-		show( Y );
-		printf("\twhich compared unequal to correct " );
-		show( X );
-		sub( X, Y, t );
-		printf("\t\tthey differ by " );
-		show( t );
-		}
-	N = N + 1; /* ... count discrepancies. */
-	}
-}
-
-/* SR3980 */
-
-SR3980()
-{
-long li;
-
-do
-	{
-/*Q = (FLOAT) I;*/
-	li = I;
-	LTOF( &li, Q );
-	POW( Z, Q, Y );
-	IsYeqX();
-	if(++I > M)
-		break;
-	mul( Z, X, X );
-	}
-while( cmp(X,W) < 0 );
-}
-
-/* PrintIfNPositive */
-
-PrintIfNPositive()
-{
-if(N > 0)
-	printf("Similar discrepancies have occurred %d times.\n", N);
-}
-
-
-/* TstPtUf */
-
-TstPtUf()
-{
-N = 0;
-if( cmp(Z,Zero) != 0)
-	{
-	printf( "Z = " );
-	show(Z);
-	printf("Since comparison denies Z = 0, evaluating ");
-	printf("(Z + Z) / Z should be safe.\n");
-	sigsave = sigfpe;
-	if (setjmp(ovfl_buf))
-		goto very_serious;
-	add( Z, Z, Q9 );
-	div( Z, Q9, Q9 );
-	printf("What the machine gets for (Z + Z) / Z is " );
-	show( Q9 );
-	sub( Two, Q9, t );
-	FABS(t);
-	mul( Radix, U2, t2 );
-	if( cmp(t,t2) < 0 )
-		{
-		printf("This is O.K., provided Over/Underflow");
-		printf(" has NOT just been signaled.\n");
-		}
-	else
-		{
-		if( (cmp(Q9,One) < 0) || (cmp(Q9,Two) > 0) )
-			{
-very_serious:
-			N = 1;
-			ErrCnt [Serious] = ErrCnt [Serious] + 1;
-			printf("This is a VERY SERIOUS DEFECT!\n");
-			}
-		else
-			{
-			N = 1;
-			ErrCnt[Defect] += 1;
-			printf("This is a DEFECT!\n");
-			}
-		}
-	mul( Z, One, V9 );
-	mov( V9, Random1 );
-	mul( One, Z, V9 );
-	mov( V9, Random2 );
-	div( One, Z, V9 );
-	if( (cmp(Z,Random1) == 0) && (cmp(Z,Random2) == 0)
-		&& (cmp(Z,V9) == 0) )
-		{
-		if (N > 0)
-			Pause();
-		}
-	else
-		{
-		N = 1;
-		ErrCnt[Defect] += 1;
-		printf( "What prints as Z = ");
-		show( Z );
-		printf( "\tcompares different from " );
-		if( cmp(Z,Random1) != 0)
-			{
-			printf("Z * 1 = " );
-			show( Random1 );
-			}
-		if( (cmp(Z,Random2) != 0)
-			|| (cmp(Random2,Random1) != 0) )
-			{
-			printf("1 * Z == " );
-			show( Random2 );
-			}
-		if( cmp(Z,V9) != 0 )
-			{
-			printf("Z / 1 = " );
-			show( V9 );
-			}
-		if( cmp(Random2,Random1) != 0 )
-			{
-			ErrCnt[Defect] += 1;
-			printf( "Multiplication does not commute!\n");
-			printf("\tComparison alleges that 1 * Z = " );
-			show(Random2);
-			printf("\tdiffers from Z * 1 = " );
-			show(Random1);
-			}
-		Pause();
-		}
-	}
-}
-
-Pause()
-{
-}
-
-Sign( x, y )
-FSIZE *x, *y;
-{
-
-if( cmp( x, Zero ) < 0 )
-	{
-	mov( One, y );
-	neg( y );
-	}
-else
-	{
-	mov( One, y );
-	}
-}
-
-sqtest()
-{
-printf("\nRunning test of square root(x).\n");
-
-RSqrt = Other;
-k = 0;
-SQRT( Zero, t );
-k |= cmp( Zero, t );
-mov( Zero, t );
-neg(t);
-SQRT( t, t2 );
-k |= cmp( t, t2 );
-SQRT( One, t );
-k |= cmp( One, t );
-if( k != 0 )
- 	{
-	ErrCnt[Failure] += 1;
-	printf( "Square root of 0.0, -0.0 or 1.0 wrong\n");
-	}
-mov( Zero, MinSqEr );
-mov( Zero, MaxSqEr );
-mov( Zero, J );
-mov( Radix, X );
-mov( U2, OneUlp );
-SqXMinX( Serious );
-mov( BInvrse, X );
-mul( BInvrse, U1, OneUlp );
-SqXMinX( Serious );
-mov( U1, X );
-mul( U1, U1, OneUlp );
-SqXMinX( Serious );
-if( cmp(J,Zero) != 0)
-	Pause();
-printf("Testing if sqrt(X * X) == X for %d Integers X.\n", NoTrials);
-mov( Zero, J );
-mov( Two, X );
-mov( Radix, Y );
-if( cmp(Radix,One) != 0 )
-	{
-	lngint = NoTrials;
-	LTOF( &lngint, t );
-	FTOL( t, &lng2, X );
-	if( lngint != lng2 )
-		{
-		printf( "Integer conversion error\n" );
-		exit(1);
-		}
-	do
-		{
-		mov( Y, X );
-		mul( Radix, Y, Y );
-		sub( X, Y, t2 );
-		}
-	while( ! (cmp(t2,t) >= 0) );
-	}
-mul( X, U2, OneUlp );
-I = 1;
-while(I < 10)
-	{
-	add( X, One, X );
-	SqXMinX( Defect );
-	if( cmp(J,Zero) > 0 )
-		break;
-	I = I + 1;
-	}
-printf("Test for sqrt monotonicity.\n");
-I = - 1;
-mov( BMinusU2, X );
-mov( Radix, Y );
-mul( Radix, U2, Z );
-add( Radix, Z, Z );
-NotMonot = False;
-Monot = False;
-while( ! (NotMonot || Monot))
-	{
-	I = I + 1;
-	SQRT(X, X);
-	SQRT(Y,Q);
-	SQRT(Z,Z);
-	if( (cmp(X,Q) > 0) || (cmp(Q,Z) > 0) )
-		NotMonot = True;
-	else
-		{
-		add( Q, Half, Q );
-		FLOOR( Q, Q );
-		mul( Q, Q, t );
-		if( (I > 0) || (cmp(Radix,t) == 0) )
-			Monot = True;
-		else if (I > 0)
-			{
-			if(I > 1)
-				Monot = True;
-			else
-				{
-				mul( Y, BInvrse, Y );
-				sub( U1, Y, X );
-				add( Y, U1, Z );
-				}
-			}
-		else
-			{
-			mov( Q, Y );
-			sub( U2, Y, X );
-			add( Y, U2, Z );
-			}
-		}
-	}
-if( Monot )
-	printf("sqrt has passed a test for Monotonicity.\n");
-else
-	{
-	ErrCnt[Defect] += 1;
-	printf("sqrt(X) is non-monotonic for X near " );
-	show(Y);
-	}
-/*=============================================*/
-Milestone = 80;
-/*=============================================*/
-add( MinSqEr, Half, MinSqEr );
-sub( Half, MaxSqEr, MaxSqEr);
-/*Y = (SQRT(One + U2) - One) / U2;*/
-add( One, U2, Sqarg );
-SQRT( Sqarg, Y );
-sub( One, Y, Y );
-div( U2, Y, Y );
-/*SqEr = (Y - One) + U2 / Eight;*/
-sub( One, Y, t );
-div( Eight, U2, SqEr );
-add( t, SqEr, SqEr );
-Showsq( 1 );
-div( Eight, U2, SqEr );
-add( Y, SqEr, SqEr );
-Showsq( -1 );
-/*Y = ((SQRT(F9) - U2) - (One - U2)) / U1;*/
-mov( F9, Sqarg );
-SQRT( Sqarg, Y );
-sub( U2, Y, Y );
-sub( U2, One, t );
-sub( t, Y, Y );
-div( U1, Y, Y );
-div( Eight, U1, SqEr );
-add( Y, SqEr, SqEr );
-Showsq( 1 );
-/*SqEr = (Y + One) + U1 / Eight;*/
-div( Eight, U1, t );
-add( Y, One, SqEr );
-add( SqEr, t, SqEr );
-Showsq( -1 );
-mov( U2, OneUlp );
-mov( OneUlp, X );
-for( Indx = 1; Indx <= 3; ++Indx)
-	{
-/*Y = SQRT((X + U1 + X) + F9);*/
-	add( X, U1, Y );
-	add( Y, X, Y );
-	add( Y, F9, Y );
-	mov( Y, Sqarg );
-	SQRT( Sqarg, Y );
-/*Y = ((Y - U2) - ((One - U2) + X)) / OneUlp;*/
-	sub( U2, One, t );
-	add( t, X, t );
-	sub( U2, Y, Y );
-	sub( t, Y, Y );
-	div( OneUlp, Y, Y );
-/*Z = ((U1 - X) + F9) * Half * X * X / OneUlp;*/
-	sub( X, U1, t );
-	add( t, F9, t );
-	mul( t, Half, t );
-	mul( t, X, t );
-	mul( t, X, t );
-	div( OneUlp, t, Z );
-	add( Y, Half, SqEr );
-	add( SqEr, Z, SqEr );
-	Showsq( -1 );
-	sub( Half, Y, SqEr );
-	add( SqEr, Z, SqEr );
-	Showsq( 1 );
-	if(((Indx == 1) || (Indx == 3))) 
-		{
-/*X = OneUlp * Sign (X) * FLOOR(Eight / (Nine * SQRT(OneUlp)));*/
-		mov( OneUlp, Sqarg );
-		SQRT( Sqarg, t );
-		mul( Nine, t, t );
-		div( t, Eight, t );
-		FLOOR( t, t );
-		Sign( X, t2 );
-		mul( t2, t, t );
-		mul( OneUlp, t, X );
-		}
-	else
-		{
-		mov( U1, OneUlp );
-		mov( OneUlp, X );
-		neg( X );
-		}
-	}
-/*=============================================*/
-Milestone = 85;
-/*=============================================*/
-SqRWrng = False;
-Anomaly = False;
-if( cmp(Radix,One) != 0 )
-	{
-	printf("Testing whether sqrt is rounded or chopped.\n");
-/*D = FLOOR(Half + POW(Radix, One + Precision - FLOOR(Precision)));*/
-	FLOOR( Precision, t2 );
-	add( One, Precision, t );
-	sub( t2, t, t );
-	POW( Radix, t, D );
-	add( Half, D, D );
-	FLOOR( D, D );
-/* ... == Radix^(1 + fract) if (Precision == Integer + fract. */
-	div( Radix, D, X );
-	div( A1, D, Y );
-	FLOOR( X, t );
-	FLOOR( Y, t2 );
-	if( (cmp(X,t) != 0) || (cmp(Y,t2) != 0) )
-		{
-		Anomaly = True;
-		printf( "Anomaly 1\n" );
-		}
-	else
-		{
-		mov( Zero, X );
-		mov( X, Z2 );
-		mov( One, Y );
-		mov( Y, Y2 );
-		sub( One, Radix, Z1 );
-		mul( Four, D, FourD );
-		do
-			{
-			if( cmp(Y2,Z2) >0 )
-				{
-				mov( Radix, Q );
-				mov( Y, YY1 );
-				do
-					{
-/*X1 = FABS(Q + FLOOR(Half - Q / YY1) * YY1);*/
-					div( YY1, Q, t );
-					sub( t, Half, t );
-					FLOOR( t, t );
-					mul( t, YY1, t );
-					add( Q, t, X1 );
-					FABS( X1 );
-					mov( YY1, Q );
-					mov( X1, YY1 );
-					}
-				while( ! (cmp(X1,Zero) <= 0) );
-				if( cmp(Q,One) <= 0 )
-					{
-					mov( Y2, Z2 );
-					mov( Y, Z );
-					}
-				}
-			add( Y, Two, Y );
-			add( X, Eight, X );
-			add( Y2, X, Y2 );
-			if( cmp(Y2,FourD) >= 0 )
-				sub( FourD, Y2, Y2 );
-			}
-		while( ! (cmp(Y,D) >= 0) );
-		sub( Z2, FourD, X8 );
-		mul( Z, Z, Q );
-		add( X8, Q, Q );
-		div( FourD, Q, Q );
-		div( Eight, X8, X8 );
-		FLOOR( Q, t );
-		if( cmp(Q,t) != 0 )
-			{
-			Anomaly = True;
-			printf( "Anomaly 2\n" );
-			}
-		else
-			{
-			Break = False;
-			do
-				{
-				mul( Z1, Z, X );
-/*X = X - FLOOR(X / Radix) * Radix;*/
-				div( Radix, X, t );
-				FLOOR( t, t );
-				mul( t, Radix, t );
-				sub( t, X, X );
-				if( cmp(X,One) == 0 ) 
-					Break = True;
-				else
-					sub( One, Z1, Z1 );
-				}
-			while( ! (Break || (cmp(Z1,Zero) <= 0)) );
-			if( (cmp(Z1,Zero) <= 0) && (! Break))
-				{
-				printf( "Anomaly 3\n" );
-				Anomaly = True;
-				}
-			else
-				{
-				if( cmp(Z1,RadixD2) > 0)
-					sub( Radix, Z1, Z1 );
-				do
-					{
-					NewD();
-					mul( U2, D, t );
-					}
-				while( ! (cmp(t,F9) >= 0) );
-				mul( D, Radix, t );
-				sub( D, t, t );
-				sub( D, W, t2 );
-				if (cmp(t,t2) != 0 )
-					{
-					printf( "Anomaly 4\n" );
-					Anomaly = True;
-					}
-				else
-					{
-					mov( D, Z2 );
-					I = 0;
-					add( One, Z, t );
-					mul( t, Half, t );
-					add( D, t, Y );
-					add( D, Z, X );
-					add( X, Q, X );
-					SR3750();
-					sub( Z, One, t );
-					mul( t, Half, t );
-					add( D, t, Y );
-					add( Y, D, Y );
-					sub( Z, D, X );
-					add( X, D, X );
-					add( X, Q, t );
-					add( t, X, X );
-					SR3750();
-					NewD();
-					sub( Z2, D, t );
-					sub( Z2, W, t2 );
-					if(cmp(t,t2) != 0 )
-						{
-						printf( "Anomaly 5\n" );
-						Anomaly = True;
-						}
-					else
-						{
-/*Y = (D - Z2) + (Z2 + (One - Z) * Half);*/
-						sub( Z, One, t );
-						mul( t, Half, t );
-						add( Z2, t, t );
-						sub( Z2, D, Y );
-						add( Y, t, Y );
-/*X = (D - Z2) + (Z2 - Z + Q);*/
-						sub( Z, Z2, t );
-						add( t, Q, t );
-						sub( Z2, D, X );
-						add( X, t, X );
-						SR3750();
-						add( One, Z, Y );
-						mul( Y, Half, Y );
-						mov( Q, X );
-						SR3750();
-						if(I == 0)
-							{
-							printf( "Anomaly 6\n" );
-							Anomaly = True;
-							}
-						}
-					}
-				}
-			}
-		}
-	if ((I == 0) || Anomaly)
-		{
-		ErrCnt[Failure] += 1;
-		printf( "Anomalous arithmetic with Integer < \n");
-		printf("Radix^Precision = " );
-		show( W );
-		printf(" fails test whether sqrt rounds or chops.\n");
-		SqRWrng = True;
-		}
-	}
-if(! Anomaly)
-	{
-	if(! ((cmp(MinSqEr,Zero) < 0) || (cmp(MaxSqEr,Zero) > 0))) {
-	RSqrt = Rounded;
-	printf("Square root appears to be correctly rounded.\n");
-	}
-	else
-		{
-		k = 0;
-		add( MaxSqEr, U2, t );
-		sub( Half, U2, t2 );
-		if( cmp(t,t2) > 0 )
-			k = 1;
-		if( cmp( MinSqEr, Half ) > 0 )
-			k = 1;
-		add( MinSqEr, Radix, t );
-		if( cmp( t, Half ) < 0 )
-			k = 1;
-		if( k == 1 )
-			SqRWrng = True;
-		else
-			{
-			RSqrt = Chopped;
-			printf("Square root appears to be chopped.\n");
-			}
-		}
-	}
-if( SqRWrng )
-	{
-	printf("Square root is neither chopped nor correctly rounded.\n");
-	printf("Observed errors run from " );
-	sub( Half, MinSqEr, t );
-	show( t );
-	printf("\tto " );
-	add( Half, MaxSqEr, t );
-	show( t );
-	printf( "ulps.\n" );
-	sub( MinSqEr, MaxSqEr, t );
-	mul( Radix, Radix, t2 );
-	if( cmp( t, t2 ) >= 0 )
-		{
-		ErrCnt[Serious] += 1;
-		printf( "sqrt gets too many last digits wrong\n");
-		}
-	}
-}
-
-Showsq( arg )
-int arg;
-{
-
-k = 0;
-if( arg <= 0 )
-	{
-	if( cmp(SqEr,MinSqEr) < 0 )
-		{
-		k = 1;
-		mov( SqEr, MinSqEr );
-		}
-	}
-if( arg >= 0 )
-	{
-	if( cmp(SqEr,MaxSqEr) > 0 )
-		{
-		k = 2;
-		mov( SqEr, MaxSqEr );
-		}
-	}
-#if DEBUG
-if( k != 0 )
-	{
-	printf( "Square root of " );
-	show( arg );
-	printf( "\tis in error by " );
-	show( SqEr );
-	}
-#endif
-}
-
-
-pow1test()
-{
-
-/*=============================================*/
-Milestone = 90;
-/*=============================================*/
-Pause();
-printf("Testing powers Z^i for small Integers Z and i.\n");
-N = 0;
-/* ... test powers of zero. */
-I = 0;
-mov( Zero, Z );
-neg(Z);
-M = 3;
-Break = False;
-do
-	{
-	mov( One, X );
-	SR3980();
-	if(I <= 10)
-		{
-		I = 1023;
-		SR3980();
-		}
-	if( cmp(Z,MinusOne) == 0 )
-		Break = True;
-	else
-		{
-		mov( MinusOne, Z );
-		PrintIfNPositive();
-		N = 0;
-/* .. if(-1)^N is invalid, replace MinusOne by One. */
-		I = - 4;
-		}
-	}
-while( ! Break );
-PrintIfNPositive();
-N1 = N;
-N = 0;
-mov( A1, Z );
-/*M = FLOOR(Two * LOG(W) / LOG(A1));*/
-LOG( W, t );
-mul( Two, t, t );
-FLOOR( t, t );
-LOG( A1, t2 );
-div( t2, t, t );
-FTOL( t, &lngint, t2 );
-M = lngint;
-Break = False;
-do
-	{
-	mov( Z, X );
-	I = 1;
-	SR3980();
-	if( cmp(Z,AInvrse) == 0 )
-		Break = True;
-	else
-		 mov( AInvrse, Z );
-	}
-while( ! (Break) );
-/*=============================================*/
-Milestone = 100;
-/*=============================================*/
-/*  Powers of Radix have been tested, */
-/*         next try a few primes     */
-
-M = NoTrials;
-
-mov( Three, Z );
-do
-	{
-	mov( Z, X );
-	I = 1;
-	SR3980();
-	do
-		{
-		add( Z, Two, Z );
-		div( Three, Z, t );
-		FLOOR( t, t );
-		mul( Three, t, t );
-		}
-	while( cmp(t,Z) == 0 );
-	mul( Eight, Three, t );
-	}
-while( cmp(Z,t) < 0 );
-
-if(N > 0)
-	{
-	printf("Errors like this may invalidate financial calculations\n");
-	printf("\tinvolving interest rates.\n");
-	}
-PrintIfNPositive();
-N += N1;
-if(N == 0)
-	printf("... no discrepancies found.\n");
-if(N > 0)
-	Pause();
-else printf("\n");
-}
-
-
-
-pow2test()
-{
-printf("\n");
-/* ...calculate Exp2 == exp(2) == 7.38905 60989 30650 22723 04275-... */
-mov( Zero, X );
-mov( Two, t2 ); /*I = 2;*/
-
-mul( Two, Three, Y );
-mov( Zero, Q );
-N = 0;
-do
-	{
-	mov( X, Z );
-	add( t2, One, t2 ); /*I = I + 1;*/
-	add( t2, t2, t );
-	div( t, Y, Y ); /*Y = Y / (I + I);*/
-	add( Y, Q, R );
-	add( Z, R, X );
-	sub( X, Z, Q );
-	add( Q, R, Q );
-	}
-while( cmp(X,Z) > 0 );
-
-/*Z = (OneAndHalf + One / Eight) + X / (OneAndHalf * ThirtyTwo);*/
-div( Eight, One, t );
-add( OneAndHalf, t, Z );
-mul( OneAndHalf, ThirtyTwo, t );
-div( t, X, t );
-add( Z, t, Z );
-mul( Z, Z, X );
-mul( X, X, Exp2 );
-mov( F9, X );
-sub( U1, X, Y );
-printf("Testing X^((X + 1) / (X - 1)) vs. exp(2) = " );
-show( Exp2 );
-printf( "\tas X -> 1.\n" );
-for(I = 1;;)
-	{
-	sub( BInvrse, X, Z );
-/*Z = (X + One) / (Z - (One - BInvrse));*/
-	add( X, One, t2 );
-	sub( BInvrse, One, t );
-	sub( t, Z, t );
-	div( t, t2, Z );
-	POW( X, Z, Sqarg );
-	sub( Exp2, Sqarg, Q );
-	mov( Q, t );
-	FABS( t );
-	mul( TwoForty, U2, t2 );
-	if( cmp( t, t2 ) > 0 )
-		{
-		N = 1;
-		sub( BInvrse, X, V9 );
-		sub( BInvrse, One, t );
-		sub( t, V9, V9 );
-		ErrCnt[Defect] += 1;
-		printf( "Calculated " );
-		show( Sqarg );
-		printf(" for \t(1 + " );
-		show( V9 );
-		printf( "\tto the power " );
-		show( Z );
-		printf("\tdiffers from correct value by " );
-		show( Q );
-		printf("\tThis much error may spoil financial\n");
-		printf("\tcalculations involving tiny interest rates.\n");
-		break;
-		}
-	else
-		{
-		sub( X, Y, Z );
-		mul( Z, Two, Z );
-		add( Z, Y, Z );
-		mov( Y, X );
-		mov( Z, Y );
-		sub( F9, X, Z );
-		mul( Z, Z, Z );
-		add( Z, One, Z );
-		if( (cmp(Z,One) > 0) && (I < NoTrials) )
-			I++;
-		else
-			{
-			if( cmp(X,One) > 0 )
-				{
-				if(N == 0)
-					printf("Accuracy seems adequate.\n");
-				break;
-				}
-			else
-				{
-				add( One, U2, X );
-				add( U2, U2, Y );
-				add( X, Y, Y );
-				I = 1;
-				}
-			}
-		}
-	}
-/*=============================================*/
-Milestone = 150;
-/*=============================================*/
-printf("Testing powers Z^Q at four nearly extreme values.\n");
-N = 0;
-mov( A1, Z );
-/*Q = FLOOR(Half - LOG(C) / LOG(A1));*/
-LOG( C, t );
-LOG( A1, t2 );
-div( t2, t, t );
-sub( t, Half, t );
-FLOOR( t, Q );
-Break = False;
-do
-	{
-	mov( CInvrse, X );
-	POW( Z, Q, Y );
-	IsYeqX();
-	neg(Q);
-	mov( C, X );
-	POW( Z, Q, Y );
-	IsYeqX();
-	if( cmp(Z,One) < 0 )
-		Break = True;
-	else
-		mov( AInvrse, Z );
-	}
-while( ! (Break));
-PrintIfNPositive();
-if(N == 0)
-	printf(" ... no discrepancies found.\n");
-printf("\n");
-}

+ 0 - 215
test/math/epow.c

@@ -1,215 +0,0 @@
-/*						epow.c	*/
-/*  power function: z = x**y */
-/*  by Stephen L. Moshier. */
-
-
-#include "ehead.h"
-#define MAXPOS ((long) (((unsigned long) ~(0L)) >> 1))
-#define MAXNEG (-MAXPOS)
-/* #define MAXNEG (-MAXPOS - 1L) */
-
-extern int rndprc;
-void epowi();
-static void epowr();
-
-
-/* Run-time determination of largest integers */
-
-int powinited = 0;
-unsigned short maxposint[NE], maxnegint[NE];
-
-void initpow()
-{
-long li;
-
-li = MAXPOS;
-ltoe( &li, maxposint );
-li = MAXNEG;
-ltoe( &li, maxnegint );
-powinited = 1;
-}
-
-
-
-
-void epow( x, y, z )
-unsigned short *x, *y, *z;
-{
-unsigned short w[NE];
-int rndsav;
-long li;
-
-if( powinited == 0 )
-	initpow();
-
-/* Check for integer power. */
-
-efloor( y, w );
-if( (ecmp(y,w) == 0)
-   && (ecmp(maxposint,w) >= 0)
-   && (ecmp(w,maxnegint) >= 0) )
-	{
-	eifrac( y, &li, w );
-	epowi( x, y, z );
-	return;
-	}
-epowr( x, y, z );
-}
-
-
-
-
-/* y is integer valued. */
-
-void epowi( x, y, z )
-unsigned short x[], y[], z[];
-{
-unsigned short w[NE];
-long li, lx;
-unsigned long lu;
-int rndsav;
-unsigned short signx;
-/* unsigned short signy; */
-
-if( powinited == 0 )
-	initpow();
-
-rndsav = rndprc;
-
-if( (ecmp(y,maxposint) > 0) || (ecmp(maxnegint,y) > 0) )
-	{
-	epowr( x, y, z );
-	return;
-	}
-
-eifrac( y, &li, w );
-if( li < 0 )
-	lx = -li;
-else
-	lx = li;
-
-/*
-if( (x[NE-1] & (unsigned short )0x7fff) == 0 )
-*/
-
-if( ecmp( x, ezero) == 0 )
-	{
-	if( li == 0 )
-		{
-		emov( eone, z );
-		return;
-		}
-	else if( li < 0 )
-		{
-		einfin( z );
-		return;
-		}
-	else
-		{
-		eclear( z );
-		return;
-		}
-	}
-
-if( li == 0L )
-	{
-	emov( eone, z );
-	return;
-	}
-
-emov( x, w );
-signx = w[NE-1] & (unsigned short )0x8000;
-w[NE-1] &= (unsigned short )0x7fff;
-
-/* Overflow detection */
-/*
-lx = li * (w[NE-1] - 0x3fff);
-if( lx > 16385L )
-	{
-	einfin( z );
-	mtherr( "epowi", OVERFLOW );
-	goto done;
-	}
-if( lx < -16450L )
-	{
-	eclear( z );
-	return;
-	}
-*/
-rndprc = NBITS;
-
-if( li < 0 )
-	{
-	lu = (unsigned int )( -li );
-/*	signy = 0xffff;*/
-	ediv( w, eone, w );
-	}
-else
-	{
-	lu = (unsigned int )li;
-/*	signy = 0;*/
-	}
-
-/* First bit of the power */
-if( lu & 1 )
-	{
-	emov( w, z );
-	}	
-else
-	{
-	emov( eone, z );
-	signx = 0;
-	}
-
-
-lu >>= 1;
-while( lu != 0L )
-	{
-	emul( w, w, w );	/* arg to the 2-to-the-kth power */
-	if( lu & 1L )	/* if that bit is set, then include in product */
-		emul( w, z, z );
-	lu >>= 1;
-	}
-
-
-done:
-
-if( signx )
-	eneg( z ); /* odd power of negative number */
-
-/*
-if( signy )
-  	{
-  	if( ecmp( z, ezero ) != 0 )
- 		{
-		ediv( z, eone, z );
-		}
-	else
-		{
-		einfin( z );
-		printf( "epowi OVERFLOW\n" );
-		}
-	}
-*/
-rndprc = rndsav;
-emul( eone, z, z );
-}
-
-
-
-/* z = exp( y * log(x) ) */
-
-static void epowr( x, y, z )
-unsigned short *x, *y, *z;
-{
-unsigned short w[NE];
-int rndsav;
-
-rndsav = rndprc;
-rndprc = NBITS;
-elog( x, w );
-emul( y, w, w );
-eexp( w, z );
-rndprc = rndsav;
-emul( eone, z, z );
-}

+ 0 - 52
test/math/etanh.c

@@ -1,52 +0,0 @@
-/*							xtanh.c		*/
-/* hyperbolic tangent check routine */
-/* this subroutine is used by the exponential function routine */
-/* by Stephen L. Moshier. */
-
-
-
-#include "ehead.h"
-
-
-void etanh( x, y )
-unsigned short *x, *y;
-{
-unsigned short e[NE], r[NE], j[NE], xx[NE], m2[NE];
-short i, n;
-long lj;
-
-emov( x, r );
-r[NE-1] &= (unsigned short )0x7fff;
-if( ecmp(r, eone) >= 0 )
-	{
-/* tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
- * Note eexp() calls xtanh, but with an argument less than (1 + log 2)/2.
- */
-	eexp( r, e );
-	ediv( e, eone, r );
-	esub( r, e, xx );
-	eadd( r, e, j );
-	ediv( j, xx, y );
-	return;
-	}
-
-emov( etwo, m2 );
-eneg( m2 );
-
-n = NBITS/8;	/* Number of terms to do in the continued fraction */
-lj = 2 * n + 1;
-ltoe( &lj, j );
-
-emov( j, e );
-emul( x, x, xx );
-
-/* continued fraction */
-for( i=0; i<n; i++)
-	{
-	ediv( e, xx, r );
-	eadd( m2, j, j );
-	eadd( r, j, e );
-	}
-
-ediv( e, x, y );
-}

+ 0 - 181
test/math/etodec.c

@@ -1,181 +0,0 @@
-#include "ehead.h"
-void emovi(), emovo(), ecleaz(), eshdn8(), emdnorm();
-void todec();
-/*
-;	convert DEC double precision to e type
-;	double d;
-;	short e[NE];
-;	dectoe( &d, e );
-*/
-void dectoe( d, e )
-unsigned short *d;
-unsigned short *e;
-{
-unsigned short y[NI];
-register unsigned short r, *p;
-
-ecleaz(y);		/* start with a zero */
-p = y;			/* point to our number */
-r = *d;			/* get DEC exponent word */
-if( *d & (unsigned int )0x8000 )
-	*p = 0xffff;	/* fill in our sign */
-++p;			/* bump pointer to our exponent word */
-r &= 0x7fff;		/* strip the sign bit */
-if( r == 0 )		/* answer = 0 if high order DEC word = 0 */
-	goto done;
-
-
-r >>= 7;	/* shift exponent word down 7 bits */
-r += EXONE - 0201;	/* subtract DEC exponent offset */
-			/* add our e type exponent offset */
-*p++ = r;	/* to form our exponent */
-
-r = *d++;	/* now do the high order mantissa */
-r &= 0177;	/* strip off the DEC exponent and sign bits */
-r |= 0200;	/* the DEC understood high order mantissa bit */
-*p++ = r;	/* put result in our high guard word */
-
-*p++ = *d++;	/* fill in the rest of our mantissa */
-*p++ = *d++;
-*p = *d;
-
-eshdn8(y);	/* shift our mantissa down 8 bits */
-done:
-emovo( y, e );
-}
-
-
-
-/*
-;	convert e type to DEC double precision
-;	double d;
-;	short e[NE];
-;	etodec( e, &d );
-*/
-#if 0
-static unsigned short decbit[NI] = {0,0,0,0,0,0,0200,0};
-void etodec( x, d )
-unsigned short *x, *d;
-{
-unsigned short xi[NI];
-register unsigned short r;
-int i, j;
-
-emovi( x, xi );
-*d = 0;
-if( xi[0] != 0 )
-	*d = 0100000;
-r = xi[E];
-if( r < (EXONE - 128) )
-	goto zout;
-i = xi[M+4];
-if( (i & 0200) != 0 )
-	{
-	if( (i & 0377) == 0200 )
-		{
-		if( (i & 0400) != 0 )
-			{
-		/* check all less significant bits */
-			for( j=M+5; j<NI; j++ )
-				{
-				if( xi[j] != 0 )
-					goto yesrnd;
-				}
-			}
-		goto nornd;
-		}
-yesrnd:
-	eaddm( decbit, xi );
-	r -= enormlz(xi);
-	}
-
-nornd:
-
-r -= EXONE;
-r += 0201;
-if( r < 0 )
-	{
-zout:
-	*d++ = 0;
-	*d++ = 0;
-	*d++ = 0;
-	*d++ = 0;
-	return;
-	}
-if( r >= 0377 )
-	{
-	*d++ = 077777;
-	*d++ = -1;
-	*d++ = -1;
-	*d++ = -1;
-	return;
-	}
-r &= 0377;
-r <<= 7;
-eshup8( xi );
-xi[M] &= 0177;
-r |= xi[M];
-*d++ |= r;
-*d++ = xi[M+1];
-*d++ = xi[M+2];
-*d++ = xi[M+3];
-}
-#else
-
-extern int rndprc;
-
-void etodec( x, d )
-unsigned short *x, *d;
-{
-unsigned short xi[NI];
-long exp;
-int rndsav;
-
-emovi( x, xi );
-exp = (long )xi[E] - (EXONE - 0201); /* adjust exponent for offsets */
-/* round off to nearest or even */
-rndsav = rndprc;
-rndprc = 56;
-emdnorm( xi, 0, 0, exp, 64 );
-rndprc = rndsav;
-todec( xi, d );
-}
-
-void todec( x, y )
-unsigned short *x, *y;
-{
-unsigned short i;
-unsigned short *p;
-
-p = x;
-*y = 0;
-if( *p++ )
-	*y = 0100000;
-i = *p++;
-if( i == 0 )
-	{
-	*y++ = 0;
-	*y++ = 0;
-	*y++ = 0;
-	*y++ = 0;
-	return;
-	}
-if( i > 0377 )
-	{
-	*y++ |= 077777;
-	*y++ = 0xffff;
-	*y++ = 0xffff;
-	*y++ = 0xffff;
-	return;
-	}
-i &= 0377;
-i <<= 7;
-eshup8( x );
-x[M] &= 0177;
-i |= x[M];
-*y++ |= i;
-*y++ = x[M+1];
-*y++ = x[M+2];
-*y++ = x[M+3];
-}
-#endif

+ 738 - 0
test/math/gen-libm-test.pl

@@ -0,0 +1,738 @@
+#!/usr/bin/perl -w
+# Copyright (C) 1999 Free Software Foundation, Inc.
+# This file is part of the GNU C Library.
+# Contributed by Andreas Jaeger <aj@suse.de>, 1999.
+
+# The GNU C Library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License, or (at your option) any later version.
+
+# The GNU C Library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# Lesser General Public License for more details.
+
+# You should have received a copy of the GNU Lesser General Public
+# License along with the GNU C Library; if not, write to the Free
+# Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+# 02111-1307 USA.
+
+# This file needs to be tidied up
+# Note that functions and tests share the same namespace.
+
+# Information about tests are stored in: %results
+# $results{$test}{"kind"} is either "fct" or "test" and flags whether this
+# is a maximal error of a function or a single test.
+# $results{$test}{"type"} is the result type, e.g. normal or complex.
+# $results{$test}{"has_ulps"} is set if deltas exist.
+# $results{$test}{"has_fails"} is set if exptected failures exist.
+# In the following description $type and $float are:
+# - $type is either "normal", "real" (for the real part of a complex number)
+#   or "imag" (for the imaginary part # of a complex number).
+# - $float is either of float, ifloat, double, idouble, ldouble, ildouble;
+#   It represents the underlying floating point type (float, double or long
+#   double) and if inline functions (the leading i stands for inline)
+#   are used.
+# $results{$test}{$type}{"fail"}{$float} is defined and has a 1 if
+# the test is expected to fail
+# $results{$test}{$type}{"ulp"}{$float} is defined and has a delta as value
+
+
+use Getopt::Std;
+
+use strict;
+
+use vars qw ($input $output);
+use vars qw (%results);
+use vars qw (@tests @functions);
+use vars qw ($count);
+use vars qw (%beautify @all_floats);
+use vars qw ($output_dir $ulps_file);
+
+# all_floats is sorted and contains all recognised float types
+@all_floats = ('double', 'float', 'idouble',
+	       'ifloat', 'ildouble', 'ldouble');
+
+%beautify =
+  ( "minus_zero" => "-0",
+    "plus_zero" => "+0",
+    "minus_infty" => "-inf",
+    "plus_infty" => "inf",
+    "nan_value" => "NaN",
+    "M_El" => "e",
+    "M_E2l" => "e^2",
+    "M_E3l" => "e^3",
+    "M_LOG10El", "log10(e)",
+    "M_PIl" => "pi",
+    "M_PI_34l" => "3/4 pi",
+    "M_PI_2l" => "pi/2",
+    "M_PI_4l" => "pi/4",
+    "M_PI_6l" => "pi/6",
+    "M_PI_34_LOG10El" => "3/4 pi*log10(e)",
+    "M_PI_LOG10El" => "pi*log10(e)",
+    "M_PI2_LOG10El" => "pi/2*log10(e)",
+    "M_PI4_LOG10El" => "pi/4*log10(e)",
+    "M_LOG_SQRT_PIl" => "log(sqrt(pi))",
+    "M_LOG_2_SQRT_PIl" => "log(2*sqrt(pi))",
+    "M_2_SQRT_PIl" => "2 sqrt (pi)",
+    "M_SQRT_PIl" => "sqrt (pi)",
+    "INVALID_EXCEPTION" => "invalid exception",
+    "DIVIDE_BY_ZERO_EXCEPTION" => "division by zero exception",
+    "INVALID_EXCEPTION_OK" => "invalid exception allowed",
+    "DIVIDE_BY_ZERO_EXCEPTION_OK" => "division by zero exception allowed",
+    "EXCEPTIONS_OK" => "exceptions allowed",
+    "IGNORE_ZERO_INF_SIGN" => "sign of zero/inf not specified",
+"INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN" => "invalid exception and sign of zero/inf not specified"
+  );
+
+
+# get Options
+# Options:
+# u: ulps-file
+# h: help
+# o: output-directory
+# n: generate new ulps file
+use vars qw($opt_u $opt_h $opt_o $opt_n);
+getopts('u:o:nh');
+
+$ulps_file = 'libm-test-ulps';
+$output_dir = '';
+
+if ($opt_h) {
+  print "Usage: gen-libm-test.pl [OPTIONS]\n";
+  print " -h         print this help, then exit\n";
+  print " -o DIR     directory where generated files will be placed\n";
+  print " -n         only generate sorted file NewUlps from libm-test-ulps\n";
+  print " -u FILE    input file with ulps\n";
+  exit 0;
+}
+
+$ulps_file = $opt_u if ($opt_u);
+$output_dir = $opt_o if ($opt_o);
+
+$input = "libm-test.inc";
+$output = "${output_dir}libm-test.c";
+
+$count = 0;
+
+&parse_ulps ($ulps_file);
+&generate_testfile ($input, $output) unless ($opt_n);
+&output_ulps ("${output_dir}libm-test-ulps.h", $ulps_file) unless ($opt_n);
+&print_ulps_file ("${output_dir}NewUlps") if ($opt_n);
+
+# Return a nicer representation
+sub beautify {
+  my ($arg) = @_;
+  my ($tmp);
+
+  if (exists $beautify{$arg}) {
+    return $beautify{$arg};
+  }
+  if ($arg =~ /^-/) {
+    $tmp = $arg;
+    $tmp =~ s/^-//;
+    if (exists $beautify{$tmp}) {
+      return '-' . $beautify{$tmp};
+    }
+  }
+  if ($arg =~ /[0-9]L$/) {
+    $arg =~ s/L$//;
+  }
+  return $arg;
+}
+
+# Return a nicer representation of a complex number
+sub build_complex_beautify {
+  my ($r, $i) = @_;
+  my ($str1, $str2);
+
+  $str1 = &beautify ($r);
+  $str2 = &beautify ($i);
+  if ($str2 =~ /^-/) {
+    $str2 =~ s/^-//;
+    $str1 .= ' - ' . $str2;
+  } else {
+    $str1 .= ' + ' . $str2;
+  }
+  $str1 .= ' i';
+  return $str1;
+}
+
+# Return name of a variable
+sub get_variable {
+  my ($number) = @_;
+
+  return "x" if ($number == 1);
+  return "y" if ($number == 2);
+  return "z" if ($number == 3);
+  # return x1,x2,...
+  $number =-3;
+  return "x$number";
+}
+
+# Add a new test to internal data structures and fill in the
+# ulps, failures and exception information for the C line.
+sub new_test {
+  my ($test, $exception) = @_;
+  my $rest;
+
+  # Add ulp, xfail
+  if (exists $results{$test}{'has_ulps'}) {
+    $rest = ", DELTA$count";
+  } else {
+    $rest = ', 0';
+  }
+  if (exists $results{$test}{'has_fails'}) {
+    $rest .= ", FAIL$count";
+  } else {
+    $rest .= ', 0';
+  }
+  if (defined $exception) {
+    $rest .= ", $exception";
+  } else {
+    $rest .= ', 0';
+  }
+  $rest .= ");\n";
+  # We must increment here to keep @tests and count in sync
+  push @tests, $test;
+  ++$count;
+  return $rest;
+}
+
+# Treat some functions especially.
+# Currently only sincos needs extra treatment.
+sub special_functions {
+  my ($file, $args) = @_;
+  my (@args, $str, $test, $cline);
+
+  @args = split /,\s*/, $args;
+
+  unless ($args[0] =~ /sincos/) {
+    die ("Don't know how to handle $args[0] extra.");
+  }
+  print $file "  FUNC (sincos) ($args[1], &sin_res, &cos_res);\n";
+
+  $str = 'sincos (' . &beautify ($args[1]) . ', &sin_res, &cos_res)';
+  # handle sin
+  $test = $str . ' puts ' . &beautify ($args[2]) . ' in sin_res';
+  if ($#args == 4) {
+    $test .= " plus " . &beautify ($args[4]);
+  }
+
+  $cline = "  check_float (\"$test\", sin_res, $args[2]";
+  $cline .= &new_test ($test, $args[4]);
+  print $file $cline;
+
+  # handle cos
+  $test = $str . ' puts ' . &beautify ($args[3]) . ' in cos_res';
+  $cline = "  check_float (\"$test\", cos_res, $args[3]";
+  # only tests once for exception
+  $cline .= &new_test ($test, undef);
+  print $file $cline;
+}
+
+# Parse the arguments to TEST_x_y
+sub parse_args {
+  my ($file, $descr, $args) = @_;
+  my (@args, $str, $descr_args, $descr_res, @descr);
+  my ($current_arg, $cline, $i);
+  my ($pre, $post, @special);
+  my ($extra_var, $call, $c_call);
+
+  if ($descr eq 'extra') {
+    &special_functions ($file, $args);
+    return;
+  }
+  ($descr_args, $descr_res) = split /_/,$descr, 2;
+
+  @args = split /,\s*/, $args;
+
+  $call = "$args[0] (";
+
+  # Generate first the string that's shown to the user
+  $current_arg = 1;
+  $extra_var = 0;
+  @descr = split //,$descr_args;
+  for ($i = 0; $i <= $#descr; $i++) {
+    if ($i >= 1) {
+      $call .= ', ';
+    }
+    # FLOAT, int, long int, long long int
+    if ($descr[$i] =~ /f|i|l|L/) {
+      $call .= &beautify ($args[$current_arg]);
+      ++$current_arg;
+      next;
+    }
+    # &FLOAT, &int - argument is added here
+    if ($descr[$i] =~ /F|I/) {
+      ++$extra_var;
+      $call .= '&' . &get_variable ($extra_var);
+      next;
+    }
+    # complex
+    if ($descr[$i] eq 'c') {
+      $call .= &build_complex_beautify ($args[$current_arg], $args[$current_arg+1]);
+      $current_arg += 2;
+      next;
+    }
+
+    die ("$descr[$i] is unknown");
+  }
+  $call .= ')';
+  $str = "$call == ";
+
+  # Result
+  @descr = split //,$descr_res;
+  foreach (@descr) {
+    if ($_ =~ /f|i|l|L/) {
+      $str .= &beautify ($args[$current_arg]);
+      ++$current_arg;
+    } elsif ($_ eq 'c') {
+      $str .= &build_complex_beautify ($args[$current_arg], $args[$current_arg+1]);
+      $current_arg += 2;
+    } elsif ($_ eq 'b') {
+      # boolean
+      $str .= ($args[$current_arg] == 0) ? "false" : "true";
+      ++$current_arg;
+    } elsif ($_ eq '1') {
+      ++$current_arg;
+    } else {
+      die ("$_ is unknown");
+    }
+  }
+  # consistency check
+  if ($current_arg == $#args) {
+    die ("wrong number of arguments")
+      unless ($args[$current_arg] =~ /EXCEPTION|IGNORE_ZERO_INF_SIGN/);
+  } elsif ($current_arg < $#args) {
+    die ("wrong number of arguments");
+  } elsif ($current_arg > ($#args+1)) {
+    die ("wrong number of arguments");
+  }
+
+
+  # check for exceptions
+  if ($current_arg <= $#args) {
+    $str .= " plus " . &beautify ($args[$current_arg]);
+  }
+
+  # Put the C program line together
+  # Reset some variables to start again
+  $current_arg = 1;
+  $extra_var = 0;
+  if (substr($descr_res,0,1) eq 'f') {
+    $cline = 'check_float'
+  } elsif (substr($descr_res,0,1) eq 'b') {
+    $cline = 'check_bool';
+  } elsif (substr($descr_res,0,1) eq 'c') {
+    $cline = 'check_complex';
+  } elsif (substr($descr_res,0,1) eq 'i') {
+    $cline = 'check_int';
+  } elsif (substr($descr_res,0,1) eq 'l') {
+    $cline = 'check_long';
+  } elsif (substr($descr_res,0,1) eq 'L') {
+    $cline = 'check_longlong';
+  }
+  # Special handling for some macros:
+  $cline .= " (\"$str\", ";
+  if ($args[0] =~ /fpclassify|isnormal|isfinite|signbit/) {
+    $c_call = "$args[0] (";
+  } else {
+    $c_call = " FUNC($args[0]) (";
+  }
+  @descr = split //,$descr_args;
+  for ($i=0; $i <= $#descr; $i++) {
+    if ($i >= 1) {
+      $c_call .= ', ';
+    }
+    # FLOAT, int, long int, long long int
+    if ($descr[$i] =~ /f|i|l|L/) {
+      $c_call .= $args[$current_arg];
+      $current_arg++;
+      next;
+    }
+    # &FLOAT, &int
+    if ($descr[$i] =~ /F|I/) {
+      ++$extra_var;
+      $c_call .= '&' . &get_variable ($extra_var);
+      next;
+    }
+    # complex
+    if ($descr[$i] eq 'c') {
+      $c_call .= "BUILD_COMPLEX ($args[$current_arg], $args[$current_arg+1])";
+      $current_arg += 2;
+      next;
+    }
+  }
+  $c_call .= ')';
+  $cline .= "$c_call, ";
+
+  @descr = split //,$descr_res;
+  foreach (@descr) {
+    if ($_ =~ /b|f|i|l|L/ ) {
+      $cline .= $args[$current_arg];
+      $current_arg++;
+    } elsif ($_ eq 'c') {
+      $cline .= "BUILD_COMPLEX ($args[$current_arg], $args[$current_arg+1])";
+      $current_arg += 2;
+    } elsif ($_ eq '1') {
+      push @special, $args[$current_arg];
+      ++$current_arg;
+    }
+  }
+  # Add ulp, xfail
+  $cline .= &new_test ($str, ($current_arg <= $#args) ? $args[$current_arg] : undef);
+
+  # special treatment for some functions
+  if ($args[0] eq 'frexp') {
+    if (defined $special[0] && $special[0] ne "IGNORE") {
+      my ($str) = "$call sets x to $special[0]";
+      $post = "  check_int (\"$str\", x, $special[0]";
+      $post .= &new_test ($str, undef);
+    }
+  } elsif ($args[0] eq 'gamma' || $args[0] eq 'lgamma') {
+    $pre = "  signgam = 0;\n";
+    if (defined $special[0] && $special[0] ne "IGNORE") {
+      my ($str) = "$call sets signgam to $special[0]";
+      $post = "  check_int (\"$str\", signgam, $special[0]";
+      $post .= &new_test ($str, undef);
+    }
+  } elsif ($args[0] eq 'modf') {
+    if (defined $special[0] && $special[0] ne "IGNORE") {
+      my ($str) = "$call sets x to $special[0]";
+      $post = "  check_float (\"$str\", x, $special[0]";
+      $post .= &new_test ($str, undef);
+    }
+  } elsif ($args[0] eq 'remquo') {
+    if (defined $special[0] && $special[0] ne "IGNORE") {
+      my ($str) = "$call sets x to $special[0]";
+      $post = "  check_int (\"$str\", x, $special[0]";
+      $post .= &new_test ($str, undef);
+    }
+  }
+
+  print $file $pre if (defined $pre);
+
+  print $file "  $cline";
+
+  print $file $post if (defined $post);
+}
+
+# Generate libm-test.c
+sub generate_testfile {
+  my ($input, $output) = @_;
+  my ($lasttext);
+  my (@args, $i, $str);
+
+  open INPUT, $input or die ("Can't open $input: $!");
+  open OUTPUT, ">$output" or die ("Can't open $output: $!");
+
+  # Replace the special macros
+  while (<INPUT>) {
+
+    # TEST_...
+    if (/^\s*TEST_/) {
+      my ($descr, $args);
+      chop;
+      ($descr, $args) = ($_ =~ /TEST_(\w+)\s*\((.*)\)/);
+      &parse_args (\*OUTPUT, $descr, $args);
+      next;
+    }
+    # START (function)
+    if (/START/) {
+      print OUTPUT "  init_max_error ();\n";
+      next;
+    }
+    # END (function)
+    if (/END/) {
+      my ($fct, $line, $type);
+      if (/complex/) {
+	s/,\s*complex\s*//;
+	$type = 'complex';
+      } else {
+	$type = 'normal';
+      }
+      ($fct) = ($_ =~ /END\s*\((.*)\)/);
+      if ($type eq 'complex') {
+	$line = "  print_complex_max_error (\"$fct\", ";
+      } else {
+	$line = "  print_max_error (\"$fct\", ";
+      }
+      if (exists $results{$fct}{'has_ulps'}) {
+	$line .= "DELTA$fct";
+      } else {
+	$line .= '0';
+      }
+      if (exists $results{$fct}{'has_fails'}) {
+	$line .= ", FAIL$fct";
+      } else {
+	$line .= ', 0';
+      }
+      $line .= ");\n";
+      print OUTPUT $line;
+      push @functions, $fct;
+      next;
+    }
+    print OUTPUT;
+  }
+  close INPUT;
+  close OUTPUT;
+}
+
+
+
+# Parse ulps file
+sub parse_ulps {
+  my ($file) = @_;
+  my ($test, $type, $float, $eps, $kind);
+
+  # $type has the following values:
+  # "normal": No complex variable
+  # "real": Real part of complex result
+  # "imag": Imaginary part of complex result
+  open ULP, $file  or die ("Can't open $file: $!");
+  while (<ULP>) {
+    chop;
+    # ignore comments and empty lines
+    next if /^#/;
+    next if /^\s*$/;
+    if (/^Test/) {
+      if (/Real part of:/) {
+	s/Real part of: //;
+	$type = 'real';
+      } elsif (/Imaginary part of:/) {
+	s/Imaginary part of: //;
+	$type = 'imag';
+      } else {
+	$type = 'normal';
+      }
+      s/^.+\"(.*)\".*$/$1/;
+      $test = $_;
+      $kind = 'test';
+      next;
+    }
+    if (/^Function: /) {
+      if (/Real part of/) {
+	s/Real part of //;
+	$type = 'real';
+      } elsif (/Imaginary part of/) {
+	s/Imaginary part of //;
+	$type = 'imag';
+      } else {
+	$type = 'normal';
+      }
+      ($test) = ($_ =~ /^Function:\s*\"([a-zA-Z0-9_]+)\"/);
+      $kind = 'fct';
+      next;
+    }
+    if (/^i?(float|double|ldouble):/) {
+      ($float, $eps) = split /\s*:\s*/,$_,2;
+
+      if ($eps eq 'fail') {
+	$results{$test}{$type}{'fail'}{$float} = 1;
+	$results{$test}{'has_fails'} = 1;
+      } elsif ($eps eq "0") {
+	# ignore
+	next;
+      } else {
+	$results{$test}{$type}{'ulp'}{$float} = $eps;
+	$results{$test}{'has_ulps'} = 1;
+      }
+      if ($type =~ /^real|imag$/) {
+	$results{$test}{'type'} = 'complex';
+      } elsif ($type eq 'normal') {
+	$results{$test}{'type'} = 'normal';
+      }
+      $results{$test}{'kind'} = $kind;
+      next;
+    }
+    print "Skipping unknown entry: `$_'\n";
+  }
+  close ULP;
+}
+
+
+# Clean up a floating point number
+sub clean_up_number {
+  my ($number) = @_;
+
+  # Remove trailing zeros
+  $number =~ s/0+$//;
+  $number =~ s/\.$//;
+  return $number;
+}
+
+# Output a file which can be read in as ulps file.
+sub print_ulps_file {
+  my ($file) = @_;
+  my ($test, $type, $float, $eps, $fct, $last_fct);
+
+  $last_fct = '';
+  open NEWULP, ">$file" or die ("Can't open $file: $!");
+  print NEWULP "# Begin of automatic generation\n";
+  # first the function calls
+  foreach $test (sort keys %results) {
+    next if ($results{$test}{'kind'} ne 'test');
+    foreach $type ('real', 'imag', 'normal') {
+      if (exists $results{$test}{$type}) {
+	if (defined $results{$test}) {
+	  ($fct) = ($test =~ /^(\w+)\s/);
+	  if ($fct ne $last_fct) {
+	    $last_fct = $fct;
+	    print NEWULP "\n# $fct\n";
+	  }
+	}
+	if ($type eq 'normal') {
+	  print NEWULP "Test \"$test\":\n";
+	} elsif ($type eq 'real') {
+	  print NEWULP "Test \"Real part of: $test\":\n";
+	} elsif ($type eq 'imag') {
+	  print NEWULP "Test \"Imaginary part of: $test\":\n";
+	}
+	foreach $float (@all_floats) {
+	  if (exists $results{$test}{$type}{'ulp'}{$float}) {
+	    print NEWULP "$float: ",
+	    &clean_up_number ($results{$test}{$type}{'ulp'}{$float}),
+	    "\n";
+	  }
+	  if (exists $results{$test}{$type}{'fail'}{$float}) {
+	    print NEWULP "$float: fail\n";
+	  }
+	}
+      }
+    }
+  }
+  print NEWULP "\n# Maximal error of functions:\n";
+
+  foreach $fct (sort keys %results) {
+    next if ($results{$fct}{'kind'} ne 'fct');
+    foreach $type ('real', 'imag', 'normal') {
+      if (exists $results{$fct}{$type}) {
+	if ($type eq 'normal') {
+	  print NEWULP "Function: \"$fct\":\n";
+	} elsif ($type eq 'real') {
+	  print NEWULP "Function: Real part of \"$fct\":\n";
+	} elsif ($type eq 'imag') {
+	  print NEWULP "Function: Imaginary part of \"$fct\":\n";
+	}
+	foreach $float (@all_floats) {
+	  if (exists $results{$fct}{$type}{'ulp'}{$float}) {
+	    print NEWULP "$float: ",
+	    &clean_up_number ($results{$fct}{$type}{'ulp'}{$float}),
+	    "\n";
+	  }
+	  if (exists $results{$fct}{$type}{'fail'}{$float}) {
+	    print NEWULP "$float: fail\n";
+	  }
+	}
+	print NEWULP "\n";
+      }
+    }
+  }
+  print NEWULP "# end of automatic generation\n";
+  close NEWULP;
+}
+
+sub get_ulps {
+  my ($test, $type, $float) = @_;
+
+  if ($type eq 'complex') {
+    my ($res);
+    # Return 0 instead of BUILD_COMPLEX (0,0)
+    if (!exists $results{$test}{'real'}{'ulp'}{$float} &&
+	!exists $results{$test}{'imag'}{'ulp'}{$float}) {
+      return "0";
+    }
+    $res = 'BUILD_COMPLEX (';
+    $res .= (exists $results{$test}{'real'}{'ulp'}{$float}
+	     ? $results{$test}{'real'}{'ulp'}{$float} : "0");
+    $res .= ', ';
+    $res .= (exists $results{$test}{'imag'}{'ulp'}{$float}
+	     ? $results{$test}{'imag'}{'ulp'}{$float} : "0");
+    $res .= ')';
+    return $res;
+  }
+  return (exists $results{$test}{'normal'}{'ulp'}{$float}
+	  ? $results{$test}{'normal'}{'ulp'}{$float} : "0");
+}
+
+sub get_failure {
+  my ($test, $type, $float) = @_;
+  if ($type eq 'complex') {
+    # return x,y
+    my ($res);
+    # Return 0 instead of BUILD_COMPLEX_INT (0,0)
+    if (!exists $results{$test}{'real'}{'ulp'}{$float} &&
+	!exists $results{$test}{'imag'}{'ulp'}{$float}) {
+      return "0";
+    }
+    $res = 'BUILD_COMPLEX_INT (';
+    $res .= (exists $results{$test}{'real'}{'fail'}{$float}
+	     ? $results{$test}{'real'}{'fail'}{$float} : "0");
+    $res .= ', ';
+    $res .= (exists $results{$test}{'imag'}{'fail'}{$float}
+	     ? $results{$test}{'imag'}{'fail'}{$float} : "0");
+    $res .= ')';
+    return $res;
+  }
+  return (exists $results{$test}{'normal'}{'fail'}{$float}
+	  ? $results{$test}{'normal'}{'fail'}{$float} : "0");
+
+}
+
+# Output the defines for a single test
+sub output_test {
+  my ($file, $test, $name) = @_;
+  my ($ldouble, $double, $float, $ildouble, $idouble, $ifloat);
+  my ($type);
+
+  # Do we have ulps/failures?
+  if (!exists $results{$test}{'type'}) {
+    return;
+  }
+  $type = $results{$test}{'type'};
+  if (exists $results{$test}{'has_ulps'}) {
+    # XXX use all_floats (change order!)
+    $ldouble = &get_ulps ($test, $type, "ldouble");
+    $double = &get_ulps ($test, $type, "double");
+    $float = &get_ulps ($test, $type, "float");
+    $ildouble = &get_ulps ($test, $type, "ildouble");
+    $idouble = &get_ulps ($test, $type, "idouble");
+    $ifloat = &get_ulps ($test, $type, "ifloat");
+    print $file "#define DELTA$name CHOOSE($ldouble, $double, $float, $ildouble, $idouble, $ifloat)\t/* $test  */\n";
+  }
+
+  if (exists $results{$test}{'has_fails'}) {
+    $ldouble = &get_failure ($test, "ldouble");
+    $double = &get_failure ($test, "double");
+    $float = &get_failure ($test, "float");
+    $ildouble = &get_failure ($test, "ildouble");
+    $idouble = &get_failure ($test, "idouble");
+    $ifloat = &get_failure ($test, "ifloat");
+    print $file "#define FAIL$name CHOOSE($ldouble, $double, $float $ildouble, $idouble, $ifloat)\t/* $test  */\n";
+  }
+}
+
+# Print include file
+sub output_ulps {
+  my ($file, $ulps_filename) = @_;
+  my ($i, $fct);
+
+  open ULP, ">$file" or die ("Can't open $file: $!");
+
+  print ULP "/* This file is automatically generated\n";
+  print ULP "   from $ulps_filename with gen-libm-test.pl.\n";
+  print ULP "   Don't change it - change instead the master files.  */\n\n";
+
+  print ULP "\n/* Maximal error of functions.  */\n";
+  foreach $fct (@functions) {
+    output_test (\*ULP, $fct, $fct);
+  }
+
+  print ULP "\n/* Error of single function calls.  */\n";
+  for ($i = 0; $i < $count; $i++) {
+    output_test (\*ULP, $tests[$i], $i);
+  }
+  close ULP;
+}

+ 0 - 4119
test/math/ieee.c

@@ -1,4119 +0,0 @@
-/*							ieee.c
- *
- *    Extended precision IEEE binary floating point arithmetic routines
- *
- * Numbers are stored in C language as arrays of 16-bit unsigned
- * short integers.  The arguments of the routines are pointers to
- * the arrays.
- *
- *
- * External e type data structure, simulates Intel 8087 chip
- * temporary real format but possibly with a larger significand:
- *
- *	NE-1 significand words	(least significant word first,
- *				 most significant bit is normally set)
- *	exponent		(value = EXONE for 1.0,
- *				top bit is the sign)
- *
- *
- * Internal data structure of a number (a "word" is 16 bits):
- *
- * ei[0]	sign word	(0 for positive, 0xffff for negative)
- * ei[1]	biased exponent	(value = EXONE for the number 1.0)
- * ei[2]	high guard word	(always zero after normalization)
- * ei[3]
- * to ei[NI-2]	significand	(NI-4 significand words,
- *				 most significant word first,
- *				 most significant bit is set)
- * ei[NI-1]	low guard word	(0x8000 bit is rounding place)
- *
- *
- *
- *		Routines for external format numbers
- *
- *	asctoe( string, e )	ASCII string to extended double e type
- *	asctoe64( string, &d )	ASCII string to long double
- *	asctoe53( string, &d )	ASCII string to double
- *	asctoe24( string, &f )	ASCII string to single
- *	asctoeg( string, e, prec ) ASCII string to specified precision
- *	e24toe( &f, e )		IEEE single precision to e type
- *	e53toe( &d, e )		IEEE double precision to e type
- *	e64toe( &d, e )		IEEE long double precision to e type
- *	eabs(e)			absolute value
- *	eadd( a, b, c )		c = b + a
- *	eclear(e)		e = 0
- *	ecmp (a, b)		Returns 1 if a > b, 0 if a == b,
- *				-1 if a < b, -2 if either a or b is a NaN.
- *	ediv( a, b, c )		c = b / a
- *	efloor( a, b )		truncate to integer, toward -infinity
- *	efrexp( a, exp, s )	extract exponent and significand
- *	eifrac( e, &l, frac )   e to long integer and e type fraction
- *	euifrac( e, &l, frac )  e to unsigned long integer and e type fraction
- *	einfin( e )		set e to infinity, leaving its sign alone
- *	eldexp( a, n, b )	multiply by 2**n
- *	emov( a, b )		b = a
- *	emul( a, b, c )		c = b * a
- *	eneg(e)			e = -e
- *	eround( a, b )		b = nearest integer value to a
- *	esub( a, b, c )		c = b - a
- *	e24toasc( &f, str, n )	single to ASCII string, n digits after decimal
- *	e53toasc( &d, str, n )	double to ASCII string, n digits after decimal
- *	e64toasc( &d, str, n )	long double to ASCII string
- *	etoasc( e, str, n )	e to ASCII string, n digits after decimal
- *	etoe24( e, &f )		convert e type to IEEE single precision
- *	etoe53( e, &d )		convert e type to IEEE double precision
- *	etoe64( e, &d )		convert e type to IEEE long double precision
- *	ltoe( &l, e )		long (32 bit) integer to e type
- *	ultoe( &l, e )		unsigned long (32 bit) integer to e type
- *      eisneg( e )             1 if sign bit of e != 0, else 0
- *      eisinf( e )             1 if e has maximum exponent (non-IEEE)
- *				or is infinite (IEEE)
- *      eisnan( e )             1 if e is a NaN
- *	esqrt( a, b )		b = square root of a
- *
- *
- *		Routines for internal format numbers
- *
- *	eaddm( ai, bi )		add significands, bi = bi + ai
- *	ecleaz(ei)		ei = 0
- *	ecleazs(ei)		set ei = 0 but leave its sign alone
- *	ecmpm( ai, bi )		compare significands, return 1, 0, or -1
- *	edivm( ai, bi )		divide  significands, bi = bi / ai
- *	emdnorm(ai,l,s,exp)	normalize and round off
- *	emovi( a, ai )		convert external a to internal ai
- *	emovo( ai, a )		convert internal ai to external a
- *	emovz( ai, bi )		bi = ai, low guard word of bi = 0
- *	emulm( ai, bi )		multiply significands, bi = bi * ai
- *	enormlz(ei)		left-justify the significand
- *	eshdn1( ai )		shift significand and guards down 1 bit
- *	eshdn8( ai )		shift down 8 bits
- *	eshdn6( ai )		shift down 16 bits
- *	eshift( ai, n )		shift ai n bits up (or down if n < 0)
- *	eshup1( ai )		shift significand and guards up 1 bit
- *	eshup8( ai )		shift up 8 bits
- *	eshup6( ai )		shift up 16 bits
- *	esubm( ai, bi )		subtract significands, bi = bi - ai
- *
- *
- * The result is always normalized and rounded to NI-4 word precision
- * after each arithmetic operation.
- *
- * Exception flags are NOT fully supported.
- *
- * Define INFINITY in mconf.h for support of infinity; otherwise a
- * saturation arithmetic is implemented.
- *
- * Define NANS for support of Not-a-Number items; otherwise the
- * arithmetic will never produce a NaN output, and might be confused
- * by a NaN input.
- * If NaN's are supported, the output of ecmp(a,b) is -2 if
- * either a or b is a NaN. This means asking if(ecmp(a,b) < 0)
- * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than
- * if in doubt.
- * Signaling NaN's are NOT supported; they are treated the same
- * as quiet NaN's.
- *
- * Denormals are always supported here where appropriate (e.g., not
- * for conversion to DEC numbers).
- */
-
-/*
- * Revision history:
- *
- *  5 Jan 84	PDP-11 assembly language version
- *  2 Mar 86	fixed bug in asctoq()
- *  6 Dec 86	C language version
- * 30 Aug 88	100 digit version, improved rounding
- * 15 May 92    80-bit long double support
- *
- * Author:  S. L. Moshier.
- */
-
-#include <stdio.h>
-/* #include "\usr\include\stdio.h" */
-#include "ehead.h"
-#include "mconf.h"
-
-/* Change UNK into something else. */
-#ifdef UNK
-#undef UNK
-#define IBMPC 1
-#endif
-
-/* NaN's require infinity support. */
-#ifdef NANS
-#ifndef INFINITY
-#define INFINITY
-#endif
-#endif
-
-/* This handles 64-bit long ints. */
-#define LONGBITS (8 * sizeof(long))
-
-/* Control register for rounding precision.
- * This can be set to 80 (if NE=6), 64, 56, 53, or 24 bits.
- */
-int rndprc = NBITS;
-extern int rndprc;
-
-void eaddm(), esubm(), emdnorm(), asctoeg(), enan();
-static void toe24(), toe53(), toe64(), toe113();
-void eremain(), einit(), eiremain();
-int ecmpm(), edivm(), emulm(), eisneg(), eisinf();
-void emovi(), emovo(), emovz(), ecleaz(), eadd1();
-void etodec(), todec(), dectoe();
-int eisnan(), eiisnan();
-
-
-
-void einit()
-{
-}
-
-/*
-; Clear out entire external format number.
-;
-; unsigned short x[];
-; eclear( x );
-*/
-
-void eclear( x )
-register unsigned short *x;
-{
-register int i;
-
-for( i=0; i<NE; i++ )
-	*x++ = 0;
-}
-
-
-
-/* Move external format number from a to b.
- *
- * emov( a, b );
- */
-
-void emov( a, b )
-register unsigned short *a, *b;
-{
-register int i;
-
-for( i=0; i<NE; i++ )
-	*b++ = *a++;
-}
-
-
-/*
-;	Absolute value of external format number
-;
-;	short x[NE];
-;	eabs( x );
-*/
-
-void eabs(x)
-unsigned short x[];	/* x is the memory address of a short */
-{
-
-x[NE-1] &= 0x7fff; /* sign is top bit of last word of external format */
-}
-
-
-
-
-/*
-;	Negate external format number
-;
-;	unsigned short x[NE];
-;	eneg( x );
-*/
-
-void eneg(x)
-unsigned short x[];
-{
-
-#ifdef NANS
-if( eisnan(x) )
-	return;
-#endif
-x[NE-1] ^= 0x8000; /* Toggle the sign bit */
-}
-
-
-
-/* Return 1 if external format number is negative,
- * else return zero.
- */
-int eisneg(x)
-unsigned short x[];
-{
-
-#ifdef NANS
-if( eisnan(x) )
-	return( 0 );
-#endif
-if( x[NE-1] & 0x8000 )
-	return( 1 );
-else
-	return( 0 );
-}
-
-
-/* Return 1 if external format number has maximum possible exponent,
- * else return zero.
- */
-int eisinf(x)
-unsigned short x[];
-{
-
-if( (x[NE-1] & 0x7fff) == 0x7fff )
-	{
-#ifdef NANS
-	if( eisnan(x) )
-		return( 0 );
-#endif
-	return( 1 );
-	}
-else
-	return( 0 );
-}
-
-/* Check if e-type number is not a number.
- */
-int eisnan(x)
-unsigned short x[];
-{
-
-#ifdef NANS
-int i;
-/* NaN has maximum exponent */
-if( (x[NE-1] & 0x7fff) != 0x7fff )
-	return (0);
-/* ... and non-zero significand field. */
-for( i=0; i<NE-1; i++ )
-	{
-	if( *x++ != 0 )
-		return (1);
-	}
-#endif
-return (0);
-}
-
-/*
-; Fill entire number, including exponent and significand, with
-; largest possible number.  These programs implement a saturation
-; value that is an ordinary, legal number.  A special value
-; "infinity" may also be implemented; this would require tests
-; for that value and implementation of special rules for arithmetic
-; operations involving inifinity.
-*/
-
-void einfin(x)
-register unsigned short *x;
-{
-register int i;
-
-#ifdef INFINITY
-for( i=0; i<NE-1; i++ )
-	*x++ = 0;
-*x |= 32767;
-#else
-for( i=0; i<NE-1; i++ )
-	*x++ = 0xffff;
-*x |= 32766;
-if( rndprc < NBITS )
-	{
-	if (rndprc == 113)
-		{
-		*(x - 9) = 0;
-		*(x - 8) = 0;
-		}
-	if( rndprc == 64 )
-		{
-		*(x-5) = 0;
-		}
-	if( rndprc == 53 )
-		{
-		*(x-4) = 0xf800;
-		}
-	else
-		{
-		*(x-4) = 0;
-		*(x-3) = 0;
-		*(x-2) = 0xff00;
-		}
-	}
-#endif
-}
-
-
-
-/* Move in external format number,
- * converting it to internal format.
- */
-void emovi( a, b )
-unsigned short *a, *b;
-{
-register unsigned short *p, *q;
-int i;
-
-q = b;
-p = a + (NE-1);	/* point to last word of external number */
-/* get the sign bit */
-if( *p & 0x8000 )
-	*q++ = 0xffff;
-else
-	*q++ = 0;
-/* get the exponent */
-*q = *p--;
-*q++ &= 0x7fff;	/* delete the sign bit */
-#ifdef INFINITY
-if( (*(q-1) & 0x7fff) == 0x7fff )
-	{
-#ifdef NANS
-	if( eisnan(a) )
-		{
-		*q++ = 0;
-		for( i=3; i<NI; i++ )
-			*q++ = *p--;
-		return;
-		}
-#endif
-	for( i=2; i<NI; i++ )
-		*q++ = 0;
-	return;
-	}
-#endif
-/* clear high guard word */
-*q++ = 0;
-/* move in the significand */
-for( i=0; i<NE-1; i++ )
-	*q++ = *p--;
-/* clear low guard word */
-*q = 0;
-}
-
-
-/* Move internal format number out,
- * converting it to external format.
- */
-void emovo( a, b )
-unsigned short *a, *b;
-{
-register unsigned short *p, *q;
-unsigned short i;
-
-p = a;
-q = b + (NE-1); /* point to output exponent */
-/* combine sign and exponent */
-i = *p++;
-if( i )
-	*q-- = *p++ | 0x8000;
-else
-	*q-- = *p++;
-#ifdef INFINITY
-if( *(p-1) == 0x7fff )
-	{
-#ifdef NANS
-	if( eiisnan(a) )
-		{
-		enan( b, NBITS );
-		return;
-		}
-#endif
-	einfin(b);
-	return;
-	}
-#endif
-/* skip over guard word */
-++p;
-/* move the significand */
-for( i=0; i<NE-1; i++ )
-	*q-- = *p++;
-}
-
-
-
-
-/* Clear out internal format number.
- */
-
-void ecleaz( xi )
-register unsigned short *xi;
-{
-register int i;
-
-for( i=0; i<NI; i++ )
-	*xi++ = 0;
-}
-
-/* same, but don't touch the sign. */
-
-void ecleazs( xi )
-register unsigned short *xi;
-{
-register int i;
-
-++xi;
-for(i=0; i<NI-1; i++)
-	*xi++ = 0;
-}
-
-
-
-
-/* Move internal format number from a to b.
- */
-void emovz( a, b )
-register unsigned short *a, *b;
-{
-register int i;
-
-for( i=0; i<NI-1; i++ )
-	*b++ = *a++;
-/* clear low guard word */
-*b = 0;
-}
-
-/* Return nonzero if internal format number is a NaN.
- */
-
-int eiisnan (x)
-unsigned short x[];
-{
-int i;
-
-if( (x[E] & 0x7fff) == 0x7fff )
-	{
-	for( i=M+1; i<NI; i++ )
-		{
-		if( x[i] != 0 )
-			return(1);
-		}
-	}
-return(0);
-}
-
-#ifdef INFINITY
-/* Return nonzero if internal format number is infinite. */
-
-static int 
-eiisinf (x)
-     unsigned short x[];
-{
-
-#ifdef NANS
-  if (eiisnan (x))
-    return (0);
-#endif
-  if ((x[E] & 0x7fff) == 0x7fff)
-    return (1);
-  return (0);
-}
-#endif
-
-/*
-;	Compare significands of numbers in internal format.
-;	Guard words are included in the comparison.
-;
-;	unsigned short a[NI], b[NI];
-;	cmpm( a, b );
-;
-;	for the significands:
-;	returns	+1 if a > b
-;		 0 if a == b
-;		-1 if a < b
-*/
-int ecmpm( a, b )
-register unsigned short *a, *b;
-{
-int i;
-
-a += M; /* skip up to significand area */
-b += M;
-for( i=M; i<NI; i++ )
-	{
-	if( *a++ != *b++ )
-		goto difrnt;
-	}
-return(0);
-
-difrnt:
-if( *(--a) > *(--b) )
-	return(1);
-else
-	return(-1);
-}
-
-
-/*
-;	Shift significand down by 1 bit
-*/
-
-void eshdn1(x)
-register unsigned short *x;
-{
-register unsigned short bits;
-int i;
-
-x += M;	/* point to significand area */
-
-bits = 0;
-for( i=M; i<NI; i++ )
-	{
-	if( *x & 1 )
-		bits |= 1;
-	*x >>= 1;
-	if( bits & 2 )
-		*x |= 0x8000;
-	bits <<= 1;
-	++x;
-	}	
-}
-
-
-
-/*
-;	Shift significand up by 1 bit
-*/
-
-void eshup1(x)
-register unsigned short *x;
-{
-register unsigned short bits;
-int i;
-
-x += NI-1;
-bits = 0;
-
-for( i=M; i<NI; i++ )
-	{
-	if( *x & 0x8000 )
-		bits |= 1;
-	*x <<= 1;
-	if( bits & 2 )
-		*x |= 1;
-	bits <<= 1;
-	--x;
-	}
-}
-
-
-
-/*
-;	Shift significand down by 8 bits
-*/
-
-void eshdn8(x)
-register unsigned short *x;
-{
-register unsigned short newbyt, oldbyt;
-int i;
-
-x += M;
-oldbyt = 0;
-for( i=M; i<NI; i++ )
-	{
-	newbyt = *x << 8;
-	*x >>= 8;
-	*x |= oldbyt;
-	oldbyt = newbyt;
-	++x;
-	}
-}
-
-/*
-;	Shift significand up by 8 bits
-*/
-
-void eshup8(x)
-register unsigned short *x;
-{
-int i;
-register unsigned short newbyt, oldbyt;
-
-x += NI-1;
-oldbyt = 0;
-
-for( i=M; i<NI; i++ )
-	{
-	newbyt = *x >> 8;
-	*x <<= 8;
-	*x |= oldbyt;
-	oldbyt = newbyt;
-	--x;
-	}
-}
-
-/*
-;	Shift significand up by 16 bits
-*/
-
-void eshup6(x)
-register unsigned short *x;
-{
-int i;
-register unsigned short *p;
-
-p = x + M;
-x += M + 1;
-
-for( i=M; i<NI-1; i++ )
-	*p++ = *x++;
-
-*p = 0;
-}
-
-/*
-;	Shift significand down by 16 bits
-*/
-
-void eshdn6(x)
-register unsigned short *x;
-{
-int i;
-register unsigned short *p;
-
-x += NI-1;
-p = x + 1;
-
-for( i=M; i<NI-1; i++ )
-	*(--p) = *(--x);
-
-*(--p) = 0;
-}
-
-/*
-;	Add significands
-;	x + y replaces y
-*/
-
-void eaddm( x, y )
-unsigned short *x, *y;
-{
-register unsigned long a;
-int i;
-unsigned int carry;
-
-x += NI-1;
-y += NI-1;
-carry = 0;
-for( i=M; i<NI; i++ )
-	{
-	a = (unsigned long )(*x) + (unsigned long )(*y) + carry;
-	if( a & 0x10000 )
-		carry = 1;
-	else
-		carry = 0;
-	*y = (unsigned short )a;
-	--x;
-	--y;
-	}
-}
-
-/*
-;	Subtract significands
-;	y - x replaces y
-*/
-
-void esubm( x, y )
-unsigned short *x, *y;
-{
-unsigned long a;
-int i;
-unsigned int carry;
-
-x += NI-1;
-y += NI-1;
-carry = 0;
-for( i=M; i<NI; i++ )
-	{
-	a = (unsigned long )(*y) - (unsigned long )(*x) - carry;
-	if( a & 0x10000 )
-		carry = 1;
-	else
-		carry = 0;
-	*y = (unsigned short )a;
-	--x;
-	--y;
-	}
-}
-
-
-/* Divide significands */
-
-static unsigned short equot[NI] = {0}; /* was static */
-
-#if 0
-int edivm( den, num )
-unsigned short den[], num[];
-{
-int i;
-register unsigned short *p, *q;
-unsigned short j;
-
-p = &equot[0];
-*p++ = num[0];
-*p++ = num[1];
-
-for( i=M; i<NI; i++ )
-	{
-	*p++ = 0;
-	}
-
-/* Use faster compare and subtraction if denominator
- * has only 15 bits of significance.
- */
-p = &den[M+2];
-if( *p++ == 0 )
-	{
-	for( i=M+3; i<NI; i++ )
-		{
-		if( *p++ != 0 )
-			goto fulldiv;
-		}
-	if( (den[M+1] & 1) != 0 )
-		goto fulldiv;
-	eshdn1(num);
-	eshdn1(den);
-
-	p = &den[M+1];
-	q = &num[M+1];
-
-	for( i=0; i<NBITS+2; i++ )
-		{
-		if( *p <= *q )
-			{
-			*q -= *p;
-			j = 1;
-			}
-		else
-			{
-			j = 0;
-			}
-		eshup1(equot);
-		equot[NI-2] |= j;
-		eshup1(num);
-		}
-	goto divdon;
-	}
-
-/* The number of quotient bits to calculate is
- * NBITS + 1 scaling guard bit + 1 roundoff bit.
- */
-fulldiv:
-
-p = &equot[NI-2];
-for( i=0; i<NBITS+2; i++ )
-	{
-	if( ecmpm(den,num) <= 0 )
-		{
-		esubm(den, num);
-		j = 1;	/* quotient bit = 1 */
-		}
-	else
-		j = 0;
-	eshup1(equot);
-	*p |= j;
-	eshup1(num);
-	}
-
-divdon:
-
-eshdn1( equot );
-eshdn1( equot );
-
-/* test for nonzero remainder after roundoff bit */
-p = &num[M];
-j = 0;
-for( i=M; i<NI; i++ )
-	{
-	j |= *p++;
-	}
-if( j )
-	j = 1;
-
-
-for( i=0; i<NI; i++ )
-	num[i] = equot[i];
-return( (int )j );
-}
-
-/* Multiply significands */
-int emulm( a, b )
-unsigned short a[], b[];
-{
-unsigned short *p, *q;
-int i, j, k;
-
-equot[0] = b[0];
-equot[1] = b[1];
-for( i=M; i<NI; i++ )
-	equot[i] = 0;
-
-p = &a[NI-2];
-k = NBITS;
-while( *p == 0 ) /* significand is not supposed to be all zero */
-	{
-	eshdn6(a);
-	k -= 16;
-	}
-if( (*p & 0xff) == 0 )
-	{
-	eshdn8(a);
-	k -= 8;
-	}
-
-q = &equot[NI-1];
-j = 0;
-for( i=0; i<k; i++ )
-	{
-	if( *p & 1 )
-		eaddm(b, equot);
-/* remember if there were any nonzero bits shifted out */
-	if( *q & 1 )
-		j |= 1;
-	eshdn1(a);
-	eshdn1(equot);
-	}
-
-for( i=0; i<NI; i++ )
-	b[i] = equot[i];
-
-/* return flag for lost nonzero bits */
-return(j);
-}
-
-#else
-
-/* Multiply significand of e-type number b
-by 16-bit quantity a, e-type result to c. */
-
-void m16m( a, b, c )
-unsigned short a;
-unsigned short b[], c[];
-{
-register unsigned short *pp;
-register unsigned long carry;
-unsigned short *ps;
-unsigned short p[NI];
-unsigned long aa, m;
-int i;
-
-aa = a;
-pp = &p[NI-2];
-*pp++ = 0;
-*pp = 0;
-ps = &b[NI-1];
-
-for( i=M+1; i<NI; i++ )
-	{
-	if( *ps == 0 )
-		{
-		--ps;
-		--pp;
-		*(pp-1) = 0;
-		}
-	else
-		{
-		m = (unsigned long) aa * *ps--;
-		carry = (m & 0xffff) + *pp;
-		*pp-- = (unsigned short )carry;
-		carry = (carry >> 16) + (m >> 16) + *pp;
-		*pp = (unsigned short )carry;
-		*(pp-1) = carry >> 16;
-		}
-	}
-for( i=M; i<NI; i++ )
-	c[i] = p[i];
-}
-
-
-/* Divide significands. Neither the numerator nor the denominator
-is permitted to have its high guard word nonzero.  */
-
-
-int edivm( den, num )
-unsigned short den[], num[];
-{
-int i;
-register unsigned short *p;
-unsigned long tnum;
-unsigned short j, tdenm, tquot;
-unsigned short tprod[NI+1];
-
-p = &equot[0];
-*p++ = num[0];
-*p++ = num[1];
-
-for( i=M; i<NI; i++ )
-	{
-	*p++ = 0;
-	}
-eshdn1( num );
-tdenm = den[M+1];
-for( i=M; i<NI; i++ )
-	{
-	/* Find trial quotient digit (the radix is 65536). */
-	tnum = (((unsigned long) num[M]) << 16) + num[M+1];
-
-	/* Do not execute the divide instruction if it will overflow. */
-        if( (tdenm * 0xffffL) < tnum )
-		tquot = 0xffff;
-	else
-		tquot = tnum / tdenm;
-
-		/* Prove that the divide worked. */
-/*
-	tcheck = (unsigned long )tquot * tdenm;
-	if( tnum - tcheck > tdenm )
-		tquot = 0xffff;
-*/
-	/* Multiply denominator by trial quotient digit. */
-	m16m( tquot, den, tprod );
-	/* The quotient digit may have been overestimated. */
-	if( ecmpm( tprod, num ) > 0 )
-		{
-		tquot -= 1;
-		esubm( den, tprod );
-		if( ecmpm( tprod, num ) > 0 )
-			{
-			tquot -= 1;
-			esubm( den, tprod );
-			}
-		}
-/*
-	if( ecmpm( tprod, num ) > 0 )
-		{
-		eshow( "tprod", tprod );
-		eshow( "num  ", num );
-		printf( "tnum = %08lx, tden = %04x, tquot = %04x\n",
-			 tnum, den[M+1], tquot );
-		}
-*/
-	esubm( tprod, num );
-/*
-	if( ecmpm( num, den ) >= 0 )
-		{
-		eshow( "num  ", num );
-		eshow( "den  ", den );
-		printf( "tnum = %08lx, tden = %04x, tquot = %04x\n",
-			 tnum, den[M+1], tquot );
-		}
-*/
-	equot[i] = tquot;
-	eshup6(num);
-	}
-/* test for nonzero remainder after roundoff bit */
-p = &num[M];
-j = 0;
-for( i=M; i<NI; i++ )
-	{
-	j |= *p++;
-	}
-if( j )
-	j = 1;
-
-for( i=0; i<NI; i++ )
-	num[i] = equot[i];
-
-return( (int )j );
-}
-
-
-
-/* Multiply significands */
-int emulm( a, b )
-unsigned short a[], b[];
-{
-unsigned short *p, *q;
-unsigned short pprod[NI];
-unsigned short j;
-int i;
-
-equot[0] = b[0];
-equot[1] = b[1];
-for( i=M; i<NI; i++ )
-	equot[i] = 0;
-
-j = 0;
-p = &a[NI-1];
-q = &equot[NI-1];
-for( i=M+1; i<NI; i++ )
-	{
-	if( *p == 0 )
-		{
-		--p;
-		}
-	else
-		{
-		m16m( *p--, b, pprod );
-		eaddm(pprod, equot);
-		}
-	j |= *q;
-	eshdn6(equot);
-	}
-
-for( i=0; i<NI; i++ )
-	b[i] = equot[i];
-
-/* return flag for lost nonzero bits */
-return( (int)j );
-}
-
-
-/*
-eshow(str, x)
-char *str;
-unsigned short *x;
-{
-int i;
-
-printf( "%s ", str );
-for( i=0; i<NI; i++ )
-	printf( "%04x ", *x++ );
-printf( "\n" );
-}
-*/
-#endif
-
-
-
-/*
- * Normalize and round off.
- *
- * The internal format number to be rounded is "s".
- * Input "lost" indicates whether the number is exact.
- * This is the so-called sticky bit.
- *
- * Input "subflg" indicates whether the number was obtained
- * by a subtraction operation.  In that case if lost is nonzero
- * then the number is slightly smaller than indicated.
- *
- * Input "exp" is the biased exponent, which may be negative.
- * the exponent field of "s" is ignored but is replaced by
- * "exp" as adjusted by normalization and rounding.
- *
- * Input "rcntrl" is the rounding control.
- */
-
-static int rlast = -1;
-static int rw = 0;
-static unsigned short rmsk = 0;
-static unsigned short rmbit = 0;
-static unsigned short rebit = 0;
-static int re = 0;
-static unsigned short rbit[NI] = {0,0,0,0,0,0,0,0};
-
-void emdnorm( s, lost, subflg, exp, rcntrl )
-unsigned short s[];
-int lost;
-int subflg;
-long exp;
-int rcntrl;
-{
-int i, j;
-unsigned short r;
-
-/* Normalize */
-j = enormlz( s );
-
-/* a blank significand could mean either zero or infinity. */
-#ifndef INFINITY
-if( j > NBITS )
-	{
-	ecleazs( s );
-	return;
-	}
-#endif
-exp -= j;
-#ifndef INFINITY
-if( exp >= 32767L )
-	goto overf;
-#else
-if( (j > NBITS) && (exp < 32767L) )
-	{
-	ecleazs( s );
-	return;
-	}
-#endif
-if( exp < 0L )
-	{
-	if( exp > (long )(-NBITS-1) )
-		{
-		j = (int )exp;
-		i = eshift( s, j );
-		if( i )
-			lost = 1;
-		}
-	else
-		{
-		ecleazs( s );
-		return;
-		}
-	}
-/* Round off, unless told not to by rcntrl. */
-if( rcntrl == 0 )
-	goto mdfin;
-/* Set up rounding parameters if the control register changed. */
-if( rndprc != rlast )
-	{
-	ecleaz( rbit );
-	switch( rndprc )
-		{
-		default:
-		case NBITS:
-			rw = NI-1; /* low guard word */
-			rmsk = 0xffff;
-			rmbit = 0x8000;
-			rebit = 1;
-			re = rw - 1;
-			break;
-		case 113:
-			rw = 10;
-			rmsk = 0x7fff;
-			rmbit = 0x4000;
-			rebit = 0x8000;
-			re = rw;
-			break;
-		case 64:
-			rw = 7;
-			rmsk = 0xffff;
-			rmbit = 0x8000;
-			rebit = 1;
-			re = rw-1;
-			break;
-/* For DEC arithmetic */
-		case 56:
-			rw = 6;
-			rmsk = 0xff;
-			rmbit = 0x80;
-			rebit = 0x100;
-			re = rw;
-			break;
-		case 53:
-			rw = 6;
-			rmsk = 0x7ff;
-			rmbit = 0x0400;
-			rebit = 0x800;
-			re = rw;
-			break;
-		case 24:
-			rw = 4;
-			rmsk = 0xff;
-			rmbit = 0x80;
-			rebit = 0x100;
-			re = rw;
-			break;
-		}
-	rbit[re] = rebit;
-	rlast = rndprc;
-	}
-
-/* Shift down 1 temporarily if the data structure has an implied
- * most significant bit and the number is denormal.
- * For rndprc = 64 or NBITS, there is no implied bit.
- * But Intel long double denormals lose one bit of significance even so.
- */
-#if IBMPC
-if( (exp <= 0) && (rndprc != NBITS) )
-#else
-if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) )
-#endif
-	{
-	lost |= s[NI-1] & 1;
-	eshdn1(s);
-	}
-/* Clear out all bits below the rounding bit,
- * remembering in r if any were nonzero.
- */
-r = s[rw] & rmsk;
-if( rndprc < NBITS )
-	{
-	i = rw + 1;
-	while( i < NI )
-		{
-		if( s[i] )
-			r |= 1;
-		s[i] = 0;
-		++i;
-		}
-	}
-s[rw] &= ~rmsk;
-if( (r & rmbit) != 0 )
-	{
-	if( r == rmbit )
-		{
-		if( lost == 0 )
-			{ /* round to even */
-			if( (s[re] & rebit) == 0 )
-				goto mddone;
-			}
-		else
-			{
-			if( subflg != 0 )
-				goto mddone;
-			}
-		}
-	eaddm( rbit, s );
-	}
-mddone:
-#if IBMPC
-if( (exp <= 0) && (rndprc != NBITS) )
-#else
-if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) )
-#endif
-	{
-	eshup1(s);
-	}
-if( s[2] != 0 )
-	{ /* overflow on roundoff */
-	eshdn1(s);
-	exp += 1;
-	}
-mdfin:
-s[NI-1] = 0;
-if( exp >= 32767L )
-	{
-#ifndef INFINITY
-overf:
-#endif
-#ifdef INFINITY
-	s[1] = 32767;
-	for( i=2; i<NI-1; i++ )
-		s[i] = 0;
-#else
-	s[1] = 32766;
-	s[2] = 0;
-	for( i=M+1; i<NI-1; i++ )
-		s[i] = 0xffff;
-	s[NI-1] = 0;
-	if( (rndprc < 64) || (rndprc == 113) )
-		{
-		s[rw] &= ~rmsk;
-		if( rndprc == 24 )
-			{
-			s[5] = 0;
-			s[6] = 0;
-			}
-		}
-#endif
-	return;
-	}
-if( exp < 0 )
-	s[1] = 0;
-else
-	s[1] = (unsigned short )exp;
-}
-
-
-
-/*
-;	Subtract external format numbers.
-;
-;	unsigned short a[NE], b[NE], c[NE];
-;	esub( a, b, c );	 c = b - a
-*/
-
-static int subflg = 0;
-
-void esub( a, b, c )
-unsigned short *a, *b, *c;
-{
-
-#ifdef NANS
-if( eisnan(a) )
-	{
-	emov (a, c);
-	return;
-	}
-if( eisnan(b) )
-	{
-	emov(b,c);
-	return;
-	}
-/* Infinity minus infinity is a NaN.
- * Test for subtracting infinities of the same sign.
- */
-if( eisinf(a) && eisinf(b) && ((eisneg (a) ^ eisneg (b)) == 0))
-	{
-	mtherr( "esub", DOMAIN );
-	enan( c, NBITS );
-	return;
-	}
-#endif
-subflg = 1;
-eadd1( a, b, c );
-}
-
-
-/*
-;	Add.
-;
-;	unsigned short a[NE], b[NE], c[NE];
-;	eadd( a, b, c );	 c = b + a
-*/
-void eadd( a, b, c )
-unsigned short *a, *b, *c;
-{
-
-#ifdef NANS
-/* NaN plus anything is a NaN. */
-if( eisnan(a) )
-	{
-	emov(a,c);
-	return;
-	}
-if( eisnan(b) )
-	{
-	emov(b,c);
-	return;
-	}
-/* Infinity minus infinity is a NaN.
- * Test for adding infinities of opposite signs.
- */
-if( eisinf(a) && eisinf(b)
-	&& ((eisneg(a) ^ eisneg(b)) != 0) )
-	{
-	mtherr( "eadd", DOMAIN );
-	enan( c, NBITS );
-	return;
-	}
-#endif
-subflg = 0;
-eadd1( a, b, c );
-}
-
-void eadd1( a, b, c )
-unsigned short *a, *b, *c;
-{
-unsigned short ai[NI], bi[NI], ci[NI];
-int i, lost, j, k;
-long lt, lta, ltb;
-
-#ifdef INFINITY
-if( eisinf(a) )
-	{
-	emov(a,c);
-	if( subflg )
-		eneg(c);
-	return;
-	}
-if( eisinf(b) )
-	{
-	emov(b,c);
-	return;
-	}
-#endif
-emovi( a, ai );
-emovi( b, bi );
-if( subflg )
-	ai[0] = ~ai[0];
-
-/* compare exponents */
-lta = ai[E];
-ltb = bi[E];
-lt = lta - ltb;
-if( lt > 0L )
-	{	/* put the larger number in bi */
-	emovz( bi, ci );
-	emovz( ai, bi );
-	emovz( ci, ai );
-	ltb = bi[E];
-	lt = -lt;
-	}
-lost = 0;
-if( lt != 0L )
-	{
-	if( lt < (long )(-NBITS-1) )
-		goto done;	/* answer same as larger addend */
-	k = (int )lt;
-	lost = eshift( ai, k ); /* shift the smaller number down */
-	}
-else
-	{
-/* exponents were the same, so must compare significands */
-	i = ecmpm( ai, bi );
-	if( i == 0 )
-		{ /* the numbers are identical in magnitude */
-		/* if different signs, result is zero */
-		if( ai[0] != bi[0] )
-			{
-			eclear(c);
-			return;
-			}
-		/* if same sign, result is double */
-		/* double denomalized tiny number */
-		if( (bi[E] == 0) && ((bi[3] & 0x8000) == 0) )
-			{
-			eshup1( bi );
-			goto done;
-			}
-		/* add 1 to exponent unless both are zero! */
-		for( j=1; j<NI-1; j++ )
-			{
-			if( bi[j] != 0 )
-				{
-/* This could overflow, but let emovo take care of that. */
-				ltb += 1;
-				break;
-				}
-			}
-		bi[E] = (unsigned short )ltb;
-		goto done;
-		}
-	if( i > 0 )
-		{	/* put the larger number in bi */
-		emovz( bi, ci );
-		emovz( ai, bi );
-		emovz( ci, ai );
-		}
-	}
-if( ai[0] == bi[0] )
-	{
-	eaddm( ai, bi );
-	subflg = 0;
-	}
-else
-	{
-	esubm( ai, bi );
-	subflg = 1;
-	}
-emdnorm( bi, lost, subflg, ltb, 64 );
-
-done:
-emovo( bi, c );
-}
-
-
-
-/*
-;	Divide.
-;
-;	unsigned short a[NE], b[NE], c[NE];
-;	ediv( a, b, c );	c = b / a
-*/
-void ediv( a, b, c )
-unsigned short *a, *b, *c;
-{
-unsigned short ai[NI], bi[NI];
-int i;
-long lt, lta, ltb;
-
-#ifdef NANS
-/* Return any NaN input. */
-if( eisnan(a) )
-	{
-	emov(a,c);
-	return;
-	}
-if( eisnan(b) )
-	{
-	emov(b,c);
-	return;
-	}
-/* Zero over zero, or infinity over infinity, is a NaN. */
-if( ((ecmp(a,ezero) == 0) && (ecmp(b,ezero) == 0))
-	|| (eisinf (a) && eisinf (b)) )
-	{
-	mtherr( "ediv", DOMAIN );
-	enan( c, NBITS );
-	return;
-	}
-#endif
-/* Infinity over anything else is infinity. */
-#ifdef INFINITY
-if( eisinf(b) )
-	{
-	if( eisneg(a) ^ eisneg(b) )
-		*(c+(NE-1)) = 0x8000;
-	else
-		*(c+(NE-1)) = 0;
-	einfin(c);
-	return;
-	}
-if( eisinf(a) )
-	{
-	eclear(c);
-	return;
-	}
-#endif
-emovi( a, ai );
-emovi( b, bi );
-lta = ai[E];
-ltb = bi[E];
-if( bi[E] == 0 )
-	{ /* See if numerator is zero. */
-	for( i=1; i<NI-1; i++ )
-		{
-		if( bi[i] != 0 )
-			{
-			ltb -= enormlz( bi );
-			goto dnzro1;
-			}
-		}
-	eclear(c);
-	return;
-	}
-dnzro1:
-
-if( ai[E] == 0 )
-	{	/* possible divide by zero */
-	for( i=1; i<NI-1; i++ )
-		{
-		if( ai[i] != 0 )
-			{
-			lta -= enormlz( ai );
-			goto dnzro2;
-			}
-		}
-	if( ai[0] == bi[0] )
-		*(c+(NE-1)) = 0;
-	else
-		*(c+(NE-1)) = 0x8000;
-	einfin(c);
-	mtherr( "ediv", SING );
-	return;
-	}
-dnzro2:
-
-i = edivm( ai, bi );
-/* calculate exponent */
-lt = ltb - lta + EXONE;
-emdnorm( bi, i, 0, lt, 64 );
-/* set the sign */
-if( ai[0] == bi[0] )
-	bi[0] = 0;
-else
-	bi[0] = 0Xffff;
-emovo( bi, c );
-}
-
-
-
-/*
-;	Multiply.
-;
-;	unsigned short a[NE], b[NE], c[NE];
-;	emul( a, b, c );	c = b * a
-*/
-void emul( a, b, c )
-unsigned short *a, *b, *c;
-{
-unsigned short ai[NI], bi[NI];
-int i, j;
-long lt, lta, ltb;
-
-#ifdef NANS
-/* NaN times anything is the same NaN. */
-if( eisnan(a) )
-	{
-	emov(a,c);
-	return;
-	}
-if( eisnan(b) )
-	{
-	emov(b,c);
-	return;
-	}
-/* Zero times infinity is a NaN. */
-if( (eisinf(a) && (ecmp(b,ezero) == 0))
-	|| (eisinf(b) && (ecmp(a,ezero) == 0)) )
-	{
-	mtherr( "emul", DOMAIN );
-	enan( c, NBITS );
-	return;
-	}
-#endif
-/* Infinity times anything else is infinity. */
-#ifdef INFINITY
-if( eisinf(a) || eisinf(b) )
-	{
-	if( eisneg(a) ^ eisneg(b) )
-		*(c+(NE-1)) = 0x8000;
-	else
-		*(c+(NE-1)) = 0;
-	einfin(c);
-	return;
-	}
-#endif
-emovi( a, ai );
-emovi( b, bi );
-lta = ai[E];
-ltb = bi[E];
-if( ai[E] == 0 )
-	{
-	for( i=1; i<NI-1; i++ )
-		{
-		if( ai[i] != 0 )
-			{
-			lta -= enormlz( ai );
-			goto mnzer1;
-			}
-		}
-	eclear(c);
-	return;
-	}
-mnzer1:
-
-if( bi[E] == 0 )
-	{
-	for( i=1; i<NI-1; i++ )
-		{
-		if( bi[i] != 0 )
-			{
-			ltb -= enormlz( bi );
-			goto mnzer2;
-			}
-		}
-	eclear(c);
-	return;
-	}
-mnzer2:
-
-/* Multiply significands */
-j = emulm( ai, bi );
-/* calculate exponent */
-lt = lta + ltb - (EXONE - 1);
-emdnorm( bi, j, 0, lt, 64 );
-/* calculate sign of product */
-if( ai[0] == bi[0] )
-	bi[0] = 0;
-else
-	bi[0] = 0xffff;
-emovo( bi, c );
-}
-
-
-
-
-/*
-; Convert IEEE double precision to e type
-;	double d;
-;	unsigned short x[N+2];
-;	e53toe( &d, x );
-*/
-void e53toe( pe, y )
-unsigned short *pe, *y;
-{
-#ifdef DEC
-
-dectoe( pe, y ); /* see etodec.c */
-
-#else
-
-register unsigned short r;
-register unsigned short *p, *e;
-unsigned short yy[NI];
-int denorm, k;
-
-e = pe;
-denorm = 0;	/* flag if denormalized number */
-ecleaz(yy);
-#ifdef IBMPC
-e += 3;
-#endif
-r = *e;
-yy[0] = 0;
-if( r & 0x8000 )
-	yy[0] = 0xffff;
-yy[M] = (r & 0x0f) | 0x10;
-r &= ~0x800f;	/* strip sign and 4 significand bits */
-#ifdef INFINITY
-if( r == 0x7ff0 )
-	{
-#ifdef NANS
-#ifdef IBMPC
-	if( ((pe[3] & 0xf) != 0) || (pe[2] != 0)
-		|| (pe[1] != 0) || (pe[0] != 0) )
-		{
-		enan( y, NBITS );
-		return;
-		}
-#else
-	if( ((pe[0] & 0xf) != 0) || (pe[1] != 0)
-		 || (pe[2] != 0) || (pe[3] != 0) )
-		{
-		enan( y, NBITS );
-		return;
-		}
-#endif
-#endif  /* NANS */
-	eclear( y );
-	einfin( y );
-	if( yy[0] )
-		eneg(y);
-	return;
-	}
-#endif
-r >>= 4;
-/* If zero exponent, then the significand is denormalized.
- * So, take back the understood high significand bit. */ 
-if( r == 0 )
-	{
-	denorm = 1;
-	yy[M] &= ~0x10;
-	}
-r += EXONE - 01777;
-yy[E] = r;
-p = &yy[M+1];
-#ifdef IBMPC
-*p++ = *(--e);
-*p++ = *(--e);
-*p++ = *(--e);
-#endif
-#ifdef MIEEE
-++e;
-*p++ = *e++;
-*p++ = *e++;
-*p++ = *e++;
-#endif
-(void )eshift( yy, -5 );
-if( denorm )
-	{ /* if zero exponent, then normalize the significand */
-	if( (k = enormlz(yy)) > NBITS )
-		ecleazs(yy);
-	else
-		yy[E] -= (unsigned short )(k-1);
-	}
-emovo( yy, y );
-#endif /* not DEC */
-}
-
-void e64toe( pe, y )
-unsigned short *pe, *y;
-{
-unsigned short yy[NI];
-unsigned short *p, *q, *e;
-int i;
-
-e = pe;
-p = yy;
-for( i=0; i<NE-5; i++ )
-	*p++ = 0;
-#ifdef IBMPC
-for( i=0; i<5; i++ )
-	*p++ = *e++;
-#endif
-#ifdef DEC
-for( i=0; i<5; i++ )
-	*p++ = *e++;
-#endif
-#ifdef MIEEE
-p = &yy[0] + (NE-1);
-*p-- = *e++;
-++e;
-for( i=0; i<4; i++ )
-	*p-- = *e++;
-#endif
-
-#ifdef IBMPC
-/* For Intel long double, shift denormal significand up 1
-   -- but only if the top significand bit is zero.  */
-if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0)
-  {
-    unsigned short temp[NI+1];
-    emovi(yy, temp);
-    eshup1(temp);
-    emovo(temp,y);
-    return;
-  }
-#endif
-#ifdef INFINITY
-/* Point to the exponent field.  */
-p = &yy[NE-1];
-if( *p == 0x7fff )
-	{
-#ifdef NANS
-#ifdef IBMPC
-	for( i=0; i<4; i++ )
-		{
-		if((i != 3 && pe[i] != 0)
-		   /* Check for Intel long double infinity pattern.  */
-		   || (i == 3 && pe[i] != 0x8000))
-			{
-			enan( y, NBITS );
-			return;
-			}
-		}
-#else
-	for( i=1; i<=4; i++ )
-		{
-		if( pe[i] != 0 )
-			{
-			enan( y, NBITS );
-			return;
-			}
-		}
-#endif
-#endif /* NANS */
-	eclear( y );
-	einfin( y );
-	if( *p & 0x8000 )
-		eneg(y);
-	return;
-	}
-#endif
-p = yy;
-q = y;
-for( i=0; i<NE; i++ )
-	*q++ = *p++;
-}
-
-void e113toe(pe,y)
-unsigned short *pe, *y;
-{
-register unsigned short r;
-unsigned short *e, *p;
-unsigned short yy[NI];
-int denorm, i;
-
-e = pe;
-denorm = 0;
-ecleaz(yy);
-#ifdef IBMPC
-e += 7;
-#endif
-r = *e;
-yy[0] = 0;
-if( r & 0x8000 )
-	yy[0] = 0xffff;
-r &= 0x7fff;
-#ifdef INFINITY
-if( r == 0x7fff )
-	{
-#ifdef NANS
-#ifdef IBMPC
-	for( i=0; i<7; i++ )
-		{
-		if( pe[i] != 0 )
-			{
-			enan( y, NBITS );
-			return;
-			}
-		}
-#else
-	for( i=1; i<8; i++ )
-		{
-		if( pe[i] != 0 )
-			{
-			enan( y, NBITS );
-			return;
-			}
-		}
-#endif
-#endif /* NANS */
-	eclear( y );
-	einfin( y );
-	if( *e & 0x8000 )
-		eneg(y);
-	return;
-	}
-#endif  /* INFINITY */
-yy[E] = r;
-p = &yy[M + 1];
-#ifdef IBMPC
-for( i=0; i<7; i++ )
-	*p++ = *(--e);
-#endif
-#ifdef MIEEE
-++e;
-for( i=0; i<7; i++ )
-	*p++ = *e++;
-#endif
-/* If denormal, remove the implied bit; else shift down 1. */
-if( r == 0 )
-	{
-	yy[M] = 0;
-	}
-else
-	{
-	yy[M] = 1;
-	eshift( yy, -1 );
-	}
-emovo(yy,y);
-}
-
-
-/*
-; Convert IEEE single precision to e type
-;	float d;
-;	unsigned short x[N+2];
-;	dtox( &d, x );
-*/
-void e24toe( pe, y )
-unsigned short *pe, *y;
-{
-register unsigned short r;
-register unsigned short *p, *e;
-unsigned short yy[NI];
-int denorm, k;
-
-e = pe;
-denorm = 0;	/* flag if denormalized number */
-ecleaz(yy);
-#ifdef IBMPC
-e += 1;
-#endif
-#ifdef DEC
-e += 1;
-#endif
-r = *e;
-yy[0] = 0;
-if( r & 0x8000 )
-	yy[0] = 0xffff;
-yy[M] = (r & 0x7f) | 0200;
-r &= ~0x807f;	/* strip sign and 7 significand bits */
-#ifdef INFINITY
-if( r == 0x7f80 )
-	{
-#ifdef NANS
-#ifdef MIEEE
-	if( ((pe[0] & 0x7f) != 0) || (pe[1] != 0) )
-		{
-		enan( y, NBITS );
-		return;
-		}
-#else
-	if( ((pe[1] & 0x7f) != 0) || (pe[0] != 0) )
-		{
-		enan( y, NBITS );
-		return;
-		}
-#endif
-#endif  /* NANS */
-	eclear( y );
-	einfin( y );
-	if( yy[0] )
-		eneg(y);
-	return;
-	}
-#endif
-r >>= 7;
-/* If zero exponent, then the significand is denormalized.
- * So, take back the understood high significand bit. */ 
-if( r == 0 )
-	{
-	denorm = 1;
-	yy[M] &= ~0200;
-	}
-r += EXONE - 0177;
-yy[E] = r;
-p = &yy[M+1];
-#ifdef IBMPC
-*p++ = *(--e);
-#endif
-#ifdef DEC
-*p++ = *(--e);
-#endif
-#ifdef MIEEE
-++e;
-*p++ = *e++;
-#endif
-(void )eshift( yy, -8 );
-if( denorm )
-	{ /* if zero exponent, then normalize the significand */
-	if( (k = enormlz(yy)) > NBITS )
-		ecleazs(yy);
-	else
-		yy[E] -= (unsigned short )(k-1);
-	}
-emovo( yy, y );
-}
-
-void etoe113(x,e)
-unsigned short *x, *e;
-{
-unsigned short xi[NI];
-long exp;
-int rndsav;
-
-#ifdef NANS
-if( eisnan(x) )
-	{
-	enan( e, 113 );
-	return;
-	}
-#endif
-emovi( x, xi );
-exp = (long )xi[E];
-#ifdef INFINITY
-if( eisinf(x) )
-	goto nonorm;
-#endif
-/* round off to nearest or even */
-rndsav = rndprc;
-rndprc = 113;
-emdnorm( xi, 0, 0, exp, 64 );
-rndprc = rndsav;
-nonorm:
-toe113 (xi, e);
-}
-
-/* move out internal format to ieee long double */
-static void toe113(a,b)
-unsigned short *a, *b;
-{
-register unsigned short *p, *q;
-unsigned short i;
-
-#ifdef NANS
-if( eiisnan(a) )
-	{
-	enan( b, 113 );
-	return;
-	}
-#endif
-p = a;
-#ifdef MIEEE
-q = b;
-#else
-q = b + 7;			/* point to output exponent */
-#endif
-
-/* If not denormal, delete the implied bit. */
-if( a[E] != 0 )
-	{
-	eshup1 (a);
-	}
-/* combine sign and exponent */
-i = *p++;
-#ifdef MIEEE
-if( i )
-	*q++ = *p++ | 0x8000;
-else
-	*q++ = *p++;
-#else
-if( i )
-	*q-- = *p++ | 0x8000;
-else
-	*q-- = *p++;
-#endif
-/* skip over guard word */
-++p;
-/* move the significand */
-#ifdef MIEEE
-for (i = 0; i < 7; i++)
-	*q++ = *p++;
-#else
-for (i = 0; i < 7; i++)
-	*q-- = *p++;
-#endif
-}
-
-
-void etoe64( x, e )
-unsigned short *x, *e;
-{
-unsigned short xi[NI];
-long exp;
-int rndsav;
-
-#ifdef NANS
-if( eisnan(x) )
-	{
-	enan( e, 64 );
-	return;
-	}
-#endif
-emovi( x, xi );
-exp = (long )xi[E]; /* adjust exponent for offset */
-#ifdef INFINITY
-if( eisinf(x) )
-	goto nonorm;
-#endif
-/* round off to nearest or even */
-rndsav = rndprc;
-rndprc = 64;
-emdnorm( xi, 0, 0, exp, 64 );
-rndprc = rndsav;
-nonorm:
-toe64( xi, e );
-}
-
-/* move out internal format to ieee long double */
-static void toe64( a, b )
-unsigned short *a, *b;
-{
-register unsigned short *p, *q;
-unsigned short i;
-
-#ifdef NANS
-if( eiisnan(a) )
-	{
-	enan( b, 64 );
-	return;
-	}
-#endif
-#ifdef IBMPC
-/* Shift Intel denormal significand down 1.  */
-if( a[E] == 0 )
-  eshdn1(a);
-#endif
-p = a;
-#ifdef MIEEE
-q = b;
-#else
-q = b + 4; /* point to output exponent */
-#if 1
-/* NOTE: if data type is 96 bits wide, clear the last word here. */
-*(q+1)= 0;
-#endif
-#endif
-
-/* combine sign and exponent */
-i = *p++;
-#ifdef MIEEE
-if( i )
-	*q++ = *p++ | 0x8000;
-else
-	*q++ = *p++;
-*q++ = 0;
-#else
-if( i )
-	*q-- = *p++ | 0x8000;
-else
-	*q-- = *p++;
-#endif
-/* skip over guard word */
-++p;
-/* move the significand */
-#ifdef MIEEE
-for( i=0; i<4; i++ )
-	*q++ = *p++;
-#else
-#ifdef INFINITY
-if (eiisinf (a))
-        {
-	/* Intel long double infinity.  */
-	*q-- = 0x8000;
-	*q-- = 0;
-	*q-- = 0;
-	*q = 0;
-	return;
-	}
-#endif
-for( i=0; i<4; i++ )
-	*q-- = *p++;
-#endif
-}
-
-
-/*
-; e type to IEEE double precision
-;	double d;
-;	unsigned short x[NE];
-;	etoe53( x, &d );
-*/
-
-#ifdef DEC
-
-void etoe53( x, e )
-unsigned short *x, *e;
-{
-etodec( x, e ); /* see etodec.c */
-}
-
-static void toe53( x, y )
-unsigned short *x, *y;
-{
-todec( x, y );
-}
-
-#else
-
-void etoe53( x, e )
-unsigned short *x, *e;
-{
-unsigned short xi[NI];
-long exp;
-int rndsav;
-
-#ifdef NANS
-if( eisnan(x) )
-	{
-	enan( e, 53 );
-	return;
-	}
-#endif
-emovi( x, xi );
-exp = (long )xi[E] - (EXONE - 0x3ff); /* adjust exponent for offsets */
-#ifdef INFINITY
-if( eisinf(x) )
-	goto nonorm;
-#endif
-/* round off to nearest or even */
-rndsav = rndprc;
-rndprc = 53;
-emdnorm( xi, 0, 0, exp, 64 );
-rndprc = rndsav;
-nonorm:
-toe53( xi, e );
-}
-
-
-static void toe53( x, y )
-unsigned short *x, *y;
-{
-unsigned short i;
-unsigned short *p;
-
-
-#ifdef NANS
-if( eiisnan(x) )
-	{
-	enan( y, 53 );
-	return;
-	}
-#endif
-p = &x[0];
-#ifdef IBMPC
-y += 3;
-#endif
-*y = 0;	/* output high order */
-if( *p++ )
-	*y = 0x8000;	/* output sign bit */
-
-i = *p++;
-if( i >= (unsigned int )2047 )
-	{	/* Saturate at largest number less than infinity. */
-#ifdef INFINITY
-	*y |= 0x7ff0;
-#ifdef IBMPC
-	*(--y) = 0;
-	*(--y) = 0;
-	*(--y) = 0;
-#endif
-#ifdef MIEEE
-	++y;
-	*y++ = 0;
-	*y++ = 0;
-	*y++ = 0;
-#endif
-#else
-	*y |= (unsigned short )0x7fef;
-#ifdef IBMPC
-	*(--y) = 0xffff;
-	*(--y) = 0xffff;
-	*(--y) = 0xffff;
-#endif
-#ifdef MIEEE
-	++y;
-	*y++ = 0xffff;
-	*y++ = 0xffff;
-	*y++ = 0xffff;
-#endif
-#endif
-	return;
-	}
-if( i == 0 )
-	{
-	(void )eshift( x, 4 );
-	}
-else
-	{
-	i <<= 4;
-	(void )eshift( x, 5 );
-	}
-i |= *p++ & (unsigned short )0x0f;	/* *p = xi[M] */
-*y |= (unsigned short )i; /* high order output already has sign bit set */
-#ifdef IBMPC
-*(--y) = *p++;
-*(--y) = *p++;
-*(--y) = *p;
-#endif
-#ifdef MIEEE
-++y;
-*y++ = *p++;
-*y++ = *p++;
-*y++ = *p++;
-#endif
-}
-
-#endif /* not DEC */
-
-
-
-/*
-; e type to IEEE single precision
-;	float d;
-;	unsigned short x[N+2];
-;	xtod( x, &d );
-*/
-void etoe24( x, e )
-unsigned short *x, *e;
-{
-long exp;
-unsigned short xi[NI];
-int rndsav;
-
-#ifdef NANS
-if( eisnan(x) )
-	{
-	enan( e, 24 );
-	return;
-	}
-#endif
-emovi( x, xi );
-exp = (long )xi[E] - (EXONE - 0177); /* adjust exponent for offsets */
-#ifdef INFINITY
-if( eisinf(x) )
-	goto nonorm;
-#endif
-/* round off to nearest or even */
-rndsav = rndprc;
-rndprc = 24;
-emdnorm( xi, 0, 0, exp, 64 );
-rndprc = rndsav;
-nonorm:
-toe24( xi, e );
-}
-
-static void toe24( x, y )
-unsigned short *x, *y;
-{
-unsigned short i;
-unsigned short *p;
-
-#ifdef NANS
-if( eiisnan(x) )
-	{
-	enan( y, 24 );
-	return;
-	}
-#endif
-p = &x[0];
-#ifdef IBMPC
-y += 1;
-#endif
-#ifdef DEC
-y += 1;
-#endif
-*y = 0;	/* output high order */
-if( *p++ )
-	*y = 0x8000;	/* output sign bit */
-
-i = *p++;
-if( i >= 255 )
-	{	/* Saturate at largest number less than infinity. */
-#ifdef INFINITY
-	*y |= (unsigned short )0x7f80;
-#ifdef IBMPC
-	*(--y) = 0;
-#endif
-#ifdef DEC
-	*(--y) = 0;
-#endif
-#ifdef MIEEE
-	++y;
-	*y = 0;
-#endif
-#else
-	*y |= (unsigned short )0x7f7f;
-#ifdef IBMPC
-	*(--y) = 0xffff;
-#endif
-#ifdef DEC
-	*(--y) = 0xffff;
-#endif
-#ifdef MIEEE
-	++y;
-	*y = 0xffff;
-#endif
-#endif
-	return;
-	}
-if( i == 0 )
-	{
-	(void )eshift( x, 7 );
-	}
-else
-	{
-	i <<= 7;
-	(void )eshift( x, 8 );
-	}
-i |= *p++ & (unsigned short )0x7f;	/* *p = xi[M] */
-*y |= i;	/* high order output already has sign bit set */
-#ifdef IBMPC
-*(--y) = *p;
-#endif
-#ifdef DEC
-*(--y) = *p;
-#endif
-#ifdef MIEEE
-++y;
-*y = *p;
-#endif
-}
-
-
-/* Compare two e type numbers.
- *
- * unsigned short a[NE], b[NE];
- * ecmp( a, b );
- *
- *  returns +1 if a > b
- *           0 if a == b
- *          -1 if a < b
- *          -2 if either a or b is a NaN.
- */
-int ecmp( a, b )
-unsigned short *a, *b;
-{
-unsigned short ai[NI], bi[NI];
-register unsigned short *p, *q;
-register int i;
-int msign;
-
-#ifdef NANS
-if (eisnan (a)  || eisnan (b))
-	return( -2 );
-#endif
-emovi( a, ai );
-p = ai;
-emovi( b, bi );
-q = bi;
-
-if( *p != *q )
-	{ /* the signs are different */
-/* -0 equals + 0 */
-	for( i=1; i<NI-1; i++ )
-		{
-		if( ai[i] != 0 )
-			goto nzro;
-		if( bi[i] != 0 )
-			goto nzro;
-		}
-	return(0);
-nzro:
-	if( *p == 0 )
-		return( 1 );
-	else
-		return( -1 );
-	}
-/* both are the same sign */
-if( *p == 0 )
-	msign = 1;
-else
-	msign = -1;
-i = NI-1;
-do
-	{
-	if( *p++ != *q++ )
-		{
-		goto diff;
-		}
-	}
-while( --i > 0 );
-
-return(0);	/* equality */
-
-
-
-diff:
-
-if( *(--p) > *(--q) )
-	return( msign );		/* p is bigger */
-else
-	return( -msign );	/* p is littler */
-}
-
-
-
-
-/* Find nearest integer to x = floor( x + 0.5 )
- *
- * unsigned short x[NE], y[NE]
- * eround( x, y );
- */
-void eround( x, y )
-unsigned short *x, *y;
-{
-
-eadd( ehalf, x, y );
-efloor( y, y );
-}
-
-
-
-
-/*
-; convert long (32-bit) integer to e type
-;
-;	long l;
-;	unsigned short x[NE];
-;	ltoe( &l, x );
-; note &l is the memory address of l
-*/
-void ltoe( lp, y )
-long *lp;	/* lp is the memory address of a long integer */
-unsigned short *y;	/* y is the address of a short */
-{
-unsigned short yi[NI];
-unsigned long ll;
-int k;
-
-ecleaz( yi );
-if( *lp < 0 )
-	{
-	ll =  (unsigned long )( -(*lp) ); /* make it positive */
-	yi[0] = 0xffff; /* put correct sign in the e type number */
-	}
-else
-	{
-	ll = (unsigned long )( *lp );
-	}
-/* move the long integer to yi significand area */
-if( sizeof(long) == 8 )
-	{
-	yi[M] = (unsigned short) (ll >> (LONGBITS - 16));
-	yi[M + 1] = (unsigned short) (ll >> (LONGBITS - 32));
-	yi[M + 2] = (unsigned short) (ll >> 16);
-	yi[M + 3] = (unsigned short) ll;
-	yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
-	}
-else
-	{
-	yi[M] = (unsigned short )(ll >> 16); 
-	yi[M+1] = (unsigned short )ll;
-	yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */
-	}
-if( (k = enormlz( yi )) > NBITS ) /* normalize the significand */
-	ecleaz( yi );	/* it was zero */
-else
-	yi[E] -= (unsigned short )k; /* subtract shift count from exponent */
-emovo( yi, y );	/* output the answer */
-}
-
-/*
-; convert unsigned long (32-bit) integer to e type
-;
-;	unsigned long l;
-;	unsigned short x[NE];
-;	ltox( &l, x );
-; note &l is the memory address of l
-*/
-void ultoe( lp, y )
-unsigned long *lp; /* lp is the memory address of a long integer */
-unsigned short *y;	/* y is the address of a short */
-{
-unsigned short yi[NI];
-unsigned long ll;
-int k;
-
-ecleaz( yi );
-ll = *lp;
-
-/* move the long integer to ayi significand area */
-if( sizeof(long) == 8 )
-	{
-	yi[M] = (unsigned short) (ll >> (LONGBITS - 16));
-	yi[M + 1] = (unsigned short) (ll >> (LONGBITS - 32));
-	yi[M + 2] = (unsigned short) (ll >> 16);
-	yi[M + 3] = (unsigned short) ll;
-	yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
-	}
-else
-	{
-	yi[M] = (unsigned short )(ll >> 16); 
-	yi[M+1] = (unsigned short )ll;
-	yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */
-	}
-if( (k = enormlz( yi )) > NBITS ) /* normalize the significand */
-	ecleaz( yi );	/* it was zero */
-else
-	yi[E] -= (unsigned short )k; /* subtract shift count from exponent */
-emovo( yi, y );	/* output the answer */
-}
-
-
-/*
-;	Find long integer and fractional parts
-
-;	long i;
-;	unsigned short x[NE], frac[NE];
-;	xifrac( x, &i, frac );
- 
-  The integer output has the sign of the input.  The fraction is
-  the positive fractional part of abs(x).
-*/
-void eifrac( x, i, frac )
-unsigned short *x;
-long *i;
-unsigned short *frac;
-{
-unsigned short xi[NI];
-int j, k;
-unsigned long ll;
-
-emovi( x, xi );
-k = (int )xi[E] - (EXONE - 1);
-if( k <= 0 )
-	{
-/* if exponent <= 0, integer = 0 and real output is fraction */
-	*i = 0L;
-	emovo( xi, frac );
-	return;
-	}
-if( k > (8 * sizeof(long) - 1) )
-	{
-/*
-;	long integer overflow: output large integer
-;	and correct fraction
-*/
-	j = 8 * sizeof(long) - 1;
-	if( xi[0] )
-		*i = (long) ((unsigned long) 1) << j;
-	else
-		*i = (long) (((unsigned long) (~(0L))) >> 1);
-	(void )eshift( xi, k );
-	}
-if( k > 16 )
-	{
-/*
-  Shift more than 16 bits: shift up k-16 mod 16
-  then shift by 16's.
-*/
-	j = k - ((k >> 4) << 4);
-	eshift (xi, j);
-	ll = xi[M];
-	k -= j;
-	do
-		{
-		eshup6 (xi);
-		ll = (ll << 16) | xi[M];
-		}
-	while ((k -= 16) > 0);
-	*i = ll;
-	if (xi[0])
-		*i = -(*i);
-	}
-else
-	{
-/* shift not more than 16 bits */
-	eshift( xi, k );
-	*i = (long )xi[M] & 0xffff;
-	if( xi[0] )
-		*i = -(*i);
-	}
-xi[0] = 0;
-xi[E] = EXONE - 1;
-xi[M] = 0;
-if( (k = enormlz( xi )) > NBITS )
-	ecleaz( xi );
-else
-	xi[E] -= (unsigned short )k;
-
-emovo( xi, frac );
-}
-
-
-/*
-;	Find unsigned long integer and fractional parts
-
-;	unsigned long i;
-;	unsigned short x[NE], frac[NE];
-;	xifrac( x, &i, frac );
-
-  A negative e type input yields integer output = 0
-  but correct fraction.
-*/
-void euifrac( x, i, frac )
-unsigned short *x;
-unsigned long *i;
-unsigned short *frac;
-{
-unsigned short xi[NI];
-int j, k;
-unsigned long ll;
-
-emovi( x, xi );
-k = (int )xi[E] - (EXONE - 1);
-if( k <= 0 )
-	{
-/* if exponent <= 0, integer = 0 and argument is fraction */
-	*i = 0L;
-	emovo( xi, frac );
-	return;
-	}
-if( k > (8 * sizeof(long)) )
-	{
-/*
-;	long integer overflow: output large integer
-;	and correct fraction
-*/
-	*i = ~(0L);
-	(void )eshift( xi, k );
-	}
-else if( k > 16 )
-	{
-/*
-  Shift more than 16 bits: shift up k-16 mod 16
-  then shift up by 16's.
-*/
-	j = k - ((k >> 4) << 4);
-	eshift (xi, j);
-	ll = xi[M];
-	k -= j;
-	do
-		{
-		eshup6 (xi);
-		ll = (ll << 16) | xi[M];
-		}
-	while ((k -= 16) > 0);
-	*i = ll;
-	}
-else
-	{
-/* shift not more than 16 bits */
-	eshift( xi, k );
-	*i = (long )xi[M] & 0xffff;
-	}
-
-if( xi[0] )  /* A negative value yields unsigned integer 0. */
-	*i = 0L;
-
-xi[0] = 0;
-xi[E] = EXONE - 1;
-xi[M] = 0;
-if( (k = enormlz( xi )) > NBITS )
-	ecleaz( xi );
-else
-	xi[E] -= (unsigned short )k;
-
-emovo( xi, frac );
-}
-
-
-
-/*
-;	Shift significand
-;
-;	Shifts significand area up or down by the number of bits
-;	given by the variable sc.
-*/
-int eshift( x, sc )
-unsigned short *x;
-int sc;
-{
-unsigned short lost;
-unsigned short *p;
-
-if( sc == 0 )
-	return( 0 );
-
-lost = 0;
-p = x + NI-1;
-
-if( sc < 0 )
-	{
-	sc = -sc;
-	while( sc >= 16 )
-		{
-		lost |= *p;	/* remember lost bits */
-		eshdn6(x);
-		sc -= 16;
-		}
-
-	while( sc >= 8 )
-		{
-		lost |= *p & 0xff;
-		eshdn8(x);
-		sc -= 8;
-		}
-
-	while( sc > 0 )
-		{
-		lost |= *p & 1;
-		eshdn1(x);
-		sc -= 1;
-		}
-	}
-else
-	{
-	while( sc >= 16 )
-		{
-		eshup6(x);
-		sc -= 16;
-		}
-
-	while( sc >= 8 )
-		{
-		eshup8(x);
-		sc -= 8;
-		}
-
-	while( sc > 0 )
-		{
-		eshup1(x);
-		sc -= 1;
-		}
-	}
-if( lost )
-	lost = 1;
-return( (int )lost );
-}
-
-
-
-/*
-;	normalize
-;
-; Shift normalizes the significand area pointed to by argument
-; shift count (up = positive) is returned.
-*/
-int enormlz(x)
-unsigned short x[];
-{
-register unsigned short *p;
-int sc;
-
-sc = 0;
-p = &x[M];
-if( *p != 0 )
-	goto normdn;
-++p;
-if( *p & 0x8000 )
-	return( 0 );	/* already normalized */
-while( *p == 0 )
-	{
-	eshup6(x);
-	sc += 16;
-/* With guard word, there are NBITS+16 bits available.
- * return true if all are zero.
- */
-	if( sc > NBITS )
-		return( sc );
-	}
-/* see if high byte is zero */
-while( (*p & 0xff00) == 0 )
-	{
-	eshup8(x);
-	sc += 8;
-	}
-/* now shift 1 bit at a time */
-while( (*p  & 0x8000) == 0)
-	{
-	eshup1(x);
-	sc += 1;
-	if( sc > (NBITS+16) )
-		{
-		mtherr( "enormlz", UNDERFLOW );
-		return( sc );
-		}
-	}
-return( sc );
-
-/* Normalize by shifting down out of the high guard word
-   of the significand */
-normdn:
-
-if( *p & 0xff00 )
-	{
-	eshdn8(x);
-	sc -= 8;
-	}
-while( *p != 0 )
-	{
-	eshdn1(x);
-	sc -= 1;
-
-	if( sc < -NBITS )
-		{
-		mtherr( "enormlz", OVERFLOW );
-		return( sc );
-		}
-	}
-return( sc );
-}
-
-
-
-
-/* Convert e type number to decimal format ASCII string.
- * The constants are for 64 bit precision.
- */
-
-#define NTEN 12
-#define MAXP 4096
-
-#if NE == 10
-static unsigned short etens[NTEN + 1][NE] =
-{
-  {0x6576, 0x4a92, 0x804a, 0x153f,
-   0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,},	/* 10**4096 */
-  {0x6a32, 0xce52, 0x329a, 0x28ce,
-   0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,},	/* 10**2048 */
-  {0x526c, 0x50ce, 0xf18b, 0x3d28,
-   0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
-  {0x9c66, 0x58f8, 0xbc50, 0x5c54,
-   0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
-  {0x851e, 0xeab7, 0x98fe, 0x901b,
-   0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
-  {0x0235, 0x0137, 0x36b1, 0x336c,
-   0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
-  {0x50f8, 0x25fb, 0xc76b, 0x6b71,
-   0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
-  {0x0000, 0x0000, 0x0000, 0x0000,
-   0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
-  {0x0000, 0x0000, 0x0000, 0x0000,
-   0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
-  {0x0000, 0x0000, 0x0000, 0x0000,
-   0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
-  {0x0000, 0x0000, 0x0000, 0x0000,
-   0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
-  {0x0000, 0x0000, 0x0000, 0x0000,
-   0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
-  {0x0000, 0x0000, 0x0000, 0x0000,
-   0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,},	/* 10**1 */
-};
-
-static unsigned short emtens[NTEN + 1][NE] =
-{
-  {0x2030, 0xcffc, 0xa1c3, 0x8123,
-   0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,},	/* 10**-4096 */
-  {0x8264, 0xd2cb, 0xf2ea, 0x12d4,
-   0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,},	/* 10**-2048 */
-  {0xf53f, 0xf698, 0x6bd3, 0x0158,
-   0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
-  {0xe731, 0x04d4, 0xe3f2, 0xd332,
-   0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
-  {0xa23e, 0x5308, 0xfefb, 0x1155,
-   0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
-  {0xe26d, 0xdbde, 0xd05d, 0xb3f6,
-   0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
-  {0x2a20, 0x6224, 0x47b3, 0x98d7,
-   0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
-  {0x0b5b, 0x4af2, 0xa581, 0x18ed,
-   0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
-  {0xbf71, 0xa9b3, 0x7989, 0xbe68,
-   0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
-  {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b,
-   0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
-  {0xc155, 0xa4a8, 0x404e, 0x6113,
-   0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
-  {0xd70a, 0x70a3, 0x0a3d, 0xa3d7,
-   0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
-  {0xcccd, 0xcccc, 0xcccc, 0xcccc,
-   0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,},	/* 10**-1 */
-};
-#else
-static unsigned short etens[NTEN+1][NE] = {
-{0xc94c,0x979a,0x8a20,0x5202,0xc460,0x7525,},/* 10**4096 */
-{0xa74d,0x5de4,0xc53d,0x3b5d,0x9e8b,0x5a92,},/* 10**2048 */
-{0x650d,0x0c17,0x8175,0x7586,0xc976,0x4d48,},
-{0xcc65,0x91c6,0xa60e,0xa0ae,0xe319,0x46a3,},
-{0xddbc,0xde8d,0x9df9,0xebfb,0xaa7e,0x4351,},
-{0xc66f,0x8cdf,0x80e9,0x47c9,0x93ba,0x41a8,},
-{0x3cbf,0xa6d5,0xffcf,0x1f49,0xc278,0x40d3,},
-{0xf020,0xb59d,0x2b70,0xada8,0x9dc5,0x4069,},
-{0x0000,0x0000,0x0400,0xc9bf,0x8e1b,0x4034,},
-{0x0000,0x0000,0x0000,0x2000,0xbebc,0x4019,},
-{0x0000,0x0000,0x0000,0x0000,0x9c40,0x400c,},
-{0x0000,0x0000,0x0000,0x0000,0xc800,0x4005,},
-{0x0000,0x0000,0x0000,0x0000,0xa000,0x4002,}, /* 10**1 */
-};
-
-static unsigned short emtens[NTEN+1][NE] = {
-{0x2de4,0x9fde,0xd2ce,0x04c8,0xa6dd,0x0ad8,}, /* 10**-4096 */
-{0x4925,0x2de4,0x3436,0x534f,0xceae,0x256b,}, /* 10**-2048 */
-{0x87a6,0xc0bd,0xda57,0x82a5,0xa2a6,0x32b5,},
-{0x7133,0xd21c,0xdb23,0xee32,0x9049,0x395a,},
-{0xfa91,0x1939,0x637a,0x4325,0xc031,0x3cac,},
-{0xac7d,0xe4a0,0x64bc,0x467c,0xddd0,0x3e55,},
-{0x3f24,0xe9a5,0xa539,0xea27,0xa87f,0x3f2a,},
-{0x67de,0x94ba,0x4539,0x1ead,0xcfb1,0x3f94,},
-{0x4c2f,0xe15b,0xc44d,0x94be,0xe695,0x3fc9,},
-{0xfdc2,0xcefc,0x8461,0x7711,0xabcc,0x3fe4,},
-{0xd3c3,0x652b,0xe219,0x1758,0xd1b7,0x3ff1,},
-{0x3d71,0xd70a,0x70a3,0x0a3d,0xa3d7,0x3ff8,},
-{0xcccd,0xcccc,0xcccc,0xcccc,0xcccc,0x3ffb,}, /* 10**-1 */
-};
-#endif
-
-void e24toasc( x, string, ndigs )
-unsigned short x[];
-char *string;
-int ndigs;
-{
-unsigned short w[NI];
-
-e24toe( x, w );
-etoasc( w, string, ndigs );
-}
-
-
-void e53toasc( x, string, ndigs )
-unsigned short x[];
-char *string;
-int ndigs;
-{
-unsigned short w[NI];
-
-e53toe( x, w );
-etoasc( w, string, ndigs );
-}
-
-
-void e64toasc( x, string, ndigs )
-unsigned short x[];
-char *string;
-int ndigs;
-{
-unsigned short w[NI];
-
-e64toe( x, w );
-etoasc( w, string, ndigs );
-}
-
-void e113toasc (x, string, ndigs)
-unsigned short x[];
-char *string;
-int ndigs;
-{
-unsigned short w[NI];
-
-e113toe (x, w);
-etoasc (w, string, ndigs);
-}
-
-
-void etoasc( x, string, ndigs )
-unsigned short x[];
-char *string;
-int ndigs;
-{
-long digit;
-unsigned short y[NI], t[NI], u[NI], w[NI];
-unsigned short *p, *r, *ten;
-unsigned short sign;
-int i, j, k, expon, rndsav;
-char *s, *ss;
-unsigned short m;
-
-rndsav = rndprc;
-#ifdef NANS
-if( eisnan(x) )
-	{
-	sprintf( string, " NaN " );
-	goto bxit;
-	}
-#endif
-rndprc = NBITS;		/* set to full precision */
-emov( x, y ); /* retain external format */
-if( y[NE-1] & 0x8000 )
-	{
-	sign = 0xffff;
-	y[NE-1] &= 0x7fff;
-	}
-else
-	{
-	sign = 0;
-	}
-expon = 0;
-ten = &etens[NTEN][0];
-emov( eone, t );
-/* Test for zero exponent */
-if( y[NE-1] == 0 )
-	{
-	for( k=0; k<NE-1; k++ )
-		{
-		if( y[k] != 0 )
-			goto tnzro; /* denormalized number */
-		}
-	goto isone; /* legal all zeros */
-	}
-tnzro:
-
-/* Test for infinity.
- */
-if( y[NE-1] == 0x7fff )
-	{
-	if( sign )
-		sprintf( string, " -Infinity " );
-	else
-		sprintf( string, " Infinity " );
-	goto bxit;
-	}
-
-/* Test for exponent nonzero but significand denormalized.
- * This is an error condition.
- */
-if( (y[NE-1] != 0) && ((y[NE-2] & 0x8000) == 0) )
-	{
-	mtherr( "etoasc", DOMAIN );
-	sprintf( string, "NaN" );
-	goto bxit;
-	}
-
-/* Compare to 1.0 */
-i = ecmp( eone, y );
-if( i == 0 )
-	goto isone;
-
-if( i < 0 )
-	{ /* Number is greater than 1 */
-/* Convert significand to an integer and strip trailing decimal zeros. */
-	emov( y, u );
-	u[NE-1] = EXONE + NBITS - 1;
-
-	p = &etens[NTEN-4][0];
-	m = 16;
-do
-	{
-	ediv( p, u, t );
-	efloor( t, w );
-	for( j=0; j<NE-1; j++ )
-		{
-		if( t[j] != w[j] )
-			goto noint;
-		}
-	emov( t, u );
-	expon += (int )m;
-noint:
-	p += NE;
-	m >>= 1;
-	}
-while( m != 0 );
-
-/* Rescale from integer significand */
-	u[NE-1] += y[NE-1] - (unsigned int )(EXONE + NBITS - 1);
-	emov( u, y );
-/* Find power of 10 */
-	emov( eone, t );
-	m = MAXP;
-	p = &etens[0][0];
-	while( ecmp( ten, u ) <= 0 )
-		{
-		if( ecmp( p, u ) <= 0 )
-			{
-			ediv( p, u, u );
-			emul( p, t, t );
-			expon += (int )m;
-			}
-		m >>= 1;
-		if( m == 0 )
-			break;
-		p += NE;
-		}
-	}
-else
-	{ /* Number is less than 1.0 */
-/* Pad significand with trailing decimal zeros. */
-	if( y[NE-1] == 0 )
-		{
-		while( (y[NE-2] & 0x8000) == 0 )
-			{
-			emul( ten, y, y );
-			expon -= 1;
-			}
-		}
-	else
-		{
-		emovi( y, w );
-		for( i=0; i<NDEC+1; i++ )
-			{
-			if( (w[NI-1] & 0x7) != 0 )
-				break;
-/* multiply by 10 */
-			emovz( w, u );
-			eshdn1( u );
-			eshdn1( u );
-			eaddm( w, u );
-			u[1] += 3;
-			while( u[2] != 0 )
-				{
-				eshdn1(u);
-				u[1] += 1;
-				}
-			if( u[NI-1] != 0 )
-				break;
-			if( eone[NE-1] <= u[1] )
-				break;
-			emovz( u, w );
-			expon -= 1;
-			}
-		emovo( w, y );
-		}
-	k = -MAXP;
-	p = &emtens[0][0];
-	r = &etens[0][0];
-	emov( y, w );
-	emov( eone, t );
-	while( ecmp( eone, w ) > 0 )
-		{
-		if( ecmp( p, w ) >= 0 )
-			{
-			emul( r, w, w );
-			emul( r, t, t );
-			expon += k;
-			}
-		k /= 2;
-		if( k == 0 )
-			break;
-		p += NE;
-		r += NE;
-		}
-	ediv( t, eone, t );
-	}
-isone:
-/* Find the first (leading) digit. */
-emovi( t, w );
-emovz( w, t );
-emovi( y, w );
-emovz( w, y );
-eiremain( t, y );
-digit = equot[NI-1];
-while( (digit == 0) && (ecmp(y,ezero) != 0) )
-	{
-	eshup1( y );
-	emovz( y, u );
-	eshup1( u );
-	eshup1( u );
-	eaddm( u, y );
-	eiremain( t, y );
-	digit = equot[NI-1];
-	expon -= 1;
-	}
-s = string;
-if( sign )
-	*s++ = '-';
-else
-	*s++ = ' ';
-/* Examine number of digits requested by caller. */
-if( ndigs < 0 )
-	ndigs = 0;
-if( ndigs > NDEC )
-	ndigs = NDEC;
-if( digit == 10 )
-	{
-	*s++ = '1';
-	*s++ = '.';
-	if( ndigs > 0 )
-		{
-		*s++ = '0';
-		ndigs -= 1;
-		}
-	expon += 1;
-	}
-else
-	{
-	*s++ = (char )digit + '0';
-	*s++ = '.';
-	}
-/* Generate digits after the decimal point. */
-for( k=0; k<=ndigs; k++ )
-	{
-/* multiply current number by 10, without normalizing */
-	eshup1( y );
-	emovz( y, u );
-	eshup1( u );
-	eshup1( u );
-	eaddm( u, y );
-	eiremain( t, y );
-	*s++ = (char )equot[NI-1] + '0';
-	}
-digit = equot[NI-1];
---s;
-ss = s;
-/* round off the ASCII string */
-if( digit > 4 )
-	{
-/* Test for critical rounding case in ASCII output. */
-	if( digit == 5 )
-		{
-		emovo( y, t );
-		if( ecmp(t,ezero) != 0 )
-			goto roun;	/* round to nearest */
-		if( (*(s-1) & 1) == 0 )
-			goto doexp;	/* round to even */
-		}
-/* Round up and propagate carry-outs */
-roun:
-	--s;
-	k = *s & 0x7f;
-/* Carry out to most significant digit? */
-	if( k == '.' )
-		{
-		--s;
-		k = *s;
-		k += 1;
-		*s = (char )k;
-/* Most significant digit carries to 10? */
-		if( k > '9' )
-			{
-			expon += 1;
-			*s = '1';
-			}
-		goto doexp;
-		}
-/* Round up and carry out from less significant digits */
-	k += 1;
-	*s = (char )k;
-	if( k > '9' )
-		{
-		*s = '0';
-		goto roun;
-		}
-	}
-doexp:
-/*
-if( expon >= 0 )
-	sprintf( ss, "e+%d", expon );
-else
-	sprintf( ss, "e%d", expon );
-*/
-	sprintf( ss, "E%d", expon );
-bxit:
-rndprc = rndsav;
-}
-
-
-
-
-/*
-;								ASCTOQ
-;		ASCTOQ.MAC		LATEST REV: 11 JAN 84
-;					SLM, 3 JAN 78
-;
-;	Convert ASCII string to quadruple precision floating point
-;
-;		Numeric input is free field decimal number
-;		with max of 15 digits with or without 
-;		decimal point entered as ASCII from teletype.
-;	Entering E after the number followed by a second
-;	number causes the second number to be interpreted
-;	as a power of 10 to be multiplied by the first number
-;	(i.e., "scientific" notation).
-;
-;	Usage:
-;		asctoq( string, q );
-*/
-
-/* ASCII to single */
-void asctoe24( s, y )
-char *s;
-unsigned short *y;
-{
-asctoeg( s, y, 24 );
-}
-
-
-/* ASCII to double */
-void asctoe53( s, y )
-char *s;
-unsigned short *y;
-{
-#ifdef DEC
-asctoeg( s, y, 56 );
-#else
-asctoeg( s, y, 53 );
-#endif
-}
-
-
-/* ASCII to long double */
-void asctoe64( s, y )
-char *s;
-unsigned short *y;
-{
-asctoeg( s, y, 64 );
-}
-
-/* ASCII to 128-bit long double */
-void asctoe113 (s, y)
-char *s;
-unsigned short *y;
-{
-asctoeg( s, y, 113 );
-}
-
-/* ASCII to super double */
-void asctoe( s, y )
-char *s;
-unsigned short *y;
-{
-asctoeg( s, y, NBITS );
-}
-
-/* Space to make a copy of the input string: */
-static char lstr[82] = {0};
-
-void asctoeg( ss, y, oprec )
-char *ss;
-unsigned short *y;
-int oprec;
-{
-unsigned short yy[NI], xt[NI], tt[NI];
-int esign, decflg, sgnflg, nexp, exp, prec, lost;
-int k, trail, c, rndsav;
-long lexp;
-unsigned short nsign, *p;
-char *sp, *s;
-
-/* Copy the input string. */
-s = ss;
-while( *s == ' ' ) /* skip leading spaces */
-	++s;
-sp = lstr;
-for( k=0; k<79; k++ )
-	{
-	if( (*sp++ = *s++) == '\0' )
-		break;
-	}
-*sp = '\0';
-s = lstr;
-
-rndsav = rndprc;
-rndprc = NBITS; /* Set to full precision */
-lost = 0;
-nsign = 0;
-decflg = 0;
-sgnflg = 0;
-nexp = 0;
-exp = 0;
-prec = 0;
-ecleaz( yy );
-trail = 0;
-
-nxtcom:
-k = *s - '0';
-if( (k >= 0) && (k <= 9) )
-	{
-/* Ignore leading zeros */
-	if( (prec == 0) && (decflg == 0) && (k == 0) )
-		goto donchr;
-/* Identify and strip trailing zeros after the decimal point. */
-	if( (trail == 0) && (decflg != 0) )
-		{
-		sp = s;
-		while( (*sp >= '0') && (*sp <= '9') )
-			++sp;
-/* Check for syntax error */
-		c = *sp & 0x7f;
-		if( (c != 'e') && (c != 'E') && (c != '\0')
-			&& (c != '\n') && (c != '\r') && (c != ' ')
-			&& (c != ',') )
-			goto error;
-		--sp;
-		while( *sp == '0' )
-			*sp-- = 'z';
-		trail = 1;
-		if( *s == 'z' )
-			goto donchr;
-		}
-/* If enough digits were given to more than fill up the yy register,
- * continuing until overflow into the high guard word yy[2]
- * guarantees that there will be a roundoff bit at the top
- * of the low guard word after normalization.
- */
-	if( yy[2] == 0 )
-		{
-		if( decflg )
-			nexp += 1; /* count digits after decimal point */
-		eshup1( yy );	/* multiply current number by 10 */
-		emovz( yy, xt );
-		eshup1( xt );
-		eshup1( xt );
-		eaddm( xt, yy );
-		ecleaz( xt );
-		xt[NI-2] = (unsigned short )k;
-		eaddm( xt, yy );
-		}
-	else
-		{
-		/* Mark any lost non-zero digit.  */
-		lost |= k;
-		/* Count lost digits before the decimal point.  */
-		if (decflg == 0)
-		        nexp -= 1;
-		}
-	prec += 1;
-	goto donchr;
-	}
-
-switch( *s )
-	{
-	case 'z':
-		break;
-	case 'E':
-	case 'e':
-		goto expnt;
-	case '.':	/* decimal point */
-		if( decflg )
-			goto error;
-		++decflg;
-		break;
-	case '-':
-		nsign = 0xffff;
-		if( sgnflg )
-			goto error;
-		++sgnflg;
-		break;
-	case '+':
-		if( sgnflg )
-			goto error;
-		++sgnflg;
-		break;
-	case ',':
-	case ' ':
-	case '\0':
-	case '\n':
-	case '\r':
-		goto daldone;
-	case 'i':
-	case 'I':
-		goto infinite;
-	default:
-	error:
-#ifdef NANS
-		enan( yy, NI*16 );
-#else
-		mtherr( "asctoe", DOMAIN );
-		ecleaz(yy);
-#endif
-		goto aexit;
-	}
-donchr:
-++s;
-goto nxtcom;
-
-/* Exponent interpretation */
-expnt:
-
-esign = 1;
-exp = 0;
-++s;
-/* check for + or - */
-if( *s == '-' )
-	{
-	esign = -1;
-	++s;
-	}
-if( *s == '+' )
-	++s;
-while( (*s >= '0') && (*s <= '9') )
-	{
-	exp *= 10;
-	exp += *s++ - '0';
-	if (exp > 4977)
-		{
-		if (esign < 0)
-			goto zero;
-		else
-			goto infinite;
-		}
-	}
-if( esign < 0 )
-	exp = -exp;
-if( exp > 4932 )
-	{
-infinite:
-	ecleaz(yy);
-	yy[E] = 0x7fff;  /* infinity */
-	goto aexit;
-	}
-if( exp < -4977 )
-	{
-zero:
-	ecleaz(yy);
-	goto aexit;
-	}
-
-daldone:
-nexp = exp - nexp;
-/* Pad trailing zeros to minimize power of 10, per IEEE spec. */
-while( (nexp > 0) && (yy[2] == 0) )
-	{
-	emovz( yy, xt );
-	eshup1( xt );
-	eshup1( xt );
-	eaddm( yy, xt );
-	eshup1( xt );
-	if( xt[2] != 0 )
-		break;
-	nexp -= 1;
-	emovz( xt, yy );
-	}
-if( (k = enormlz(yy)) > NBITS )
-	{
-	ecleaz(yy);
-	goto aexit;
-	}
-lexp = (EXONE - 1 + NBITS) - k;
-emdnorm( yy, lost, 0, lexp, 64 );
-/* convert to external format */
-
-
-/* Multiply by 10**nexp.  If precision is 64 bits,
- * the maximum relative error incurred in forming 10**n
- * for 0 <= n <= 324 is 8.2e-20, at 10**180.
- * For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947.
- * For 0 >= n >= -999, it is -1.55e-19 at 10**-435.
- */
-lexp = yy[E];
-if( nexp == 0 )
-	{
-	k = 0;
-	goto expdon;
-	}
-esign = 1;
-if( nexp < 0 )
-	{
-	nexp = -nexp;
-	esign = -1;
-	if( nexp > 4096 )
-		{ /* Punt.  Can't handle this without 2 divides. */
-		emovi( etens[0], tt );
-		lexp -= tt[E];
-		k = edivm( tt, yy );
-		lexp += EXONE;
-		nexp -= 4096;
-		}
-	}
-p = &etens[NTEN][0];
-emov( eone, xt );
-exp = 1;
-do
-	{
-	if( exp & nexp )
-		emul( p, xt, xt );
-	p -= NE;
-	exp = exp + exp;
-	}
-while( exp <= MAXP );
-
-emovi( xt, tt );
-if( esign < 0 )
-	{
-	lexp -= tt[E];
-	k = edivm( tt, yy );
-	lexp += EXONE;
-	}
-else
-	{
-	lexp += tt[E];
-	k = emulm( tt, yy );
-	lexp -= EXONE - 1;
-	}
-
-expdon:
-
-/* Round and convert directly to the destination type */
-if( oprec == 53 )
-	lexp -= EXONE - 0x3ff;
-else if( oprec == 24 )
-	lexp -= EXONE - 0177;
-#ifdef DEC
-else if( oprec == 56 )
-	lexp -= EXONE - 0201;
-#endif
-rndprc = oprec;
-emdnorm( yy, k, 0, lexp, 64 );
-
-aexit:
-
-rndprc = rndsav;
-yy[0] = nsign;
-switch( oprec )
-	{
-#ifdef DEC
-	case 56:
-		todec( yy, y ); /* see etodec.c */
-		break;
-#endif
-	case 53:
-		toe53( yy, y );
-		break;
-	case 24:
-		toe24( yy, y );
-		break;
-	case 64:
-		toe64( yy, y );
-		break;
-	case 113:
-		toe113( yy, y );
-		break;
-	case NBITS:
-		emovo( yy, y );
-		break;
-	}
-}
-
-
- 
-/* y = largest integer not greater than x
- * (truncated toward minus infinity)
- *
- * unsigned short x[NE], y[NE]
- *
- * efloor( x, y );
- */
-static unsigned short bmask[] = {
-0xffff,
-0xfffe,
-0xfffc,
-0xfff8,
-0xfff0,
-0xffe0,
-0xffc0,
-0xff80,
-0xff00,
-0xfe00,
-0xfc00,
-0xf800,
-0xf000,
-0xe000,
-0xc000,
-0x8000,
-0x0000,
-};
-
-void efloor( x, y )
-unsigned short x[], y[];
-{
-register unsigned short *p;
-int e, expon, i;
-unsigned short f[NE];
-
-emov( x, f ); /* leave in external format */
-expon = (int )f[NE-1];
-e = (expon & 0x7fff) - (EXONE - 1);
-if( e <= 0 )
-	{
-	eclear(y);
-	goto isitneg;
-	}
-/* number of bits to clear out */
-e = NBITS - e;
-emov( f, y );
-if( e <= 0 )
-	return;
-
-p = &y[0];
-while( e >= 16 )
-	{
-	*p++ = 0;
-	e -= 16;
-	}
-/* clear the remaining bits */
-*p &= bmask[e];
-/* truncate negatives toward minus infinity */
-isitneg:
-
-if( (unsigned short )expon & (unsigned short )0x8000 )
-	{
-	for( i=0; i<NE-1; i++ )
-		{
-		if( f[i] != y[i] )
-			{
-			esub( eone, y, y );
-			break;
-			}
-		}
-	}
-}
-
-
-/* unsigned short x[], s[];
- * long *exp;
- *
- * efrexp( x, exp, s );
- *
- * Returns s and exp such that  s * 2**exp = x and .5 <= s < 1.
- * For example, 1.1 = 0.55 * 2**1
- * Handles denormalized numbers properly using long integer exp.
- */
-void efrexp( x, exp, s )
-unsigned short x[];
-long *exp;
-unsigned short s[];
-{
-unsigned short xi[NI];
-long li;
-
-emovi( x, xi );
-li = (long )((short )xi[1]);
-
-if( li == 0 )
-	{
-	li -= enormlz( xi );
-	}
-xi[1] = 0x3ffe;
-emovo( xi, s );
-*exp = li - 0x3ffe;
-}
-
-
-
-/* unsigned short x[], y[];
- * long pwr2;
- *
- * eldexp( x, pwr2, y );
- *
- * Returns y = x * 2**pwr2.
- */
-void eldexp( x, pwr2, y )
-unsigned short x[];
-long pwr2;
-unsigned short y[];
-{
-unsigned short xi[NI];
-long li;
-int i;
-
-emovi( x, xi );
-li = xi[1];
-li += pwr2;
-i = 0;
-emdnorm( xi, i, i, li, 64 );
-emovo( xi, y );
-}
-
-
-/* c = remainder after dividing b by a
- * Least significant integer quotient bits left in equot[].
- */
-void eremain( a, b, c )
-unsigned short a[], b[], c[];
-{
-unsigned short den[NI], num[NI];
-
-#ifdef NANS
-if( eisinf(b) || (ecmp(a,ezero) == 0) || eisnan(a) || eisnan(b))
-	{
-	enan( c, NBITS );
-	return;
-	}
-#endif
-if( ecmp(a,ezero) == 0 )
-	{
-	mtherr( "eremain", SING );
-	eclear( c );
-	return;
-	}
-emovi( a, den );
-emovi( b, num );
-eiremain( den, num );
-/* Sign of remainder = sign of quotient */
-if( a[0] == b[0] )
-	num[0] = 0;
-else
-	num[0] = 0xffff;
-emovo( num, c );
-}
-
-
-void eiremain( den, num )
-unsigned short den[], num[];
-{
-long ld, ln;
-unsigned short j;
-
-ld = den[E];
-ld -= enormlz( den );
-ln = num[E];
-ln -= enormlz( num );
-ecleaz( equot );
-while( ln >= ld )
-	{
-	if( ecmpm(den,num) <= 0 )
-		{
-		esubm(den, num);
-		j = 1;
-		}
-	else
-		{
-		j = 0;
-		}
-	eshup1(equot);
-	equot[NI-1] |= j;
-	eshup1(num);
-	ln -= 1;
-	}
-emdnorm( num, 0, 0, ln, 0 );
-}
-
-/* NaN bit patterns
- */
-#ifdef MIEEE
-unsigned short nan113[8] = {
-  0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
-unsigned short nan64[6] = {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
-unsigned short nan53[4] = {0x7fff, 0xffff, 0xffff, 0xffff};
-unsigned short nan24[2] = {0x7fff, 0xffff};
-#endif
-
-#ifdef IBMPC
-unsigned short nan113[8] = {0, 0, 0, 0, 0, 0, 0xc000, 0xffff};
-unsigned short nan64[6] = {0, 0, 0, 0xc000, 0xffff, 0};
-unsigned short nan53[4] = {0, 0, 0, 0xfff8};
-unsigned short nan24[2] = {0, 0xffc0};
-#endif
-
-
-void enan (nan, size)
-unsigned short *nan;
-int size;
-{
-int i, n;
-unsigned short *p;
-
-switch( size )
-	{
-#ifndef DEC
-	case 113:
-	n = 8;
-	p = nan113;
-	break;
-
-	case 64:
-	n = 6;
-	p = nan64;
-	break;
-
-	case 53:
-	n = 4;
-	p = nan53;
-	break;
-
-	case 24:
-	n = 2;
-	p = nan24;
-	break;
-
-	case NBITS:
-	for( i=0; i<NE-2; i++ )
-		*nan++ = 0;
-	*nan++ = 0xc000;
-	*nan++ = 0x7fff;
-	return;
-
-	case NI*16:
-	*nan++ = 0;
-	*nan++ = 0x7fff;
-	*nan++ = 0;
-	*nan++ = 0xc000;
-	for( i=4; i<NI; i++ )
-		*nan++ = 0;
-	return;
-#endif
-	default:
-	mtherr( "enan", DOMAIN );
-	return;
-	}
-for (i=0; i < n; i++)
-	*nan++ = *p++;
-}
-
-
-
-/* Longhand square root. */
-
-static int esqinited = 0;
-static unsigned short sqrndbit[NI];
-
-void esqrt( x, y )
-short *x, *y;
-{
-unsigned short temp[NI], num[NI], sq[NI], xx[NI];
-int i, j, k, n, nlups;
-long m, exp;
-
-if( esqinited == 0 )
-	{
-	ecleaz( sqrndbit );
-	sqrndbit[NI-2] = 1;
-	esqinited = 1;
-	}
-/* Check for arg <= 0 */
-i = ecmp( x, ezero );
-if( i <= 0 )
-	{
-#ifdef NANS
-	if (i == -2)
-		{
-		enan (y, NBITS);
-		return;
-		}
-#endif
-	eclear(y);
-	if( i < 0 )
-		mtherr( "esqrt", DOMAIN );
-	return;
-	}
-
-#ifdef INFINITY
-if( eisinf(x) )
-	{
-	eclear(y);
-	einfin(y);
-	return;
-	}
-#endif
-/* Bring in the arg and renormalize if it is denormal. */
-emovi( x, xx );
-m = (long )xx[1]; /* local long word exponent */
-if( m == 0 )
-	m -= enormlz( xx );
-
-/* Divide exponent by 2 */
-m -= 0x3ffe;
-exp = (unsigned short )( (m / 2) + 0x3ffe );
-
-/* Adjust if exponent odd */
-if( (m & 1) != 0 )
-	{
-	if( m > 0 )
-		exp += 1;
-	eshdn1( xx );
-	}
-
-ecleaz( sq );
-ecleaz( num );
-n = 8; /* get 8 bits of result per inner loop */
-nlups = rndprc;
-j = 0;
-
-while( nlups > 0 )
-	{
-/* bring in next word of arg */
-	if( j < NE )
-		num[NI-1] = xx[j+3];
-/* Do additional bit on last outer loop, for roundoff. */
-	if( nlups <= 8 )
-		n = nlups + 1;
-	for( i=0; i<n; i++ )
-		{
-/* Next 2 bits of arg */
-		eshup1( num );
-		eshup1( num );
-/* Shift up answer */
-		eshup1( sq );
-/* Make trial divisor */
-		for( k=0; k<NI; k++ )
-			temp[k] = sq[k];
-		eshup1( temp );
-		eaddm( sqrndbit, temp );
-/* Subtract and insert answer bit if it goes in */
-		if( ecmpm( temp, num ) <= 0 )
-			{
-			esubm( temp, num );
-			sq[NI-2] |= 1;
-			}
-		}
-	nlups -= n;
-	j += 1;
-	}
-
-/* Adjust for extra, roundoff loop done. */
-exp += (NBITS - 1) - rndprc;
-
-/* Sticky bit = 1 if the remainder is nonzero. */
-k = 0;
-for( i=3; i<NI; i++ )
-	k |= (int )num[i];
-
-/* Renormalize and round off. */
-emdnorm( sq, k, 0, exp, 64 );
-emovo( sq, y );
-}

+ 0 - 850
test/math/ieetst.c

@@ -1,850 +0,0 @@
-/* Floating point to ASCII input and output string test program.
- *
- * Numbers in the native machine data structure are converted
- * to e type, then to and from decimal ASCII strings.  Native
- * printf() and scanf() functions are also used to produce
- * and read strings.  The resulting e type binary values
- * are compared, with diagnostic printouts of any discrepancies.
- *
- * Steve Moshier, 16 Dec 88
- * last revision: 16 May 92
- */
-
-#include "ehead.h"
-#include "mconf.h"
-
-/* Include tests of 80-bit long double precision: */
-#define LDOUBLE 0
-/* Abort subtest after getting this many errors: */
-#define MAXERR 5
-/* Number of random arguments to try (set as large as you have
- * patience for): */
-#define NRAND 100
-/* Perform internal consistency test: */
-#define CHKINTERNAL 0
-
-static unsigned short fullp[NE], rounded[NE];
-float prec24, sprec24, ssprec24;
-double prec53, sprec53, ssprec53;
-#if LDOUBLE
-long double prec64, sprec64, ssprec64;
-#endif
-
-static unsigned short rprint[NE], rscan[NE];
-static unsigned short q1[NE], q2[NE], q5[NE];
-static unsigned short e1[NE], e2[NE], e3[NE];
-static double d1, d2;
-static int errprint = 0;
-static int errscan = 0;
-static int identerr = 0;
-static int errtot = 0;
-static int count = 0;
-static char str0[80], str1[80], str2[80], str3[80];
-static unsigned short eten[NE], maxm[NE];
-
-int m, n, k2, mprec, SPREC;
-
-char *Ten = "10.0";
-char tformat[10];
-char *format24 = "%.8e";
-#ifdef DEC
-char *format53 = "%.17e";
-#else
-char *format53 = "%.16e";
-#endif
-char *fformat24 = "%e";
-char *fformat53 = "%le";
-char *pct = "%";
-char *quo = "\042";
-#if LDOUBLE
-char *format64 = "%.20Le";
-char *fformat64 = "%Le";
-#endif
-char *format;
-char *fformat;
-char *toomany = "Too many errors; aborting this test.\n";
-
-static int mnrflag;
-static int etrflag;
-void chkit(), printerr(), mnrand(), etrand(), shownoncrit();
-void chkid(), pvec();
-
-main()
-{
-int i, iprec;
-
-printf( "Steve Moshier's printf/scanf tester, version 0.2.\n\n" );
-#ifdef DEC
- /* DEC PDP-11/VAX single precision not yet implemented */
-for( iprec = 1; iprec<2; iprec++ )
-#else
-for( iprec = 0; iprec<3; iprec++ )
-#endif
-	{
-	errscan = 0;
-	identerr = 0;
-	errprint = 0;
-	eclear( rprint );
-	eclear( rscan );
-
-switch( iprec )
-	{
-	case 0:
-		SPREC = 8; /* # digits after the decimal point */
-		mprec = 24; /* # bits in the significand */
-		m = 9; /* max # decimal digits for correct rounding */
-		n = 13; /* max power of ten for correct rounding */
-		k2 = -125; /* underflow beyond 2^-k2 */
-		format = format24; /* printf format string */
-		fformat = fformat24; /* scanf format string */
-		mnrflag = 1; /* sets interval for random numbers */
-		etrflag = 1;
-		printf( "Testing FLOAT precision.\n" );
-		break;
-
-	case 1:
-#ifdef DEC
-		SPREC = 17;
-		mprec = 56;
-		m = 17;
-		n = 27;
-		k2 = -125;
-		format = format53;
-		fformat = fformat53;
-		mnrflag = 2;
-		etrflag = 1;
-		printf( "Testing DEC DOUBLE precision.\n" );
-		break;
-#else
-		SPREC = 16;
-		mprec = 53;
-		m = 17;
-		n = 27;
-		k2 = -1021;
-		format = format53;
-		fformat = fformat53;
-		mnrflag = 2;
-		etrflag = 2;
-		printf( "Testing DOUBLE precision.\n" );
-		break;
-#endif
-	case 2:
-#if LDOUBLE
-		SPREC = 20;
-		mprec = 64;
-		m = 20;
-		n = 34;
-		k2 = -16382;
-		format = format64;
-		fformat = fformat64;
-		mnrflag = 3;
-		etrflag = 3;
-		printf( "Testing LONG DOUBLE precision.\n" );
-		break;
-#else
-		goto nodenorm;
-#endif
-	}
-
-	asctoe( Ten, eten );
-/* 10^m - 1 */
-	d2 = m;
-	e53toe( &d2, e1 );
-	epow( eten, e1, maxm );
-	esub( eone, maxm, maxm );
-
-/* test 1 */
-	printf( "1. Checking 10^n - 1 for n = %d to %d.\n", -m, m );
-	emov( eone, q5 );
-	for( count=0; count<=m; count++ )
-		{
-		esub( eone, q5, fullp );
-		chkit( 1 );
-		ediv( q5, eone, q2 );
-		esub( eone, q2, fullp );
-		chkit( 1 );
-		emul( eten, q5, q5 );
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto end1;
-			}
-		}
-end1:
-	printerr();
-
-
-/* test 2 */
-	printf( "2. Checking powers of 10 from 10^-%d to 10^%d.\n", n, n );
-	emov( eone, q5 );
-	for( count=0; count<=n; count++ )
-		{
-		emov( q5, fullp );
-		chkit( 2 );
-		ediv( q5, eone, fullp );
-		chkit( 2 );
-		emul( eten, q5, q5 );
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto end2;
-			}
-		}
-end2:
-	printerr();
-
-/* test 3 */
-	printf( "3. Checking (10^%d-1)*10^n from n = -%d to %d.\n", m, n, n );
-	emov( eone, q5 );
-	for( count= -n; count<=n; count++ )
-		{
-		emul( maxm, q5, fullp );
-		chkit( 3 );
-		emov( q5, fullp );
-		ediv( fullp, eone, fullp );
-		emul( maxm, fullp, fullp );
-		chkit( 3 );
-		emul( eten, q5, q5 );
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto end3;
-			}
-		}
-end3:
-	printerr();
-
-
-
-/* test 4 */
-	printf( "4. Checking powers of 2 from 2^-24 to 2^+56.\n" );
-	d1 = -24.0;
-	e53toe( &d1, q1 );
-	epow( etwo, q1, q5 );
-
-	for( count = -24; count <= 56; count++ )
-		{
-		emov( q5, fullp );
-		chkit( 4 );
-		emul( etwo, q5, q5 );
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto end4;
-			}
-		}
-end4:
-	printerr();
-
-
-/* test 5 */
-	printf( "5. Checking 2^n - 1 for n = 0 to %d.\n", mprec );
-	emov( eone, q5 );
-	for( count=0; count<=mprec; count++ )
-		{
-		esub( eone, q5, fullp );
-		chkit( 5 );
-		emul( etwo, q5, q5 );
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto end5;
-			}
-		}
-end5:
-	printerr();
-
-/* test 6 */
-	printf( "6. Checking 2^n + 1 for n = 0 to %d.\n", mprec );
-	emov( eone, q5 );
-	for( count=0; count<=mprec; count++ )
-		{
-		eadd( eone, q5, fullp );
-		chkit( 6 );
-		emul( etwo, q5, q5 );
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto end6;
-			}
-		}
-end6:
-	printerr();
-
-/* test 7 */
-	printf(
-	 "7. Checking %d values M * 10^N with random integer M and N,\n",
-	 NRAND );
-	printf("  1 <= M <= 10^%d - 1  and  -%d <= N <= +%d.\n", m, n, n );
-	for( i=0; i<NRAND; i++ )
-		{
-		mnrand( fullp );
-		chkit( 7 );
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto end7;
-			}
-		}
-end7:
-	printerr();
-
-/* test 8 */
-	printf("8. Checking critical rounding cases.\n" );
-	for( i=0; i<20; i++ )
-		{
-		mnrand( fullp );
-		eabs( fullp );
-		if( ecmp( fullp, eone ) < 0 )
-			ediv( fullp, eone, fullp );
-		efloor( fullp, fullp );
-		eadd( ehalf, fullp, fullp );
-		chkit( 8 );
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto end8;
-			}
-		}
-end8:
-	printerr();
-
-
-
-/* test 9 */
-	printf("9. Testing on %d random non-denormal values.\n", NRAND );
-	for( i=0; i<NRAND; i++ )
-		{
-		etrand( fullp );
-		chkit( 9 );
-		}
-	printerr();
-	shownoncrit();
-
-/* test 10 */
-	printf(
-	"Do you want to check denormal numbers in this precision ? (y/n) " );
-	gets( str0 );
-	if( str0[0] != 'y' )
-		goto nodenorm;
-
-	printf( "10. Checking denormal numbers.\n" );
-
-/* Form 2^-starting power */
-	d1 = k2;
-	e53toe( &d1, q1 );
-	epow( etwo, q1, e1 );
-
-/* Find 2^-mprec less than starting power */
-	d1 = -mprec + 4;
-	e53toe( &d1, q1 );
-	epow( etwo, q1, e3 );
-	emul( e1, e3, e3 );
-	emov( e3, e2 );
-	ediv( etwo, e2, e2 );
-
-	while( ecmp(e1,e2) != 0 )
-		{
-		eadd( e1, e2, fullp );
-		switch( mprec )
-			{
-#if LDOUBLE
-			case 64:
-			etoe64( e1, &sprec64 );
-			e64toe( &sprec64, q1 );
-			etoe64( fullp, &prec64 );
-			e64toe( &prec64, q2 );
-			break;
-#endif
-#ifdef DEC
-			case 56:
-#endif
-			case 53:
-			etoe53( e1, &sprec53 );
-			e53toe( &sprec53, q1 );
-			etoe53( fullp, &prec53 );
-			e53toe( &prec53, q2 );
-			break;
-
-			case 24:
-			etoe24( e1, &sprec24 );
-			e24toe( &sprec24, q1 );
-			etoe24( fullp, &prec24 );
-			e24toe( &prec24, q2 );
-			break;
-			}
-		if( ecmp( q2, ezero ) == 0 )
-			goto maxden;
-		chkit(10);
-		if( ecmp(q1,q2) == 0 )
-			{
-			ediv( etwo, e1, e1 );
-			emov( e3, e2 );
-			}
-		if( errtot >= MAXERR )
-			{
-			printf( "%s", toomany );
-			goto maxden;
-			}
-		ediv( etwo, e2, e2 );
-		}
-maxden:
-	printerr();
-nodenorm:
-	printf( "\n" );
-	} /* loop on precision */
-printf( "End of test.\n" );
-}
-
-#if CHKINTERNAL
-long double xprec64;
-double xprec53;
-float xprec24;
-
-/* Check binary -> printf -> scanf -> binary identity
- * of internal routines
- */
-void chkinternal( ref, tst, string )
-unsigned short ref[], tst[];
-char *string;
-{
-
-if( ecmp(ref,tst) != 0 )
-	{
-	printf( "internal identity compare error!\n" );
-	chkid( ref, tst, string );
-	}
-}
-#endif
-
-
-/* Check binary -> printf -> scanf -> binary identity
- */
-void chkid( print, scan, string )
-unsigned short print[], scan[];
-char *string;
-{
-/* Test printf-scanf identity */
-if( ecmp( print, scan ) != 0 )
-	{
-	pvec( print, NE );
-	printf( " ->printf-> %s ->scanf->\n", string );
-	pvec( scan, NE );
-	printf( " is not an identity.\n" );
-	++identerr;
-	}
-}
-
-
-/* Check scanf result
- */
-void chkscan( ref, tst, string )
-unsigned short ref[], tst[];
-char *string;
-{
-/* Test scanf()  */
-if( ecmp( ref, tst ) != 0 )
-	{
-	printf( "scanf(%s) -> ", string );
-	pvec( tst, NE );
-	printf( "\n should be    " );
-	pvec( ref, NE );
-	printf( ".\n" );
-	++errscan;
-	++errtot;
-	}
-}
-
-
-/* Test printf() result
- */
-void chkprint( ref, tst, string ) 
-unsigned short ref[], tst[];
-char *string;
-{
-if( ecmp(ref, tst) != 0 )
-	{
-	printf( "printf( ");
-	pvec( ref, NE );
-	printf( ") -> %s\n", string );
-	printf( "      = " );
-	pvec( tst, NE );
-	printf( ".\n" );
-	++errprint;
-	++errtot;
-	}
-}
-
-
-/* Print array of n 16-bit shorts
- */
-void pvec( x, n )
-unsigned short x[];
-int n;
-{
-int i;
-
-for( i=0; i<n; i++ )
-	{
-	printf( "%04x ", x[i] );
-	}
-}
-
-/* Measure worst case printf rounding error
- */
-void cmpprint( ref, tst )
-unsigned short ref[], tst[];
-{
-unsigned short e[NE];
-
-if( ecmp( ref, ezero ) != 0 )
-	{
-	esub( ref, tst, e );
-	ediv( ref, e, e );
-	eabs( e );
-	if( ecmp( e, rprint ) > 0 )
-		emov( e, rprint );
-	}
-}
-
-/* Measure worst case scanf rounding error
- */
-void cmpscan( ref, tst )
-unsigned short ref[], tst[];
-{
-unsigned short er[NE];
-
-if( ecmp( ref, ezero ) != 0 )
-	{
-	esub( ref, tst, er );
-	ediv( ref, er, er );
-	eabs( er );
-	if( ecmp( er, rscan ) > 0 )
-		emov( er, rscan );
-	if( ecmp( er, ehalf ) > 0 )
-		{
-		etoasc( tst, str1, 21 );
-		printf( "Bad error: scanf(%s) = %s !\n", str0, str1 );
-		}
-	}
-}
-
-/* Check rounded-down decimal string output of printf
- */
-void cmptrunc( ref, tst )
-unsigned short ref[], tst[];
-{
-if( ecmp( ref, tst ) != 0 )
-	{
-	printf( "printf(%s%s%s, %s) -> %s\n", quo, tformat, quo, str1, str2 );
-	printf( "should be      %s .\n", str3 );
-	errprint += 1;
-	}
-}
-
-
-void shownoncrit()
-{
-
-etoasc( rprint, str0, 3 );
-printf( "Maximum relative printf error found = %s .\n", str0 );
-etoasc( rscan, str0, 3 );
-printf( "Maximum relative scanf error found = %s .\n", str0 );
-}
-
-
-
-/* Produce arguments and call comparison subroutines.
- */
-void chkit( testno )
-int testno;
-{
-unsigned short t[NE], u[NE], v[NE];
-int j;
-
-switch( mprec )
-	{
-#if LDOUBLE
-	case 64:
-		etoe64( fullp, &prec64 );
-		e64toe( &prec64, rounded );
-#if CHKINTERNAL
-		e64toasc( &prec64, str1, SPREC );
-		asctoe64( str1, &xprec64 );
-		e64toe( &xprec64, t );
-		chkinternal( rounded, t, str1 );
-#endif
-/* check printf and scanf */
-		sprintf( str2, format, prec64 );
-		sscanf( str2, fformat, &sprec64 );
-		e64toe( &sprec64, u );
-		chkid( rounded, u, str2 );
-		asctoe64( str2, &ssprec64 );
-		e64toe( &ssprec64, v );
-		chkscan( v, u, str2 );
-		chkprint( rounded, v, str2 );
-		if( testno < 8 )
-			break;
-/* rounding error measurement */
-		etoasc( fullp, str0, 24 );
-		etoe64( fullp, &ssprec64 );
-		e64toe( &ssprec64, u );
-		sprintf( str2, format, ssprec64 );
-		asctoe( str2, t );
-		cmpprint( u, t );
-		sscanf( str0, fformat, &sprec64 );
-		e64toe( &sprec64, t );
-		cmpscan( fullp, t );
-		if( testno < 8 )
-			break;
-/* strings rounded to less than maximum precision */
-		e64toasc( &ssprec64, str1, 24 );
-		for( j=SPREC-1; j>0; j-- )		
-			{
-			e64toasc( &ssprec64, str3, j );
-			asctoe( str3, v );
-			sprintf( tformat, "%s.%dLe", pct, j );
-			sprintf( str2, tformat, ssprec64 );
-			asctoe( str2, t );
-			cmptrunc( v, t );
-			}
-		break;
-#endif
-#ifdef DEC
-	case 56:
-#endif
-	case 53:
-		etoe53( fullp, &prec53 );
-		e53toe( &prec53, rounded );
-#if CHKINTERNAL
-		e53toasc( &prec53, str1, SPREC );
-		asctoe53( str1, &xprec53 );
-		e53toe( &xprec53, t );
-		chkinternal( rounded, t, str1 );
-#endif
-		sprintf( str2, format, prec53 );
-		sscanf( str2, fformat, &sprec53 );
-		e53toe( &sprec53, u );
-		chkid( rounded, u, str2 );
-		asctoe53( str2, &ssprec53 );
-		e53toe( &ssprec53, v );
-		chkscan( v, u, str2 );
-		chkprint( rounded, v, str2 );
-		if( testno < 8 )
-			break;
-/* rounding error measurement */
-		etoasc( fullp, str0, 24 );
-		etoe53( fullp, &ssprec53 );
-		e53toe( &ssprec53, u );
-		sprintf( str2, format, ssprec53 );
-		asctoe( str2, t );
-		cmpprint( u, t );
-		sscanf( str0, fformat, &sprec53 );
-		e53toe( &sprec53, t );
-		cmpscan( fullp, t );
-		if( testno < 8 )
-			break;
-		e53toasc( &ssprec53, str1, 24 );
-		for( j=SPREC-1; j>0; j-- )		
-			{
-			e53toasc( &ssprec53, str3, j );
-			asctoe( str3, v );
-			sprintf( tformat, "%s.%de", pct, j );
-			sprintf( str2, tformat, ssprec53 );
-			asctoe( str2, t );
-			cmptrunc( v, t );
-			}
-		break;
-
-	case 24:
-		etoe24( fullp, &prec24 );
-		e24toe( &prec24, rounded );
-#if CHKINTERNAL
-		e24toasc( &prec24, str1, SPREC );
-		asctoe24( str1, &xprec24 );
-		e24toe( &xprec24, t );
-		chkinternal( rounded, t, str1 );
-#endif
-		sprintf( str2, format, prec24 );
-		sscanf( str2, fformat, &sprec24 );
-		e24toe( &sprec24, u );
-		chkid( rounded, u, str2 );
-		asctoe24( str2, &ssprec24 );
-		e24toe( &ssprec24, v );
-		chkscan( v, u, str2 );
-		chkprint( rounded, v, str2 );
-		if( testno < 8 )
-			break;
-/* rounding error measurement */
-		etoasc( fullp, str0, 24 );
-		etoe24( fullp, &ssprec24 );
-		e24toe( &ssprec24, u );
-		sprintf( str2, format, ssprec24 );
-		asctoe( str2, t );
-		cmpprint( u, t );
-		sscanf( str0, fformat, &sprec24 );
-		e24toe( &sprec24, t );
-		cmpscan( fullp, t );
-/*
-		if( testno < 8 )
-			break;
-*/
-		e24toasc( &ssprec24, str1, 24 );
-		for( j=SPREC-1; j>0; j-- )		
-			{
-			e24toasc( &ssprec24, str3, j );
-			asctoe( str3, v );
-			sprintf( tformat, "%s.%de", pct, j );
-			sprintf( str2, tformat, ssprec24 );
-			asctoe( str2, t );
-			cmptrunc( v, t );
-			}
-		break;
-	}
-}
-
-
-void printerr()
-{
-if( (errscan == 0) && (identerr == 0) && (errprint == 0) )
-	printf( "No errors found.\n" );
-else
-	{
-	printf( "%d binary -> decimal errors found.\n", errprint );
-	printf( "%d decimal -> binary errors found.\n", errscan );
-	}
-errscan = 0;	/* reset for next test */
-identerr = 0;
-errprint = 0;
-errtot = 0;
-}
-
-
-/* Random number generator
- * in the range M * 10^N, where 1 <= M <= 10^17 - 1
- * and -27 <= N <= +27.  Test values of M are logarithmically distributed
- * random integers; test values of N are uniformly distributed random integers.
- */
-
-static char *fwidth = "1.036163291797320557783096e1"; /* log(sqrt(10^9-1)) */
-static char *dwidth = "1.957197329044938830915E1"; /* log(sqrt(10^17-1)) */
-static char *ldwidth = "2.302585092994045684017491e1"; /* log(sqrt(10^20-1)) */
-
-static char *a13 = "13.0";
-static char *a27 = "27.0";
-static char *a34 = "34.0";
-static char *a10m13 = "1.0e-13";
-static unsigned short LOW[ NE ], WIDTH[NE], e27[NE], e10m13[NE];
-
-
-void mnrand( erand )
-unsigned short erand[];
-{
-unsigned short ea[NE], em[NE], en[NE], ex[NE];
-double x, a;
-
-if( mnrflag )
-	{
-	if( mnrflag == 3 )
-		{
-		asctoe( ldwidth, WIDTH );
-		asctoe( a34, e27 );
-		}
-	if( mnrflag == 2 )
-		{
-		asctoe( dwidth, WIDTH );
-		asctoe( a27, e27 );
-		}
-	if( mnrflag == 1 )
-		{
-		asctoe( fwidth, WIDTH );
-		asctoe( a13, e27 );
-		}
-	asctoe( a10m13, e10m13 );
-	mnrflag = 0;
-	}
-drand( &x );
-e53toe( &x, ex ); /* x = WIDTH *  ( x - 1.0 )  +  LOW; */
-esub( eone, ex, ex );
-emul( WIDTH, ex, ex );
-eexp( ex, ex );   /* x = exp(x); */
-
-drand( &a );
-e53toe( &a, ea );
-emul( ea, ex, ea );  /* a = 1.0e-13 * x * a; */
-emul( e10m13, ea, ea );
-eabs( ea );
-eadd( ea, ex, ex );	/* add fuzz */
-emul( ex, ex, ex );	/* square it, to get range to 10^17 - 1 */
-efloor( ex, em ); /* this is M */
-
-/* Random power of 10 */
-drand( &a );
-e53toe( &a, ex );
-esub( eone, ex, ex ); /* y3 = 54.0 *  ( y3 - 1.0 ) + 0.5; */
-emul( e27, ex, ex );
-eadd( ex, ex, ex );
-eadd( ehalf, ex, ex );
-efloor( ex, ex ); /* y3 = floor( y3 ) - 27.0; */
-esub( e27, ex, en ); /* this is N */
-epow( eten, en, ex );
-emul( ex, em, erand );
-}
-
-/* -ln 2^16382 */
-char *ldemin = "-1.1355137111933024058873097E4";
-char *ldewid =  "2.2710274223866048117746193E4";
-/* -ln 2^1022 */
-char *demin  = "-7.0839641853226410622441123E2";
-char *dewid  =  "1.4167928370645282124488225E3";
-/* -ln 2^125 */
-char *femin  = "-8.6643397569993163677154015E1";
-char *fewid  =  "1.7328679513998632735430803E2";
-
-void etrand( erand )
-unsigned short erand[];
-{
-unsigned short ea[NE], ex[NE];
-double x, a;
-
-if( etrflag )
-	{
-	if( etrflag == 3 )
-		{
-		asctoe( ldemin, LOW );
-		asctoe( ldewid, WIDTH );
-		asctoe( a34, e27 );
-		}
-	if( etrflag == 2 )
-		{
-		asctoe( demin, LOW );
-		asctoe( dewid, WIDTH );
-		asctoe( a27, e27 );
-		}
-	if( etrflag == 1 )
-		{
-		asctoe( femin, LOW );
-		asctoe( fewid, WIDTH );
-		asctoe( a13, e27 );
-		}
-	asctoe( a10m13, e10m13 );
-	etrflag = 0;
-	}
-drand( &x );
-e53toe( &x, ex ); /* x = WIDTH *  ( x - 1.0 )  +  LOW; */
-esub( eone, ex, ex );
-emul( WIDTH, ex, ex );
-eadd( LOW, ex, ex );
-eexp( ex, ex );   /* x = exp(x); */
-
-/* add fuzz
- */
-drand( &a );
-e53toe( &a, ea );
-emul( ea, ex, ea );  /* a = 1.0e-13 * x * a; */
-emul( e10m13, ea, ea );
-if( ecmp( ex, ezero ) > 0 )
-	eneg( ea );
-eadd( ea, ex, erand );
-}
-

+ 0 - 132
test/math/ieetst.doc

@@ -1,132 +0,0 @@
-
-                  ieetst, version 0.2
-
-   This software tests the numerical accuracy of floating point
-binary <-> decimal string conversion, as done by your C language
-library functions printf() and scanf(), for compliance with the
-IEEE arithmetic standards ANSI/IEEE Std 754-1985 and ANSI/IEEE
-Std 854-1987.  The test covers 32-bit float, 64-bit double, and
-80-bit long double precision conversions to and from decimal
-ASCII strings.
-
-   The test program checks for proper implementation of the
-following specifications of the standards:
-
-   (1) correctly rounded conversions of numbers of the form M *
-   10^N, where M and N are integers such that, in double precision,
-   for example, |M| < 10^17, |N| <= 27.
-
-   (2) binary -> decimal -> binary conversions to be an identity
-   if a sufficiently large number of decimal digits is requested.
-
-   (3) correctly rounded decimal outputs of less than the maximum
-   number of digits
-
-   (4) The maximum observed conversion error of numbers outside the
-   domain covered by (1) is reported by the test program; it is
-   not supposed to exceed 0.97 ulp.
-
-There are 10 separate tests.  Tests 1 through 6 use values near
-2^n and 10^n.  Test 7 addresses item (1) above.  Test 8 checks
-the rounding of exact half-integer numbers. Test 9 is for item
-(4) above.  Test 10 checks denormal numbers.  Tests 8 through 10
-address item (3) using printf formats that produce outputs of 1,
-2, 3, ... digits after the decimal point.  All tests check, when
-appropriate, that the binary output of scanf is the same as the
-binary input to printf, item (2).
-
-Example error messages:
-
-   0000 0000 0000 1000 8000 3f80 ->printf-> 5.87748296e-39 ->scanf->
-   0000 0000 0000 0000 8000 3f6e  is not an identity.
-
-   scanf(-9.9999900000000003e-01) -> 0000 4800 085f ef39 ffff bffe 
-   should be 0000 5000 085f ef39 ffff bffe .
-
-   printf("%.14e",  6.13592315154256467968352E-3) -> 6.13592315154257e-03
-   should be       6.13592315154256E-3 .
-
-Binary values are displayed as four-digit hex groups in the
-little-endian format of the internal reference arithmetic. The
-least significant 16-bit word is first, the exponent is last.
-
-   The design of the test program requires knowing the binary
-data structure of the floating point format under test.  For
-configuration, check the .h files carefully. All the programs
-need to be told via mconf.h if the numeric format is
-little-endian (IBMPC) or big-endian (MIEEE).  If your system
-supports an 80-bit long double precision data type, define
-LDOUBLE 1 in ieetst.c; otherwise define LDOUBLE 0.  A provision
-for DEC PDP-11/VAX numbers is implemented (double precision
-only).  Conversions for other data structures can be added by
-analogy to the ifdefs for DEC.
-
-   Most of the tests rely on comparison with the results of a
-portable reference arithmetic, contained in the file ieee.c. 
-This is configured for an 80-bit significand, to have enough
-precision to satisfy the conversion requirements of IEEE 854 for
-the extended double format of IEEE 754.  The reference arithmetic
-includes binary <--> ASCII conversion routines and single <-->
-double <--> extended double conversions.  A strictly rounded
-square root function is given in esqrt.c.  Additional functions
-are provided by elog.c, eexp.c, etanh.c, epow.c, all of which
-call on ieee.c for their arithmetic.  Some of the ANSI C
-functions are supplied in ieee.c; for example, efloor(),
-efrexp(), eldexp(). The functions and the reference arithmetic
-are described further in the book _Methods and Programs for
-Mathematical Functions_ (Prentice-Hall or Simon & Schuster
-International, 1989), by S. L. Moshier.
-
-   As an aid in diagnosis, a calculator program, ecalc.c, is
-supplied.  It uses ieee.c for its arithmetic. Documentation for
-the calculator's user interface is in the file calc100.doc
-(calc100 is a fuller featured 100-digit version of ecalc).  The
-calculator needs to be told by qcalc.h if addresses are 32 bits
-long (define LARGEMEM 1) or 16 bits long (define LARGEMEM 0).
-
-   Because the source code of ieee.c is included here, a version
-of W. Kahan's PARANOIA is also provided; this has been heavily
-modified by substituting subroutine calls to ieee.c in place of
-all arithmetic operators.  It is important that you use PARANOIA
-to check the arithmetic after any modifications you may make to
-ieee.c.
-
-   Several systems have been tested with the initial version of
-ieetst.  Sun 4 (SPARC) passes; DEC VMS C has only a small flaw;
-Microsoft flunks; ATT SysVR2 (Motorola) flunks even worse.
-
-
-   Files:
-
-calc100.doc     calculator documentaton
-descrip.mms     part of VAX VMS makefile
-drand.c         random number generator
-ecalc.c         calculator
-ecalc.opt       part of VAX VMS makefile
-econst.c        constants for reference arithmetic
-eexp.c          reference exponential function
-ehead.h         declarations for reference arithmetic routines
-elog.c          reference logarithm
-eparanoi.c      floating point arithmetic tester
-eparanoi.opt    part of VAX VMS makefile
-epow.c          reference exponentiation
-esqrt.c         reference square root
-etanh.c         reference hyperbolic tangent
-etodec.c        conversions to and from DEC double precision format
-ieee.c          the reference arithmetic
-ieetst.c        printf/scanf tester
-ieetst.doc      this file
-ieetst.mak      Microsoft make file
-ieetst.opt      part of VAX VMS makefile
-makefile        Unix make file
-mconf.h         definitions for arithmetic format
-mtherr.c        common error reporter
-qcalc.h         definitions for calculator
-
-
-This software may be copied freely.
-
--- Steve Moshier
-
-v0.1   July, 1992
-v0.2   January, 1993

+ 4521 - 0
test/math/libm-test.inc

@@ -0,0 +1,4521 @@
+/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Andreas Jaeger <aj@arthur.rhein-neckar.de>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+/* Part of testsuite for libm.
+
+   This file is processed by a perl script.  The resulting file has to
+   be included by a master file that defines:
+
+   Makros:
+   FUNC(function): converts general function name (like cos) to
+   name with correct suffix (e.g. cosl or cosf)
+   MATHCONST(x):   like FUNC but for constants (e.g convert 0.0 to 0.0L)
+   FLOAT:	   floating point type to test
+   - TEST_MSG:	   informal message to be displayed
+   CHOOSE(Clongdouble,Cdouble,Cfloat,Cinlinelongdouble,Cinlinedouble,Cinlinefloat):
+   chooses one of the parameters as delta for testing
+   equality
+   PRINTF_EXPR	   Floating point conversion specification to print a variable
+   of type FLOAT with printf.  PRINTF_EXPR just contains
+   the specifier, not the percent and width arguments,
+   e.g. "f".
+   PRINTF_XEXPR	   Like PRINTF_EXPR, but print in hexadecimal format.
+   PRINTF_NEXPR Like PRINTF_EXPR, but print nice.  */
+
+/* This testsuite has currently tests for:
+   acos, acosh, asin, asinh, atan, atan2, atanh,
+   cbrt, ceil, copysign, cos, cosh, erf, erfc, exp, exp10, exp2, expm1,
+   fabs, fdim, floor, fma, fmax, fmin, fmod, fpclassify,
+   frexp, gamma, hypot,
+   ilogb, isfinite, isinf, isnan, isnormal,
+   isless, islessequal, isgreater, isgreaterequal, islessgreater, isunordered,
+   j0, j1, jn,
+   ldexp, lgamma, log, log10, log1p, log2, logb,
+   modf, nearbyint, nextafter,
+   pow, remainder, remquo, rint, lrint, llrint,
+   round, lround, llround,
+   scalb, scalbn, scalbln, signbit, sin, sincos, sinh, sqrt, tan, tanh, tgamma, trunc,
+   y0, y1, yn
+
+   and for the following complex math functions:
+   cabs, cacos, cacosh, carg, casin, casinh, catan, catanh,
+   ccos, ccosh, cexp, clog, cpow, cproj, csin, csinh, csqrt, ctan, ctanh.
+
+   At the moment the following functions aren't tested:
+   drem, significand, nan
+
+   Parameter handling is primitive in the moment:
+   --verbose=[0..3] for different levels of output:
+   0: only error count
+   1: basic report on failed tests (default)
+   2: full report on all tests
+   -v for full output (equals --verbose=3)
+   -u for generation of an ULPs file
+ */
+
+/* "Philosophy":
+
+   This suite tests some aspects of the correct implementation of
+   mathematical functions in libm.  Some simple, specific parameters
+   are tested for correctness but there's no exhaustive
+   testing.  Handling of specific inputs (e.g. infinity, not-a-number)
+   is also tested.  Correct handling of exceptions is checked
+   against.  These implemented tests should check all cases that are
+   specified in ISO C99.
+
+   Exception testing: At the moment only divide-by-zero and invalid
+   exceptions are tested.  Overflow/underflow and inexact exceptions
+   aren't checked at the moment.
+
+   NaN values: There exist signalling and quiet NaNs.  This implementation
+   only uses signalling NaN as parameter but does not differenciate
+   between the two kinds of NaNs as result.
+
+   Inline functions: Inlining functions should give an improvement in
+   speed - but not in precission.  The inlined functions return
+   reasonable values for a reasonable range of input values.  The
+   result is not necessarily correct for all values and exceptions are
+   not correctly raised in all cases.  Problematic input and return
+   values are infinity, not-a-number and minus zero.  This suite
+   therefore does not check these specific inputs and the exception
+   handling for inlined mathematical functions - just the "reasonable"
+   values are checked.
+
+   Beware: The tests might fail for any of the following reasons:
+   - Tests are wrong
+   - Functions are wrong
+   - Floating Point Unit not working properly
+   - Compiler has errors
+
+   With e.g. gcc 2.7.2.2 the test for cexp fails because of a compiler error.
+
+
+   To Do: All parameter should be numbers that can be represented as
+   exact floating point values.  Currently some values cannot be represented
+   exactly and therefore the result is not the expected result.
+*/
+
+#ifndef _GNU_SOURCE
+# define _GNU_SOURCE
+#endif
+
+#include "libm-test-ulps.h"
+#include <complex.h>
+#include <math.h>
+#include <float.h>
+#include <limits.h>
+
+#include <errno.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <getopt.h>
+
+//#include <fenv.h>
+#define feclearexcept(X)
+#define fetestexcept(X)	    0
+
+/* Possible exceptions */
+#define NO_EXCEPTION			0x0
+#define INVALID_EXCEPTION		0x1
+#define DIVIDE_BY_ZERO_EXCEPTION	0x2
+/* The next flags signals that those exceptions are allowed but not required.   */
+#define INVALID_EXCEPTION_OK		0x4
+#define DIVIDE_BY_ZERO_EXCEPTION_OK	0x8
+#define EXCEPTIONS_OK INVALID_EXCEPTION_OK+DIVIDE_BY_ZERO_EXCEPTION_OK
+/* Some special test flags, passed togther with exceptions.  */
+#define IGNORE_ZERO_INF_SIGN		0x10
+
+/* Various constants (we must supply them precalculated for accuracy).  */
+#define M_PI_6l			.52359877559829887307710723054658383L
+#define M_E2l			7.389056098930650227230427460575008L
+#define M_E3l			20.085536923187667740928529654581719L
+#define M_2_SQRT_PIl		3.5449077018110320545963349666822903L	/* 2 sqrt (M_PIl)  */
+#define M_SQRT_PIl		1.7724538509055160272981674833411451L	/* sqrt (M_PIl)  */
+#define M_LOG_SQRT_PIl		0.57236494292470008707171367567652933L	/* log(sqrt(M_PIl))  */
+#define M_LOG_2_SQRT_PIl	1.265512123484645396488945797134706L	/* log(2*sqrt(M_PIl))  */
+#define M_PI_34l		(M_PIl - M_PI_4l)		/* 3*pi/4 */
+#define M_PI_34_LOG10El		(M_PIl - M_PI_4l) * M_LOG10El
+#define M_PI2_LOG10El		M_PI_2l * M_LOG10El
+#define M_PI4_LOG10El		M_PI_4l * M_LOG10El
+#define M_PI_LOG10El		M_PIl * M_LOG10El
+
+static FILE *ulps_file;	/* File to document difference.  */
+static int output_ulps;	/* Should ulps printed?  */
+
+static int noErrors;	/* number of errors */
+static int noTests;	/* number of tests (without testing exceptions) */
+static int noExcTests;	/* number of tests for exception flags */
+static int noXFails;	/* number of expected failures.  */
+static int noXPasses;	/* number of unexpected passes.  */
+
+static int verbose;
+static int output_max_error;	/* Should the maximal errors printed?  */
+static int output_points;	/* Should the single function results printed?  */
+static int ignore_max_ulp;	/* Should we ignore max_ulp?  */
+
+static FLOAT minus_zero, plus_zero;
+static FLOAT plus_infty, minus_infty, nan_value;
+
+static FLOAT max_error, real_max_error, imag_max_error;
+
+
+#define BUILD_COMPLEX(real, imag) \
+  ({ __complex__ FLOAT __retval;					      \
+     __real__ __retval = (real);					      \
+     __imag__ __retval = (imag);					      \
+     __retval; })
+
+#define BUILD_COMPLEX_INT(real, imag) \
+  ({ __complex__ int __retval;						      \
+     __real__ __retval = (real);					      \
+     __imag__ __retval = (imag);					      \
+     __retval; })
+
+
+#define MANT_DIG CHOOSE ((LDBL_MANT_DIG-1), (DBL_MANT_DIG-1), (FLT_MANT_DIG-1),  \
+                         (LDBL_MANT_DIG-1), (DBL_MANT_DIG-1), (FLT_MANT_DIG-1))
+
+static void
+init_max_error (void)
+{
+  max_error = 0;
+  real_max_error = 0;
+  imag_max_error = 0;
+  feclearexcept (FE_ALL_EXCEPT);
+}
+
+static void
+set_max_error (FLOAT current, FLOAT *curr_max_error)
+{
+  if (current > *curr_max_error)
+    *curr_max_error = current;
+}
+
+
+/* Should the message print to screen?  This depends on the verbose flag,
+   and the test status.  */
+static int
+print_screen (int ok, int xfail)
+{
+  if (output_points
+      && (verbose > 1
+	  || (verbose == 1 && ok == xfail)))
+    return 1;
+  return 0;
+}
+
+
+/* Should the message print to screen?  This depends on the verbose flag,
+   and the test status.  */
+static int
+print_screen_max_error (int ok, int xfail)
+{
+  if (output_max_error
+      && (verbose > 1
+	  || ((verbose == 1) && (ok == xfail))))
+    return 1;
+  return 0;
+}
+
+/* Update statistic counters.  */
+static void
+update_stats (int ok, int xfail)
+{
+  ++noTests;
+  if (ok && xfail)
+    ++noXPasses;
+  else if (!ok && xfail)
+    ++noXFails;
+  else if (!ok && !xfail)
+    ++noErrors;
+}
+
+static void
+print_ulps (const char *test_name, FLOAT ulp)
+{
+  if (output_ulps)
+    {
+      fprintf (ulps_file, "Test \"%s\":\n", test_name);
+      fprintf (ulps_file, "%s: %.0" PRINTF_NEXPR "\n",
+	       CHOOSE("ldouble", "double", "float",
+		      "ildouble", "idouble", "ifloat"),
+	       FUNC(ceil) (ulp));
+    }
+}
+
+static void
+print_function_ulps (const char *function_name, FLOAT ulp)
+{
+  if (output_ulps)
+    {
+      fprintf (ulps_file, "Function: \"%s\":\n", function_name);
+      fprintf (ulps_file, "%s: %.0" PRINTF_NEXPR "\n",
+	       CHOOSE("ldouble", "double", "float",
+		      "ildouble", "idouble", "ifloat"),
+	       FUNC(ceil) (ulp));
+    }
+}
+
+
+static void
+print_complex_function_ulps (const char *function_name, FLOAT real_ulp,
+			     FLOAT imag_ulp)
+{
+  if (output_ulps)
+    {
+      if (real_ulp != 0.0)
+	{
+	  fprintf (ulps_file, "Function: Real part of \"%s\":\n", function_name);
+	  fprintf (ulps_file, "%s: %.0" PRINTF_NEXPR "\n",
+		   CHOOSE("ldouble", "double", "float",
+			  "ildouble", "idouble", "ifloat"),
+		   FUNC(ceil) (real_ulp));
+	}
+      if (imag_ulp != 0.0)
+	{
+	  fprintf (ulps_file, "Function: Imaginary part of \"%s\":\n", function_name);
+	  fprintf (ulps_file, "%s: %.0" PRINTF_NEXPR "\n",
+		   CHOOSE("ldouble", "double", "float",
+			  "ildouble", "idouble", "ifloat"),
+		   FUNC(ceil) (imag_ulp));
+	}
+
+
+    }
+}
+
+
+
+/* Test if Floating-Point stack hasn't changed */
+static void
+fpstack_test (const char *test_name)
+{
+#ifdef i386
+  static int old_stack;
+  int sw;
+
+  asm ("fnstsw" : "=a" (sw));
+  sw >>= 11;
+  sw &= 7;
+
+  if (sw != old_stack)
+    {
+      printf ("FP-Stack wrong after test %s (%d, should be %d)\n",
+	      test_name, sw, old_stack);
+      ++noErrors;
+      old_stack = sw;
+    }
+#endif
+}
+
+
+static void
+print_max_error (const char *func_name, FLOAT allowed, int xfail)
+{
+  int ok = 0;
+
+  if (max_error == 0.0 || (max_error <= allowed && !ignore_max_ulp))
+    {
+      ok = 1;
+    }
+
+  if (!ok)
+    print_function_ulps (func_name, max_error);
+
+
+  if (print_screen_max_error (ok, xfail))
+    {
+      printf ("Maximal error of `%s'\n", func_name);
+      printf (" is      : %.0" PRINTF_NEXPR " ulp\n", FUNC(ceil) (max_error));
+      printf (" accepted: %.0" PRINTF_NEXPR " ulp\n", FUNC(ceil) (allowed));
+    }
+
+  update_stats (ok, xfail);
+}
+
+
+static void
+print_complex_max_error (const char *func_name, __complex__ FLOAT allowed,
+			 __complex__ int xfail)
+{
+  int ok = 0;
+
+  if ((real_max_error == 0 && imag_max_error == 0)
+      || (real_max_error <= __real__ allowed
+	  && imag_max_error <= __imag__ allowed
+	  && !ignore_max_ulp))
+    {
+      ok = 1;
+    }
+
+  if (!ok)
+    print_complex_function_ulps (func_name, real_max_error, imag_max_error);
+
+
+  if (print_screen_max_error (ok, xfail))
+    {
+      printf ("Maximal error of real part of: %s\n", func_name);
+      printf (" is      : %.0" PRINTF_NEXPR " ulp\n",
+	      FUNC(ceil) (real_max_error));
+      printf (" accepted: %.0" PRINTF_NEXPR " ulp\n",
+	      FUNC(ceil) (__real__ allowed));
+      printf ("Maximal error of imaginary part of: %s\n", func_name);
+      printf (" is      : %.0" PRINTF_NEXPR " ulp\n",
+	      FUNC(ceil) (imag_max_error));
+      printf (" accepted: %.0" PRINTF_NEXPR " ulp\n",
+	      FUNC(ceil) (__imag__ allowed));
+    }
+
+  update_stats (ok, xfail);
+}
+
+
+/* Test whether a given exception was raised.  */
+static void
+test_single_exception (const char *test_name,
+		       int exception,
+		       int exc_flag,
+		       int fe_flag,
+		       const char *flag_name)
+{
+#ifndef TEST_INLINE
+  int ok = 1;
+  if (exception & exc_flag)
+    {
+      if (fetestexcept (fe_flag))
+	{
+	  if (print_screen (1, 0))
+	    printf ("Pass: %s: Exception \"%s\" set\n", test_name, flag_name);
+	}
+      else
+	{
+	  ok = 0;
+	  if (print_screen (0, 0))
+	    printf ("Failure: %s: Exception \"%s\" not set\n",
+		    test_name, flag_name);
+	}
+    }
+  else
+    {
+      if (fetestexcept (fe_flag))
+	{
+	  ok = 0;
+	  if (print_screen (0, 0))
+	    printf ("Failure: %s: Exception \"%s\" set\n",
+		    test_name, flag_name);
+	}
+      else
+	{
+	  if (print_screen (1, 0))
+	    printf ("%s: Exception \"%s\" not set\n", test_name,
+		    flag_name);
+	}
+    }
+  if (!ok)
+    ++noErrors;
+
+#endif
+}
+
+
+/* Test whether exceptions given by EXCEPTION are raised.  Ignore thereby
+   allowed but not required exceptions.
+*/
+static void
+test_exceptions (const char *test_name, int exception)
+{
+  ++noExcTests;
+#ifdef FE_DIVBYZERO
+  if ((exception & DIVIDE_BY_ZERO_EXCEPTION_OK) == 0)
+    test_single_exception (test_name, exception,
+			   DIVIDE_BY_ZERO_EXCEPTION, FE_DIVBYZERO,
+			   "Divide by zero");
+#endif
+#ifdef FE_INVALID
+  if ((exception & INVALID_EXCEPTION_OK) == 0)
+    test_single_exception (test_name, exception, INVALID_EXCEPTION, FE_INVALID,
+			 "Invalid operation");
+#endif
+  feclearexcept (FE_ALL_EXCEPT);
+}
+
+
+static void
+check_float_internal (const char *test_name, FLOAT computed, FLOAT expected,
+		      FLOAT max_ulp, int xfail, int exceptions,
+		      FLOAT *curr_max_error)
+{
+  int ok = 0;
+  int print_diff = 0;
+  FLOAT diff = 0;
+  FLOAT ulp = 0;
+
+  test_exceptions (test_name, exceptions);
+  if (isnan (computed) && isnan (expected))
+    ok = 1;
+  else if (isinf (computed) && isinf (expected))
+    {
+      /* Test for sign of infinities.  */
+      if ((exceptions & IGNORE_ZERO_INF_SIGN) == 0
+	  && signbit (computed) != signbit (expected))
+	{
+	  ok = 0;
+	  printf ("infinity has wrong sign.\n");
+	}
+      else
+	ok = 1;
+    }
+  /* Don't calc ulp for NaNs or infinities.  */
+  else if (isinf (computed) || isnan (computed) || isinf (expected) || isnan (expected))
+    ok = 0;
+  else
+    {
+      diff = FUNC(fabs) (computed - expected);
+      /* ilogb (0) isn't allowed.  */
+      if (expected == 0.0)
+	ulp = diff / FUNC(ldexp) (1.0, - MANT_DIG);
+      else
+	ulp = diff / FUNC(ldexp) (1.0, FUNC(ilogb) (expected) - MANT_DIG);
+      set_max_error (ulp, curr_max_error);
+      print_diff = 1;
+      if ((exceptions & IGNORE_ZERO_INF_SIGN) == 0
+	  && computed == 0.0 && expected == 0.0
+	  && signbit(computed) != signbit (expected))
+	ok = 0;
+      else if (ulp == 0.0 || (ulp <= max_ulp && !ignore_max_ulp))
+	ok = 1;
+      else
+	{
+	  ok = 0;
+	  print_ulps (test_name, ulp);
+	}
+
+    }
+  if (print_screen (ok, xfail))
+    {
+      if (!ok)
+	printf ("Failure: ");
+      printf ("Test: %s\n", test_name);
+      printf ("Result:\n");
+      printf (" is:         % .20" PRINTF_EXPR "  % .20" PRINTF_XEXPR "\n",
+	      computed, computed);
+      printf (" should be:  % .20" PRINTF_EXPR "  % .20" PRINTF_XEXPR "\n",
+	      expected, expected);
+      if (print_diff)
+	{
+	  printf (" difference: % .20" PRINTF_EXPR "  % .20" PRINTF_XEXPR
+		  "\n", diff, diff);
+	  printf (" ulp       : % .4" PRINTF_NEXPR "\n", ulp);
+	  printf (" max.ulp   : % .4" PRINTF_NEXPR "\n", max_ulp);
+	}
+    }
+  update_stats (ok, xfail);
+
+  fpstack_test (test_name);
+}
+
+
+static void
+check_float (const char *test_name, FLOAT computed, FLOAT expected,
+	     FLOAT max_ulp, int xfail, int exceptions)
+{
+  check_float_internal (test_name, computed, expected, max_ulp, xfail,
+			exceptions, &max_error);
+}
+
+
+static void
+check_complex (const char *test_name, __complex__ FLOAT computed,
+	       __complex__ FLOAT expected,
+	       __complex__ FLOAT max_ulp, __complex__ int xfail,
+	       int exception)
+{
+  FLOAT part_comp, part_exp, part_max_ulp;
+  int part_xfail;
+  char str[200];
+
+  sprintf (str, "Real part of: %s", test_name);
+  part_comp = __real__ computed;
+  part_exp = __real__ expected;
+  part_max_ulp = __real__ max_ulp;
+  part_xfail = __real__ xfail;
+
+  check_float_internal (str, part_comp, part_exp, part_max_ulp, part_xfail,
+			exception, &real_max_error);
+
+  sprintf (str, "Imaginary part of: %s", test_name);
+  part_comp = __imag__ computed;
+  part_exp = __imag__ expected;
+  part_max_ulp = __imag__ max_ulp;
+  part_xfail = __imag__ xfail;
+
+  /* Don't check again for exceptions, just pass through the
+     zero/inf sign test.  */
+  check_float_internal (str, part_comp, part_exp, part_max_ulp, part_xfail,
+			exception & IGNORE_ZERO_INF_SIGN,
+			&imag_max_error);
+}
+
+
+/* Check that computed and expected values are equal (int values).  */
+static void
+check_int (const char *test_name, int computed, int expected, int max_ulp,
+	   int xfail, int exceptions)
+{
+  int diff = computed - expected;
+  int ok = 0;
+
+  test_exceptions (test_name, exceptions);
+  noTests++;
+  if (abs (diff) <= max_ulp)
+    ok = 1;
+
+  if (!ok)
+    print_ulps (test_name, diff);
+
+  if (print_screen (ok, xfail))
+    {
+      if (!ok)
+	printf ("Failure: ");
+      printf ("Test: %s\n", test_name);
+      printf ("Result:\n");
+      printf (" is:         %d\n", computed);
+      printf (" should be:  %d\n", expected);
+    }
+
+  update_stats (ok, xfail);
+  fpstack_test (test_name);
+}
+
+
+/* Check that computed and expected values are equal (long int values).  */
+static void
+check_long (const char *test_name, long int computed, long int expected,
+	    long int max_ulp, int xfail, int exceptions)
+{
+  long int diff = computed - expected;
+  int ok = 0;
+
+  test_exceptions (test_name, exceptions);
+  noTests++;
+  if (labs (diff) <= max_ulp)
+    ok = 1;
+
+  if (!ok)
+    print_ulps (test_name, diff);
+
+  if (print_screen (ok, xfail))
+    {
+      if (!ok)
+	printf ("Failure: ");
+      printf ("Test: %s\n", test_name);
+      printf ("Result:\n");
+      printf (" is:         %ld\n", computed);
+      printf (" should be:  %ld\n", expected);
+    }
+
+  update_stats (ok, xfail);
+  fpstack_test (test_name);
+}
+
+
+/* Check that computed value is true/false.  */
+static void
+check_bool (const char *test_name, int computed, int expected,
+	    long int max_ulp, int xfail, int exceptions)
+{
+  int ok = 0;
+
+  test_exceptions (test_name, exceptions);
+  noTests++;
+  if ((computed == 0) == (expected == 0))
+    ok = 1;
+
+  if (print_screen (ok, xfail))
+    {
+      if (!ok)
+	printf ("Failure: ");
+      printf ("Test: %s\n", test_name);
+      printf ("Result:\n");
+      printf (" is:         %d\n", computed);
+      printf (" should be:  %d\n", expected);
+    }
+
+  update_stats (ok, xfail);
+  fpstack_test (test_name);
+}
+
+
+/* check that computed and expected values are equal (long int values) */
+static void
+check_longlong (const char *test_name, long long int computed,
+		long long int expected,
+		long long int max_ulp, int xfail,
+		int exceptions)
+{
+  long long int diff = computed - expected;
+  int ok = 0;
+
+  test_exceptions (test_name, exceptions);
+  noTests++;
+  if (llabs (diff) <= max_ulp)
+    ok = 1;
+
+  if (!ok)
+    print_ulps (test_name, diff);
+
+  if (print_screen (ok, xfail))
+    {
+      if (!ok)
+	printf ("Failure:");
+      printf ("Test: %s\n", test_name);
+      printf ("Result:\n");
+      printf (" is:         %lld\n", computed);
+      printf (" should be:  %lld\n", expected);
+    }
+
+  update_stats (ok, xfail);
+  fpstack_test (test_name);
+}
+
+
+
+/* This is to prevent messages from the SVID libm emulation.  */
+int
+matherr (struct exception *x __attribute__ ((unused)))
+{
+  return 1;
+}
+
+
+/****************************************************************************
+  Tests for single functions of libm.
+  Please keep them alphabetically sorted!
+****************************************************************************/
+
+static void
+acos_test (void)
+{
+  errno = 0;
+  FUNC(acos) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (acos);
+
+  TEST_f_f (acos, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (acos, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (acos, nan_value, nan_value);
+
+  /* |x| > 1: */
+  TEST_f_f (acos, 1.1L, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (acos, -1.1L, nan_value, INVALID_EXCEPTION);
+
+  TEST_f_f (acos, 0, M_PI_2l);
+  TEST_f_f (acos, minus_zero, M_PI_2l);
+  TEST_f_f (acos, 1, 0);
+  TEST_f_f (acos, -1, M_PIl);
+  TEST_f_f (acos, 0.5, M_PI_6l*2.0);
+  TEST_f_f (acos, -0.5, M_PI_6l*4.0);
+  TEST_f_f (acos, 0.7L, 0.79539883018414355549096833892476432L);
+
+  END (acos);
+}
+
+static void
+acosh_test (void)
+{
+  errno = 0;
+  FUNC(acosh) (7);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (acosh);
+
+  TEST_f_f (acosh, plus_infty, plus_infty);
+  TEST_f_f (acosh, minus_infty, nan_value, INVALID_EXCEPTION);
+
+  /* x < 1:  */
+  TEST_f_f (acosh, -1.1L, nan_value, INVALID_EXCEPTION);
+
+  TEST_f_f (acosh, 1, 0);
+  TEST_f_f (acosh, 7, 2.633915793849633417250092694615937L);
+
+  END (acosh);
+}
+
+static void
+asin_test (void)
+{
+  errno = 0;
+  FUNC(asin) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (asin);
+
+  TEST_f_f (asin, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (asin, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (asin, nan_value, nan_value);
+
+  /* asin x == NaN plus invalid exception for |x| > 1.  */
+  TEST_f_f (asin, 1.1L, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (asin, -1.1L, nan_value, INVALID_EXCEPTION);
+
+  TEST_f_f (asin, 0, 0);
+  TEST_f_f (asin, minus_zero, minus_zero);
+  TEST_f_f (asin, 0.5, M_PI_6l);
+  TEST_f_f (asin, -0.5, -M_PI_6l);
+  TEST_f_f (asin, 1.0, M_PI_2l);
+  TEST_f_f (asin, -1.0, -M_PI_2l);
+  TEST_f_f (asin, 0.7L, 0.77539749661075306374035335271498708L);
+
+  END (asin);
+}
+
+static void
+asinh_test (void)
+{
+  errno = 0;
+  FUNC(asinh) (0.7L);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (asinh);
+
+  TEST_f_f (asinh, 0, 0);
+  TEST_f_f (asinh, minus_zero, minus_zero);
+#ifndef TEST_INLINE
+  TEST_f_f (asinh, plus_infty, plus_infty);
+  TEST_f_f (asinh, minus_infty, minus_infty);
+#endif
+  TEST_f_f (asinh, nan_value, nan_value);
+  TEST_f_f (asinh, 0.7L, 0.652666566082355786L);
+
+  END (asinh);
+}
+
+static void
+atan_test (void)
+{
+  errno = 0;
+  FUNC(atan) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (atan);
+
+  TEST_f_f (atan, 0, 0);
+  TEST_f_f (atan, minus_zero, minus_zero);
+
+  TEST_f_f (atan, plus_infty, M_PI_2l);
+  TEST_f_f (atan, minus_infty, -M_PI_2l);
+  TEST_f_f (atan, nan_value, nan_value);
+
+  TEST_f_f (atan, 1, M_PI_4l);
+  TEST_f_f (atan, -1, -M_PI_4l);
+
+  TEST_f_f (atan, 0.7L, 0.61072596438920861654375887649023613L);
+
+  END (atan);
+}
+
+
+
+static void
+atanh_test (void)
+{
+  errno = 0;
+  FUNC(atanh) (0.7L);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (atanh);
+
+
+  TEST_f_f (atanh, 0, 0);
+  TEST_f_f (atanh, minus_zero, minus_zero);
+
+  TEST_f_f (atanh, 1, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (atanh, -1, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (atanh, nan_value, nan_value);
+
+  /* atanh (x) == NaN plus invalid exception if |x| > 1.  */
+  TEST_f_f (atanh, 1.1L, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (atanh, -1.1L, nan_value, INVALID_EXCEPTION);
+
+  TEST_f_f (atanh, 0.7L, 0.8673005276940531944L);
+
+  END (atanh);
+}
+
+static void
+atan2_test (void)
+{
+  errno = 0;
+  FUNC(atan2) (-0, 1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (atan2);
+
+  /* atan2 (0,x) == 0 for x > 0.  */
+  TEST_ff_f (atan2, 0, 1, 0);
+
+  /* atan2 (-0,x) == -0 for x > 0.  */
+  TEST_ff_f (atan2, minus_zero, 1, minus_zero);
+
+  TEST_ff_f (atan2, 0, 0, 0);
+  TEST_ff_f (atan2, minus_zero, 0, minus_zero);
+
+  /* atan2 (+0,x) == +pi for x < 0.  */
+  TEST_ff_f (atan2, 0, -1, M_PIl);
+
+  /* atan2 (-0,x) == -pi for x < 0.  */
+  TEST_ff_f (atan2, minus_zero, -1, -M_PIl);
+
+  TEST_ff_f (atan2, 0, minus_zero, M_PIl);
+  TEST_ff_f (atan2, minus_zero, minus_zero, -M_PIl);
+
+  /* atan2 (y,+0) == pi/2 for y > 0.  */
+  TEST_ff_f (atan2, 1, 0, M_PI_2l);
+
+  /* atan2 (y,-0) == pi/2 for y > 0.  */
+  TEST_ff_f (atan2, 1, minus_zero, M_PI_2l);
+
+  /* atan2 (y,+0) == -pi/2 for y < 0.  */
+  TEST_ff_f (atan2, -1, 0, -M_PI_2l);
+
+  /* atan2 (y,-0) == -pi/2 for y < 0.  */
+  TEST_ff_f (atan2, -1, minus_zero, -M_PI_2l);
+
+  /* atan2 (y,inf) == +0 for finite y > 0.  */
+  TEST_ff_f (atan2, 1, plus_infty, 0);
+
+  /* atan2 (y,inf) == -0 for finite y < 0.  */
+  TEST_ff_f (atan2, -1, plus_infty, minus_zero);
+
+  /* atan2(+inf, x) == pi/2 for finite x.  */
+  TEST_ff_f (atan2, plus_infty, -1, M_PI_2l);
+
+  /* atan2(-inf, x) == -pi/2 for finite x.  */
+  TEST_ff_f (atan2, minus_infty, 1, -M_PI_2l);
+
+  /* atan2 (y,-inf) == +pi for finite y > 0.  */
+  TEST_ff_f (atan2, 1, minus_infty, M_PIl);
+
+  /* atan2 (y,-inf) == -pi for finite y < 0.  */
+  TEST_ff_f (atan2, -1, minus_infty, -M_PIl);
+
+  TEST_ff_f (atan2, plus_infty, plus_infty, M_PI_4l);
+  TEST_ff_f (atan2, minus_infty, plus_infty, -M_PI_4l);
+  TEST_ff_f (atan2, plus_infty, minus_infty, M_PI_34l);
+  TEST_ff_f (atan2, minus_infty, minus_infty, -M_PI_34l);
+  TEST_ff_f (atan2, nan_value, nan_value, nan_value);
+
+  TEST_ff_f (atan2, 0.7L, 1, 0.61072596438920861654375887649023613L);
+  TEST_ff_f (atan2, -0.7L, 1.0L, -0.61072596438920861654375887649023613L);
+  TEST_ff_f (atan2, 0.7L, -1.0L, 2.530866689200584621918884506789267L);
+  TEST_ff_f (atan2, -0.7L, -1.0L, -2.530866689200584621918884506789267L);
+  TEST_ff_f (atan2, 0.4L, 0.0003L, 1.5700463269355215717704032607580829L);
+  TEST_ff_f (atan2, 1.4L, -0.93L, 2.1571487668237843754887415992772736L);
+
+  END (atan2);
+}
+
+
+static void
+cabs_test (void)
+{
+  errno = 0;
+  FUNC(cabs) (BUILD_COMPLEX (0.7L, 12.4L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (cabs);
+
+  /* cabs (x + iy) is specified as hypot (x,y) */
+
+  /* cabs (+inf + i x) == +inf.  */
+  TEST_c_f (cabs, plus_infty, 1.0, plus_infty);
+  /* cabs (-inf + i x) == +inf.  */
+  TEST_c_f (cabs, minus_infty, 1.0, plus_infty);
+
+  TEST_c_f (cabs, minus_infty, nan_value, plus_infty);
+  TEST_c_f (cabs, minus_infty, nan_value, plus_infty);
+
+  TEST_c_f (cabs, nan_value, nan_value, nan_value);
+
+  /* cabs (x,y) == cabs (y,x).  */
+  TEST_c_f (cabs, 0.7L, 12.4L, 12.419742348374220601176836866763271L);
+  /* cabs (x,y) == cabs (-x,y).  */
+  TEST_c_f (cabs, -12.4L, 0.7L, 12.419742348374220601176836866763271L);
+  /* cabs (x,y) == cabs (-y,x).  */
+  TEST_c_f (cabs, -0.7L, 12.4L, 12.419742348374220601176836866763271L);
+  /* cabs (x,y) == cabs (-x,-y).  */
+  TEST_c_f (cabs, -12.4L, -0.7L, 12.419742348374220601176836866763271L);
+  /* cabs (x,y) == cabs (-y,-x).  */
+  TEST_c_f (cabs, -0.7L, -12.4L, 12.419742348374220601176836866763271L);
+  /* cabs (x,0) == fabs (x).  */
+  TEST_c_f (cabs, -0.7L, 0, 0.7L);
+  TEST_c_f (cabs, 0.7L, 0, 0.7L);
+  TEST_c_f (cabs, -1.0L, 0, 1.0L);
+  TEST_c_f (cabs, 1.0L, 0, 1.0L);
+  TEST_c_f (cabs, -5.7e7L, 0, 5.7e7L);
+  TEST_c_f (cabs, 5.7e7L, 0, 5.7e7L);
+
+  TEST_c_f (cabs, 0.7L, 1.2L, 1.3892443989449804508432547041028554L);
+
+  END (cabs);
+}
+
+#if 0
+static void
+cacos_test (void)
+{
+  errno = 0;
+  FUNC(cacos) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (cacos);
+
+
+  TEST_c_c (cacos, 0, 0, M_PI_2l, minus_zero);
+  TEST_c_c (cacos, minus_zero, 0, M_PI_2l, minus_zero);
+  TEST_c_c (cacos, minus_zero, minus_zero, M_PI_2l, 0.0);
+  TEST_c_c (cacos, 0, minus_zero, M_PI_2l, 0.0);
+
+  TEST_c_c (cacos, minus_infty, plus_infty, M_PI_34l, minus_infty);
+  TEST_c_c (cacos, minus_infty, minus_infty, M_PI_34l, plus_infty);
+
+  TEST_c_c (cacos, plus_infty, plus_infty, M_PI_4l, minus_infty);
+  TEST_c_c (cacos, plus_infty, minus_infty, M_PI_4l, plus_infty);
+
+  TEST_c_c (cacos, -10.0, plus_infty, M_PI_2l, minus_infty);
+  TEST_c_c (cacos, -10.0, minus_infty, M_PI_2l, plus_infty);
+  TEST_c_c (cacos, 0, plus_infty, M_PI_2l, minus_infty);
+  TEST_c_c (cacos, 0, minus_infty, M_PI_2l, plus_infty);
+  TEST_c_c (cacos, 0.1L, plus_infty, M_PI_2l, minus_infty);
+  TEST_c_c (cacos, 0.1L, minus_infty, M_PI_2l, plus_infty);
+
+  TEST_c_c (cacos, minus_infty, 0, M_PIl, minus_infty);
+  TEST_c_c (cacos, minus_infty, minus_zero, M_PIl, plus_infty);
+  TEST_c_c (cacos, minus_infty, 100, M_PIl, minus_infty);
+  TEST_c_c (cacos, minus_infty, -100, M_PIl, plus_infty);
+
+  TEST_c_c (cacos, plus_infty, 0, 0.0, minus_infty);
+  TEST_c_c (cacos, plus_infty, minus_zero, 0.0, plus_infty);
+  TEST_c_c (cacos, plus_infty, 0.5, 0.0, minus_infty);
+  TEST_c_c (cacos, plus_infty, -0.5, 0.0, plus_infty);
+
+  TEST_c_c (cacos, plus_infty, nan_value, nan_value, plus_infty, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (cacos, minus_infty, nan_value, nan_value, plus_infty, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (cacos, 0, nan_value, M_PI_2l, nan_value);
+  TEST_c_c (cacos, minus_zero, nan_value, M_PI_2l, nan_value);
+
+  TEST_c_c (cacos, nan_value, plus_infty, nan_value, minus_infty);
+  TEST_c_c (cacos, nan_value, minus_infty, nan_value, plus_infty);
+
+  TEST_c_c (cacos, 10.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (cacos, -10.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (cacos, nan_value, 0.75, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (cacos, nan_value, -0.75, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (cacos, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (cacos, 0.7L, 1.2L, 1.1351827477151551088992008271819053L, -1.0927647857577371459105272080819308L);
+  TEST_c_c (cacos, -2, -3, 2.1414491111159960199416055713254211L, 1.9833870299165354323470769028940395L);
+
+  END (cacos, complex);
+}
+
+
+static void
+cacosh_test (void)
+{
+  errno = 0;
+  FUNC(cacosh) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (cacosh);
+
+
+  TEST_c_c (cacosh, 0, 0, 0.0, M_PI_2l);
+  TEST_c_c (cacosh, minus_zero, 0, 0.0, M_PI_2l);
+  TEST_c_c (cacosh, 0, minus_zero, 0.0, -M_PI_2l);
+  TEST_c_c (cacosh, minus_zero, minus_zero, 0.0, -M_PI_2l);
+  TEST_c_c (cacosh, minus_infty, plus_infty, plus_infty, M_PI_34l);
+  TEST_c_c (cacosh, minus_infty, minus_infty, plus_infty, -M_PI_34l);
+
+  TEST_c_c (cacosh, plus_infty, plus_infty, plus_infty, M_PI_4l);
+  TEST_c_c (cacosh, plus_infty, minus_infty, plus_infty, -M_PI_4l);
+
+  TEST_c_c (cacosh, -10.0, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (cacosh, -10.0, minus_infty, plus_infty, -M_PI_2l);
+  TEST_c_c (cacosh, 0, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (cacosh, 0, minus_infty, plus_infty, -M_PI_2l);
+  TEST_c_c (cacosh, 0.1L, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (cacosh, 0.1L, minus_infty, plus_infty, -M_PI_2l);
+
+  TEST_c_c (cacosh, minus_infty, 0, plus_infty, M_PIl);
+  TEST_c_c (cacosh, minus_infty, minus_zero, plus_infty, -M_PIl);
+  TEST_c_c (cacosh, minus_infty, 100, plus_infty, M_PIl);
+  TEST_c_c (cacosh, minus_infty, -100, plus_infty, -M_PIl);
+
+  TEST_c_c (cacosh, plus_infty, 0, plus_infty, 0.0);
+  TEST_c_c (cacosh, plus_infty, minus_zero, plus_infty, minus_zero);
+  TEST_c_c (cacosh, plus_infty, 0.5, plus_infty, 0.0);
+  TEST_c_c (cacosh, plus_infty, -0.5, plus_infty, minus_zero);
+
+  TEST_c_c (cacosh, plus_infty, nan_value, plus_infty, nan_value);
+  TEST_c_c (cacosh, minus_infty, nan_value, plus_infty, nan_value);
+
+  TEST_c_c (cacosh, 0, nan_value, nan_value, nan_value);
+  TEST_c_c (cacosh, minus_zero, nan_value, nan_value, nan_value);
+
+  TEST_c_c (cacosh, nan_value, plus_infty, plus_infty, nan_value);
+  TEST_c_c (cacosh, nan_value, minus_infty, plus_infty, nan_value);
+
+  TEST_c_c (cacosh, 10.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (cacosh, -10.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (cacosh, nan_value, 0.75, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (cacosh, nan_value, -0.75, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (cacosh, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (cacosh, 0.7L, 1.2L, 1.0927647857577371459105272080819308L, 1.1351827477151551088992008271819053L);
+  TEST_c_c (cacosh, -2, -3, -1.9833870299165354323470769028940395L, 2.1414491111159960199416055713254211L);
+
+  END (cacosh, complex);
+}
+
+static void
+carg_test (void)
+{
+  START (carg);
+
+  /* carg (x + iy) is specified as atan2 (y, x) */
+
+  /* carg (x + i 0) == 0 for x > 0.  */
+  TEST_c_f (carg, 2.0, 0, 0);
+  /* carg (x - i 0) == -0 for x > 0.  */
+  TEST_c_f (carg, 2.0, minus_zero, minus_zero);
+
+  TEST_c_f (carg, 0, 0, 0);
+  TEST_c_f (carg, 0, minus_zero, minus_zero);
+
+  /* carg (x + i 0) == +pi for x < 0.  */
+  TEST_c_f (carg, -2.0, 0, M_PIl);
+
+  /* carg (x - i 0) == -pi for x < 0.  */
+  TEST_c_f (carg, -2.0, minus_zero, -M_PIl);
+
+  TEST_c_f (carg, minus_zero, 0, M_PIl);
+  TEST_c_f (carg, minus_zero, minus_zero, -M_PIl);
+
+  /* carg (+0 + i y) == pi/2 for y > 0.  */
+  TEST_c_f (carg, 0, 2.0, M_PI_2l);
+
+  /* carg (-0 + i y) == pi/2 for y > 0.  */
+  TEST_c_f (carg, minus_zero, 2.0, M_PI_2l);
+
+  /* carg (+0 + i y) == -pi/2 for y < 0.  */
+  TEST_c_f (carg, 0, -2.0, -M_PI_2l);
+
+  /* carg (-0 + i y) == -pi/2 for y < 0.  */
+  TEST_c_f (carg, minus_zero, -2.0, -M_PI_2l);
+
+  /* carg (inf + i y) == +0 for finite y > 0.  */
+  TEST_c_f (carg, plus_infty, 2.0, 0);
+
+  /* carg (inf + i y) == -0 for finite y < 0.  */
+  TEST_c_f (carg, plus_infty, -2.0, minus_zero);
+
+  /* carg(x + i inf) == pi/2 for finite x.  */
+  TEST_c_f (carg, 10.0, plus_infty, M_PI_2l);
+
+  /* carg(x - i inf) == -pi/2 for finite x.  */
+  TEST_c_f (carg, 10.0, minus_infty, -M_PI_2l);
+
+  /* carg (-inf + i y) == +pi for finite y > 0.  */
+  TEST_c_f (carg, minus_infty, 10.0, M_PIl);
+
+  /* carg (-inf + i y) == -pi for finite y < 0.  */
+  TEST_c_f (carg, minus_infty, -10.0, -M_PIl);
+
+  TEST_c_f (carg, plus_infty, plus_infty, M_PI_4l);
+
+  TEST_c_f (carg, plus_infty, minus_infty, -M_PI_4l);
+
+  TEST_c_f (carg, minus_infty, plus_infty, 3 * M_PI_4l);
+
+  TEST_c_f (carg, minus_infty, minus_infty, -3 * M_PI_4l);
+
+  TEST_c_f (carg, nan_value, nan_value, nan_value);
+
+  END (carg);
+}
+
+static void
+casin_test (void)
+{
+  errno = 0;
+  FUNC(casin) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (casin);
+
+  TEST_c_c (casin, 0, 0, 0.0, 0.0);
+  TEST_c_c (casin, minus_zero, 0, minus_zero, 0.0);
+  TEST_c_c (casin, 0, minus_zero, 0.0, minus_zero);
+  TEST_c_c (casin, minus_zero, minus_zero, minus_zero, minus_zero);
+
+  TEST_c_c (casin, plus_infty, plus_infty, M_PI_4l, plus_infty);
+  TEST_c_c (casin, plus_infty, minus_infty, M_PI_4l, minus_infty);
+  TEST_c_c (casin, minus_infty, plus_infty, -M_PI_4l, plus_infty);
+  TEST_c_c (casin, minus_infty, minus_infty, -M_PI_4l, minus_infty);
+
+  TEST_c_c (casin, -10.0, plus_infty, minus_zero, plus_infty);
+  TEST_c_c (casin, -10.0, minus_infty, minus_zero, minus_infty);
+  TEST_c_c (casin, 0, plus_infty, 0.0, plus_infty);
+  TEST_c_c (casin, 0, minus_infty, 0.0, minus_infty);
+  TEST_c_c (casin, minus_zero, plus_infty, minus_zero, plus_infty);
+  TEST_c_c (casin, minus_zero, minus_infty, minus_zero, minus_infty);
+  TEST_c_c (casin, 0.1L, plus_infty, 0.0, plus_infty);
+  TEST_c_c (casin, 0.1L, minus_infty, 0.0, minus_infty);
+
+  TEST_c_c (casin, minus_infty, 0, -M_PI_2l, plus_infty);
+  TEST_c_c (casin, minus_infty, minus_zero, -M_PI_2l, minus_infty);
+  TEST_c_c (casin, minus_infty, 100, -M_PI_2l, plus_infty);
+  TEST_c_c (casin, minus_infty, -100, -M_PI_2l, minus_infty);
+
+  TEST_c_c (casin, plus_infty, 0, M_PI_2l, plus_infty);
+  TEST_c_c (casin, plus_infty, minus_zero, M_PI_2l, minus_infty);
+  TEST_c_c (casin, plus_infty, 0.5, M_PI_2l, plus_infty);
+  TEST_c_c (casin, plus_infty, -0.5, M_PI_2l, minus_infty);
+
+  TEST_c_c (casin, nan_value, plus_infty, nan_value, plus_infty);
+  TEST_c_c (casin, nan_value, minus_infty, nan_value, minus_infty);
+
+  TEST_c_c (casin, 0.0, nan_value, 0.0, nan_value);
+  TEST_c_c (casin, minus_zero, nan_value, minus_zero, nan_value);
+
+  TEST_c_c (casin, plus_infty, nan_value, nan_value, plus_infty, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (casin, minus_infty, nan_value, nan_value, plus_infty, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (casin, nan_value, 10.5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (casin, nan_value, -10.5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (casin, 0.75, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (casin, -0.75, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (casin, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (casin, 0.7L, 1.2L, 0.4356135790797415103321208644578462L, 1.0927647857577371459105272080819308L);
+  TEST_c_c (casin, -2, -3, -0.57065278432109940071028387968566963L, -1.9833870299165354323470769028940395L);
+
+  END (casin, complex);
+}
+
+
+static void
+casinh_test (void)
+{
+  errno = 0;
+  FUNC(casinh) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (casinh);
+
+  TEST_c_c (casinh, 0, 0, 0.0, 0.0);
+  TEST_c_c (casinh, minus_zero, 0, minus_zero, 0);
+  TEST_c_c (casinh, 0, minus_zero, 0.0, minus_zero);
+  TEST_c_c (casinh, minus_zero, minus_zero, minus_zero, minus_zero);
+
+  TEST_c_c (casinh, plus_infty, plus_infty, plus_infty, M_PI_4l);
+  TEST_c_c (casinh, plus_infty, minus_infty, plus_infty, -M_PI_4l);
+  TEST_c_c (casinh, minus_infty, plus_infty, minus_infty, M_PI_4l);
+  TEST_c_c (casinh, minus_infty, minus_infty, minus_infty, -M_PI_4l);
+
+  TEST_c_c (casinh, -10.0, plus_infty, minus_infty, M_PI_2l);
+  TEST_c_c (casinh, -10.0, minus_infty, minus_infty, -M_PI_2l);
+  TEST_c_c (casinh, 0, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (casinh, 0, minus_infty, plus_infty, -M_PI_2l);
+  TEST_c_c (casinh, minus_zero, plus_infty, minus_infty, M_PI_2l);
+  TEST_c_c (casinh, minus_zero, minus_infty, minus_infty, -M_PI_2l);
+  TEST_c_c (casinh, 0.1L, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (casinh, 0.1L, minus_infty, plus_infty, -M_PI_2l);
+
+  TEST_c_c (casinh, minus_infty, 0, minus_infty, 0.0);
+  TEST_c_c (casinh, minus_infty, minus_zero, minus_infty, minus_zero);
+  TEST_c_c (casinh, minus_infty, 100, minus_infty, 0.0);
+  TEST_c_c (casinh, minus_infty, -100, minus_infty, minus_zero);
+
+  TEST_c_c (casinh, plus_infty, 0, plus_infty, 0.0);
+  TEST_c_c (casinh, plus_infty, minus_zero, plus_infty, minus_zero);
+  TEST_c_c (casinh, plus_infty, 0.5, plus_infty, 0.0);
+  TEST_c_c (casinh, plus_infty, -0.5, plus_infty, minus_zero);
+
+  TEST_c_c (casinh, plus_infty, nan_value, plus_infty, nan_value);
+  TEST_c_c (casinh, minus_infty, nan_value, minus_infty, nan_value);
+
+  TEST_c_c (casinh, nan_value, 0, nan_value, 0.0);
+  TEST_c_c (casinh, nan_value, minus_zero, nan_value, minus_zero);
+
+  TEST_c_c (casinh, nan_value, plus_infty, plus_infty, nan_value, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (casinh, nan_value, minus_infty, plus_infty, nan_value, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (casinh, 10.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (casinh, -10.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (casinh, nan_value, 0.75, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (casinh, -0.75, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (casinh, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (casinh, 0.7L, 1.2L, 0.97865459559367387689317593222160964L, 0.91135418953156011567903546856170941L);
+  TEST_c_c (casinh, -2, -3, -1.9686379257930962917886650952454982L, -0.96465850440760279204541105949953237L);
+
+  END (casinh, complex);
+}
+
+
+static void
+catan_test (void)
+{
+  errno = 0;
+  FUNC(catan) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (catan);
+
+  TEST_c_c (catan, 0, 0, 0, 0);
+  TEST_c_c (catan, minus_zero, 0, minus_zero, 0);
+  TEST_c_c (catan, 0, minus_zero, 0, minus_zero);
+  TEST_c_c (catan, minus_zero, minus_zero, minus_zero, minus_zero);
+
+  TEST_c_c (catan, plus_infty, plus_infty, M_PI_2l, 0);
+  TEST_c_c (catan, plus_infty, minus_infty, M_PI_2l, minus_zero);
+  TEST_c_c (catan, minus_infty, plus_infty, -M_PI_2l, 0);
+  TEST_c_c (catan, minus_infty, minus_infty, -M_PI_2l, minus_zero);
+
+
+  TEST_c_c (catan, plus_infty, -10.0, M_PI_2l, minus_zero);
+  TEST_c_c (catan, minus_infty, -10.0, -M_PI_2l, minus_zero);
+  TEST_c_c (catan, plus_infty, minus_zero, M_PI_2l, minus_zero);
+  TEST_c_c (catan, minus_infty, minus_zero, -M_PI_2l, minus_zero);
+  TEST_c_c (catan, plus_infty, 0.0, M_PI_2l, 0);
+  TEST_c_c (catan, minus_infty, 0.0, -M_PI_2l, 0);
+  TEST_c_c (catan, plus_infty, 0.1L, M_PI_2l, 0);
+  TEST_c_c (catan, minus_infty, 0.1L, -M_PI_2l, 0);
+
+  TEST_c_c (catan, 0.0, minus_infty, M_PI_2l, minus_zero);
+  TEST_c_c (catan, minus_zero, minus_infty, -M_PI_2l, minus_zero);
+  TEST_c_c (catan, 100.0, minus_infty, M_PI_2l, minus_zero);
+  TEST_c_c (catan, -100.0, minus_infty, -M_PI_2l, minus_zero);
+
+  TEST_c_c (catan, 0.0, plus_infty, M_PI_2l, 0);
+  TEST_c_c (catan, minus_zero, plus_infty, -M_PI_2l, 0);
+  TEST_c_c (catan, 0.5, plus_infty, M_PI_2l, 0);
+  TEST_c_c (catan, -0.5, plus_infty, -M_PI_2l, 0);
+
+  TEST_c_c (catan, nan_value, 0.0, nan_value, 0);
+  TEST_c_c (catan, nan_value, minus_zero, nan_value, minus_zero);
+
+  TEST_c_c (catan, nan_value, plus_infty, nan_value, 0);
+  TEST_c_c (catan, nan_value, minus_infty, nan_value, minus_zero);
+
+  TEST_c_c (catan, 0.0, nan_value, nan_value, nan_value);
+  TEST_c_c (catan, minus_zero, nan_value, nan_value, nan_value);
+
+  TEST_c_c (catan, plus_infty, nan_value, M_PI_2l, 0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (catan, minus_infty, nan_value, -M_PI_2l, 0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (catan, nan_value, 10.5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (catan, nan_value, -10.5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (catan, 0.75, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (catan, -0.75, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (catan, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (catan, 0.7L, 1.2L, 1.0785743834118921877443707996386368L, 0.57705737765343067644394541889341712L);
+
+  TEST_c_c (catan, -2, -3, -1.4099210495965755225306193844604208L, -0.22907268296853876629588180294200276L);
+
+  END (catan, complex);
+}
+
+static void
+catanh_test (void)
+{
+  errno = 0;
+  FUNC(catanh) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (catanh);
+
+  TEST_c_c (catanh, 0, 0, 0.0, 0.0);
+  TEST_c_c (catanh, minus_zero, 0, minus_zero, 0.0);
+  TEST_c_c (catanh, 0, minus_zero, 0.0, minus_zero);
+  TEST_c_c (catanh, minus_zero, minus_zero, minus_zero, minus_zero);
+
+  TEST_c_c (catanh, plus_infty, plus_infty, 0.0, M_PI_2l);
+  TEST_c_c (catanh, plus_infty, minus_infty, 0.0, -M_PI_2l);
+  TEST_c_c (catanh, minus_infty, plus_infty, minus_zero, M_PI_2l);
+  TEST_c_c (catanh, minus_infty, minus_infty, minus_zero, -M_PI_2l);
+
+  TEST_c_c (catanh, -10.0, plus_infty, minus_zero, M_PI_2l);
+  TEST_c_c (catanh, -10.0, minus_infty, minus_zero, -M_PI_2l);
+  TEST_c_c (catanh, minus_zero, plus_infty, minus_zero, M_PI_2l);
+  TEST_c_c (catanh, minus_zero, minus_infty, minus_zero, -M_PI_2l);
+  TEST_c_c (catanh, 0, plus_infty, 0.0, M_PI_2l);
+  TEST_c_c (catanh, 0, minus_infty, 0.0, -M_PI_2l);
+  TEST_c_c (catanh, 0.1L, plus_infty, 0.0, M_PI_2l);
+  TEST_c_c (catanh, 0.1L, minus_infty, 0.0, -M_PI_2l);
+
+  TEST_c_c (catanh, minus_infty, 0, minus_zero, M_PI_2l);
+  TEST_c_c (catanh, minus_infty, minus_zero, minus_zero, -M_PI_2l);
+  TEST_c_c (catanh, minus_infty, 100, minus_zero, M_PI_2l);
+  TEST_c_c (catanh, minus_infty, -100, minus_zero, -M_PI_2l);
+
+  TEST_c_c (catanh, plus_infty, 0, 0.0, M_PI_2l);
+  TEST_c_c (catanh, plus_infty, minus_zero, 0.0, -M_PI_2l);
+  TEST_c_c (catanh, plus_infty, 0.5, 0.0, M_PI_2l);
+  TEST_c_c (catanh, plus_infty, -0.5, 0.0, -M_PI_2l);
+
+  TEST_c_c (catanh, 0, nan_value, 0.0, nan_value);
+  TEST_c_c (catanh, minus_zero, nan_value, minus_zero, nan_value);
+
+  TEST_c_c (catanh, plus_infty, nan_value, 0.0, nan_value);
+  TEST_c_c (catanh, minus_infty, nan_value, minus_zero, nan_value);
+
+  TEST_c_c (catanh, nan_value, 0, nan_value, nan_value);
+  TEST_c_c (catanh, nan_value, minus_zero, nan_value, nan_value);
+
+  TEST_c_c (catanh, nan_value, plus_infty, 0.0, M_PI_2l, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (catanh, nan_value, minus_infty, 0.0, -M_PI_2l, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (catanh, 10.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (catanh, -10.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (catanh, nan_value, 0.75, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (catanh, nan_value, -0.75, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (catanh, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (catanh, 0.7L, 1.2L, 0.2600749516525135959200648705635915L, 0.97024030779509898497385130162655963L);
+  TEST_c_c (catanh, -2, -3, -0.14694666622552975204743278515471595L, -1.3389725222944935611241935759091443L);
+
+  END (catanh, complex);
+}
+#endif
+
+static void
+cbrt_test (void)
+{
+  errno = 0;
+  FUNC(cbrt) (8);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (cbrt);
+
+  TEST_f_f (cbrt, 0.0, 0.0);
+  TEST_f_f (cbrt, minus_zero, minus_zero);
+
+  TEST_f_f (cbrt, plus_infty, plus_infty);
+  TEST_f_f (cbrt, minus_infty, minus_infty);
+  TEST_f_f (cbrt, nan_value, nan_value);
+
+  TEST_f_f (cbrt, -0.001L, -0.1L);
+  TEST_f_f (cbrt, 8, 2);
+  TEST_f_f (cbrt, -27.0, -3.0);
+  TEST_f_f (cbrt, 0.970299L, 0.99L);
+  TEST_f_f (cbrt, 0.7L, 0.8879040017426007084L);
+
+  END (cbrt);
+}
+
+#if 0
+static void
+ccos_test (void)
+{
+  errno = 0;
+  FUNC(ccos) (BUILD_COMPLEX (0, 0));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (ccos);
+
+  TEST_c_c (ccos, 0.0, 0.0, 1.0, minus_zero);
+  TEST_c_c (ccos, minus_zero, 0.0, 1.0, 0.0);
+  TEST_c_c (ccos, 0.0, minus_zero, 1.0, 0.0);
+  TEST_c_c (ccos, minus_zero, minus_zero, 1.0, minus_zero);
+
+  TEST_c_c (ccos, plus_infty, 0.0, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccos, plus_infty, minus_zero, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccos, minus_infty, 0.0, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccos, minus_infty, minus_zero, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (ccos, 0.0, plus_infty, plus_infty, minus_zero);
+  TEST_c_c (ccos, 0.0, minus_infty, plus_infty, 0.0);
+  TEST_c_c (ccos, minus_zero, plus_infty, plus_infty, 0.0);
+  TEST_c_c (ccos, minus_zero, minus_infty, plus_infty, minus_zero);
+
+  TEST_c_c (ccos, plus_infty, plus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccos, minus_infty, plus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccos, plus_infty, minus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccos, minus_infty, minus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (ccos, 4.625, plus_infty, minus_infty, plus_infty);
+  TEST_c_c (ccos, 4.625, minus_infty, minus_infty, minus_infty);
+  TEST_c_c (ccos, -4.625, plus_infty, minus_infty, minus_infty);
+  TEST_c_c (ccos, -4.625, minus_infty, minus_infty, plus_infty);
+
+  TEST_c_c (ccos, plus_infty, 6.75, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccos, plus_infty, -6.75, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccos, minus_infty, 6.75, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccos, minus_infty, -6.75, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (ccos, nan_value, 0.0, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccos, nan_value, minus_zero, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (ccos, nan_value, plus_infty, plus_infty, nan_value);
+  TEST_c_c (ccos, nan_value, minus_infty, plus_infty, nan_value);
+
+  TEST_c_c (ccos, nan_value, 9.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ccos, nan_value, -9.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ccos, 0.0, nan_value, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccos, minus_zero, nan_value, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (ccos, 10.0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ccos, -10.0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ccos, plus_infty, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ccos, minus_infty, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ccos, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (ccos, 0.7L, 1.2L, 1.3848657645312111080L, -0.97242170335830028619L);
+
+  TEST_c_c (ccos, -2, -3, -4.1896256909688072301L, -9.1092278937553365979L);
+
+  END (ccos, complex);
+}
+
+
+static void
+ccosh_test (void)
+{
+  errno = 0;
+  FUNC(ccosh) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (ccosh);
+
+  TEST_c_c (ccosh, 0.0, 0.0, 1.0, 0.0);
+  TEST_c_c (ccosh, minus_zero, 0.0, 1.0, minus_zero);
+  TEST_c_c (ccosh, 0.0, minus_zero, 1.0, minus_zero);
+  TEST_c_c (ccosh, minus_zero, minus_zero, 1.0, 0.0);
+
+  TEST_c_c (ccosh, 0.0, plus_infty, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccosh, minus_zero, plus_infty, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccosh, 0.0, minus_infty, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccosh, minus_zero, minus_infty, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (ccosh, plus_infty, 0.0, plus_infty, 0.0);
+  TEST_c_c (ccosh, minus_infty, 0.0, plus_infty, minus_zero);
+  TEST_c_c (ccosh, plus_infty, minus_zero, plus_infty, minus_zero);
+  TEST_c_c (ccosh, minus_infty, minus_zero, plus_infty, 0.0);
+
+  TEST_c_c (ccosh, plus_infty, plus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccosh, minus_infty, plus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccosh, plus_infty, minus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccosh, minus_infty, minus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (ccosh, plus_infty, 4.625, minus_infty, minus_infty);
+  TEST_c_c (ccosh, minus_infty, 4.625, minus_infty, plus_infty);
+  TEST_c_c (ccosh, plus_infty, -4.625, minus_infty, plus_infty);
+  TEST_c_c (ccosh, minus_infty, -4.625, minus_infty, minus_infty);
+
+  TEST_c_c (ccosh, 6.75, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccosh, -6.75, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccosh, 6.75, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ccosh, -6.75, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (ccosh, 0.0, nan_value, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccosh, minus_zero, nan_value, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (ccosh, plus_infty, nan_value, plus_infty, nan_value);
+  TEST_c_c (ccosh, minus_infty, nan_value, plus_infty, nan_value);
+
+  TEST_c_c (ccosh, 9.0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ccosh, -9.0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ccosh, nan_value, 0.0, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ccosh, nan_value, minus_zero, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (ccosh, nan_value, 10.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ccosh, nan_value, -10.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ccosh, nan_value, plus_infty, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ccosh, nan_value, minus_infty, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ccosh, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (ccosh, 0.7L, 1.2L, 0.4548202223691477654L, 0.7070296600921537682L);
+
+  TEST_c_c (ccosh, -2, -3, -3.7245455049153225654L, 0.5118225699873846088L);
+
+  END (ccosh, complex);
+}
+#endif
+
+static void
+ceil_test (void)
+{
+  START (ceil);
+
+  TEST_f_f (ceil, 0.0, 0.0);
+  TEST_f_f (ceil, minus_zero, minus_zero);
+  TEST_f_f (ceil, plus_infty, plus_infty);
+  TEST_f_f (ceil, minus_infty, minus_infty);
+  TEST_f_f (ceil, nan_value, nan_value);
+
+  TEST_f_f (ceil, M_PIl, 4.0);
+  TEST_f_f (ceil, -M_PIl, -3.0);
+
+  END (ceil);
+}
+
+#if 0
+static void
+cexp_test (void)
+{
+  errno = 0;
+  FUNC(cexp) (BUILD_COMPLEX (0, 0));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (cexp);
+
+  TEST_c_c (cexp, plus_zero, plus_zero, 1, 0.0);
+  TEST_c_c (cexp, minus_zero, plus_zero, 1, 0.0);
+  TEST_c_c (cexp, plus_zero, minus_zero, 1, minus_zero);
+  TEST_c_c (cexp, minus_zero, minus_zero, 1, minus_zero);
+
+  TEST_c_c (cexp, plus_infty, plus_zero, plus_infty, 0.0);
+  TEST_c_c (cexp, plus_infty, minus_zero, plus_infty, minus_zero);
+
+  TEST_c_c (cexp, minus_infty, plus_zero, 0.0, 0.0);
+  TEST_c_c (cexp, minus_infty, minus_zero, 0.0, minus_zero);
+
+  TEST_c_c (cexp, 0.0, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (cexp, minus_zero, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (cexp, 0.0, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (cexp, minus_zero, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (cexp, 100.0, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (cexp, -100.0, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (cexp, 100.0, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (cexp, -100.0, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (cexp, minus_infty, 2.0, minus_zero, 0.0);
+  TEST_c_c (cexp, minus_infty, 4.0, minus_zero, minus_zero);
+  TEST_c_c (cexp, plus_infty, 2.0, minus_infty, plus_infty);
+  TEST_c_c (cexp, plus_infty, 4.0, minus_infty, minus_infty);
+
+  TEST_c_c (cexp, plus_infty, plus_infty, plus_infty, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (cexp, plus_infty, minus_infty, plus_infty, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (cexp, minus_infty, plus_infty, 0.0, 0.0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (cexp, minus_infty, minus_infty, 0.0, minus_zero, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (cexp, minus_infty, nan_value, 0, 0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (cexp, plus_infty, nan_value, plus_infty, nan_value);
+
+  TEST_c_c (cexp, nan_value, 0.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (cexp, nan_value, 1.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (cexp, nan_value, plus_infty, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (cexp, 0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (cexp, 1, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (cexp, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (cexp, 0.7L, 1.2L, 0.72969890915032360123451688642930727L, 1.8768962328348102821139467908203072L);
+  TEST_c_c (cexp, -2.0, -3.0, -0.13398091492954261346140525546115575L, -0.019098516261135196432576240858800925L);
+
+  END (cexp, complex);
+}
+
+static void
+cimag_test (void)
+{
+  START (cimag);
+  TEST_c_f (cimag, 1.0, 0.0, 0.0);
+  TEST_c_f (cimag, 1.0, minus_zero, minus_zero);
+  TEST_c_f (cimag, 1.0, nan_value, nan_value);
+  TEST_c_f (cimag, nan_value, nan_value, nan_value);
+  TEST_c_f (cimag, 1.0, plus_infty, plus_infty);
+  TEST_c_f (cimag, 1.0, minus_infty, minus_infty);
+  TEST_c_f (cimag, 2.0, 3.0, 3.0);
+
+  END (cimag);
+}
+
+static void
+clog_test (void)
+{
+  errno = 0;
+  FUNC(clog) (BUILD_COMPLEX (-2, -3));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (clog);
+
+  TEST_c_c (clog, minus_zero, 0, minus_infty, M_PIl, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_c_c (clog, minus_zero, minus_zero, minus_infty, -M_PIl, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_c_c (clog, 0, 0, minus_infty, 0.0, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_c_c (clog, 0, minus_zero, minus_infty, minus_zero, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_c_c (clog, minus_infty, plus_infty, plus_infty, M_PI_34l);
+  TEST_c_c (clog, minus_infty, minus_infty, plus_infty, -M_PI_34l);
+
+  TEST_c_c (clog, plus_infty, plus_infty, plus_infty, M_PI_4l);
+  TEST_c_c (clog, plus_infty, minus_infty, plus_infty, -M_PI_4l);
+
+  TEST_c_c (clog, 0, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (clog, 3, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (clog, minus_zero, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (clog, -3, plus_infty, plus_infty, M_PI_2l);
+  TEST_c_c (clog, 0, minus_infty, plus_infty, -M_PI_2l);
+  TEST_c_c (clog, 3, minus_infty, plus_infty, -M_PI_2l);
+  TEST_c_c (clog, minus_zero, minus_infty, plus_infty, -M_PI_2l);
+  TEST_c_c (clog, -3, minus_infty, plus_infty, -M_PI_2l);
+
+  TEST_c_c (clog, minus_infty, 0, plus_infty, M_PIl);
+  TEST_c_c (clog, minus_infty, 1, plus_infty, M_PIl);
+  TEST_c_c (clog, minus_infty, minus_zero, plus_infty, -M_PIl);
+  TEST_c_c (clog, minus_infty, -1, plus_infty, -M_PIl);
+
+  TEST_c_c (clog, plus_infty, 0, plus_infty, 0.0);
+  TEST_c_c (clog, plus_infty, 1, plus_infty, 0.0);
+  TEST_c_c (clog, plus_infty, minus_zero, plus_infty, minus_zero);
+  TEST_c_c (clog, plus_infty, -1, plus_infty, minus_zero);
+
+  TEST_c_c (clog, plus_infty, nan_value, plus_infty, nan_value);
+  TEST_c_c (clog, minus_infty, nan_value, plus_infty, nan_value);
+
+  TEST_c_c (clog, nan_value, plus_infty, plus_infty, nan_value);
+  TEST_c_c (clog, nan_value, minus_infty, plus_infty, nan_value);
+
+  TEST_c_c (clog, 0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog, 3, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog, minus_zero, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog, -3, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (clog, nan_value, 0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog, nan_value, 5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog, nan_value, minus_zero, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog, nan_value, -5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (clog, nan_value, nan_value, nan_value, nan_value);
+  TEST_c_c (clog, -2, -3, 1.2824746787307683680267437207826593L, -2.1587989303424641704769327722648368L);
+
+  END (clog, complex);
+}
+
+
+static void
+clog10_test (void)
+{
+  errno = 0;
+  FUNC(clog10) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (clog10);
+
+  TEST_c_c (clog10, minus_zero, 0, minus_infty, M_PIl, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_c_c (clog10, minus_zero, minus_zero, minus_infty, -M_PIl, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_c_c (clog10, 0, 0, minus_infty, 0.0, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_c_c (clog10, 0, minus_zero, minus_infty, minus_zero, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_c_c (clog10, minus_infty, plus_infty, plus_infty, M_PI_34_LOG10El);
+
+  TEST_c_c (clog10, plus_infty, plus_infty, plus_infty, M_PI4_LOG10El);
+  TEST_c_c (clog10, plus_infty, minus_infty, plus_infty, -M_PI4_LOG10El);
+
+  TEST_c_c (clog10, 0, plus_infty, plus_infty, M_PI2_LOG10El);
+  TEST_c_c (clog10, 3, plus_infty, plus_infty, M_PI2_LOG10El);
+  TEST_c_c (clog10, minus_zero, plus_infty, plus_infty, M_PI2_LOG10El);
+  TEST_c_c (clog10, -3, plus_infty, plus_infty, M_PI2_LOG10El);
+  TEST_c_c (clog10, 0, minus_infty, plus_infty, -M_PI2_LOG10El);
+  TEST_c_c (clog10, 3, minus_infty, plus_infty, -M_PI2_LOG10El);
+  TEST_c_c (clog10, minus_zero, minus_infty, plus_infty, -M_PI2_LOG10El);
+  TEST_c_c (clog10, -3, minus_infty, plus_infty, -M_PI2_LOG10El);
+
+  TEST_c_c (clog10, minus_infty, 0, plus_infty, M_PI_LOG10El);
+  TEST_c_c (clog10, minus_infty, 1, plus_infty, M_PI_LOG10El);
+  TEST_c_c (clog10, minus_infty, minus_zero, plus_infty, -M_PI_LOG10El);
+  TEST_c_c (clog10, minus_infty, -1, plus_infty, -M_PI_LOG10El);
+
+  TEST_c_c (clog10, plus_infty, 0, plus_infty, 0.0);
+  TEST_c_c (clog10, plus_infty, 1, plus_infty, 0.0);
+  TEST_c_c (clog10, plus_infty, minus_zero, plus_infty, minus_zero);
+  TEST_c_c (clog10, plus_infty, -1, plus_infty, minus_zero);
+
+  TEST_c_c (clog10, plus_infty, nan_value, plus_infty, nan_value);
+  TEST_c_c (clog10, minus_infty, nan_value, plus_infty, nan_value);
+
+  TEST_c_c (clog10, nan_value, plus_infty, plus_infty, nan_value);
+  TEST_c_c (clog10, nan_value, minus_infty, plus_infty, nan_value);
+
+  TEST_c_c (clog10, 0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog10, 3, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog10, minus_zero, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog10, -3, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (clog10, nan_value, 0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog10, nan_value, 5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog10, nan_value, minus_zero, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (clog10, nan_value, -5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (clog10, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (clog10, 0.7L, 1.2L, 0.1427786545038868803L, 0.4528483579352493248L);
+  TEST_c_c (clog10, -2, -3, 0.5569716761534183846L, -0.9375544629863747085L);
+
+  END (clog10, complex);
+}
+#endif
+
+static void
+conj_test (void)
+{
+  START (conj);
+  TEST_c_c (conj, 0.0, 0.0, 0.0, minus_zero);
+  TEST_c_c (conj, 0.0, minus_zero, 0.0, 0.0);
+  TEST_c_c (conj, nan_value, nan_value, nan_value, nan_value);
+  TEST_c_c (conj, plus_infty, minus_infty, plus_infty, plus_infty);
+  TEST_c_c (conj, plus_infty, plus_infty, plus_infty, minus_infty);
+  TEST_c_c (conj, 1.0, 2.0, 1.0, -2.0);
+  TEST_c_c (conj, 3.0, -4.0, 3.0, 4.0);
+
+  END (conj, complex);
+}
+
+
+static void
+copysign_test (void)
+{
+  START (copysign);
+
+  TEST_ff_f (copysign, 0, 4, 0);
+  TEST_ff_f (copysign, 0, -4, minus_zero);
+  TEST_ff_f (copysign, minus_zero, 4, 0);
+  TEST_ff_f (copysign, minus_zero, -4, minus_zero);
+
+  TEST_ff_f (copysign, plus_infty, 0, plus_infty);
+  TEST_ff_f (copysign, plus_infty, minus_zero, minus_infty);
+  TEST_ff_f (copysign, minus_infty, 0, plus_infty);
+  TEST_ff_f (copysign, minus_infty, minus_zero, minus_infty);
+
+  TEST_ff_f (copysign, 0, plus_infty, 0);
+  TEST_ff_f (copysign, 0, minus_zero, minus_zero);
+  TEST_ff_f (copysign, minus_zero, plus_infty, 0);
+  TEST_ff_f (copysign, minus_zero, minus_zero, minus_zero);
+
+  /* XXX More correctly we would have to check the sign of the NaN.  */
+  TEST_ff_f (copysign, nan_value, 0, nan_value);
+  TEST_ff_f (copysign, nan_value, minus_zero, nan_value);
+  TEST_ff_f (copysign, -nan_value, 0, nan_value);
+  TEST_ff_f (copysign, -nan_value, minus_zero, nan_value);
+
+  END (copysign);
+}
+
+static void
+cos_test (void)
+{
+  errno = 0;
+  FUNC(cos) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (cos);
+
+  TEST_f_f (cos, 0, 1);
+  TEST_f_f (cos, minus_zero, 1);
+  TEST_f_f (cos, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (cos, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (cos, nan_value, nan_value);
+
+  TEST_f_f (cos, M_PI_6l * 2.0, 0.5);
+  TEST_f_f (cos, M_PI_6l * 4.0, -0.5);
+  TEST_f_f (cos, M_PI_2l, 0);
+
+  TEST_f_f (cos, 0.7L, 0.76484218728448842625585999019186495L);
+
+  END (cos);
+}
+
+static void
+cosh_test (void)
+{
+  errno = 0;
+  FUNC(cosh) (0.7L);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (cosh);
+  TEST_f_f (cosh, 0, 1);
+  TEST_f_f (cosh, minus_zero, 1);
+
+#ifndef TEST_INLINE
+  TEST_f_f (cosh, plus_infty, plus_infty);
+  TEST_f_f (cosh, minus_infty, plus_infty);
+#endif
+  TEST_f_f (cosh, nan_value, nan_value);
+
+  TEST_f_f (cosh, 0.7L, 1.255169005630943018L);
+  END (cosh);
+}
+
+#if 0
+static void
+cpow_test (void)
+{
+  errno = 0;
+  FUNC(cpow) (BUILD_COMPLEX (1, 0), BUILD_COMPLEX (0, 0));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (cpow);
+
+  TEST_cc_c (cpow, 1, 0, 0, 0, 1.0, 0.0);
+  TEST_cc_c (cpow, 2, 0, 10, 0, 1024.0, 0.0);
+
+  TEST_cc_c (cpow, M_El, 0, 0, 2 * M_PIl, 1.0, 0.0);
+  TEST_cc_c (cpow, 2, 3, 4, 0, -119.0, -120.0);
+
+  TEST_cc_c (cpow, nan_value, nan_value, nan_value, nan_value, nan_value, nan_value);
+
+  END (cpow, complex);
+}
+
+static void
+cproj_test (void)
+{
+  START (cproj);
+  TEST_c_c (cproj, 0.0, 0.0, 0.0, 0.0);
+  TEST_c_c (cproj, minus_zero, minus_zero, minus_zero, minus_zero);
+  TEST_c_c (cproj, 0.0, minus_zero, 0.0, minus_zero);
+  TEST_c_c (cproj, minus_zero, 0.0, minus_zero, 0.0);
+
+  TEST_c_c (cproj, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (cproj, plus_infty, plus_infty, plus_infty, 0.0);
+  TEST_c_c (cproj, plus_infty, minus_infty, plus_infty, minus_zero);
+  TEST_c_c (cproj, minus_infty, plus_infty, plus_infty, 0.0);
+  TEST_c_c (cproj, minus_infty, minus_infty, plus_infty, minus_zero);
+
+  TEST_c_c (cproj, 1.0, 0.0, 1.0, 0.0);
+  TEST_c_c (cproj, 2.0, 3.0, 0.2857142857142857142857142857142857L, 0.42857142857142857142857142857142855L);
+
+  END (cproj, complex);
+}
+
+static void
+creal_test (void)
+{
+  START (creal);
+  TEST_c_f (creal, 0.0, 1.0, 0.0);
+  TEST_c_f (creal, minus_zero, 1.0, minus_zero);
+  TEST_c_f (creal, nan_value, 1.0, nan_value);
+  TEST_c_f (creal, nan_value, nan_value, nan_value);
+  TEST_c_f (creal, plus_infty, 1.0, plus_infty);
+  TEST_c_f (creal, minus_infty, 1.0, minus_infty);
+  TEST_c_f (creal, 2.0, 3.0, 2.0);
+
+  END (creal);
+}
+
+static void
+csin_test (void)
+{
+  errno = 0;
+  FUNC(csin) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (csin);
+
+  TEST_c_c (csin, 0.0, 0.0, 0.0, 0.0);
+  TEST_c_c (csin, minus_zero, 0.0, minus_zero, 0.0);
+  TEST_c_c (csin, 0.0, minus_zero, 0, minus_zero);
+  TEST_c_c (csin, minus_zero, minus_zero, minus_zero, minus_zero);
+
+  TEST_c_c (csin, 0.0, plus_infty, 0.0, plus_infty);
+  TEST_c_c (csin, minus_zero, plus_infty, minus_zero, plus_infty);
+  TEST_c_c (csin, 0.0, minus_infty, 0.0, minus_infty);
+  TEST_c_c (csin, minus_zero, minus_infty, minus_zero, minus_infty);
+
+  TEST_c_c (csin, plus_infty, 0.0, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csin, minus_infty, 0.0, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csin, plus_infty, minus_zero, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csin, minus_infty, minus_zero, nan_value, 0.0, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csin, plus_infty, plus_infty, nan_value, plus_infty, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csin, minus_infty, plus_infty, nan_value, plus_infty, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csin, plus_infty, minus_infty, nan_value, plus_infty, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csin, minus_infty, minus_infty, nan_value, plus_infty, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csin, plus_infty, 6.75, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (csin, plus_infty, -6.75, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (csin, minus_infty, 6.75, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (csin, minus_infty, -6.75,  nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (csin, 4.625, plus_infty, minus_infty, minus_infty);
+  TEST_c_c (csin, 4.625, minus_infty, minus_infty, plus_infty);
+  TEST_c_c (csin, -4.625, plus_infty, plus_infty, minus_infty);
+  TEST_c_c (csin, -4.625, minus_infty, plus_infty, plus_infty);
+
+  TEST_c_c (csin, nan_value, 0.0, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csin, nan_value, minus_zero, nan_value, 0.0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csin, nan_value, plus_infty, nan_value, plus_infty, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csin, nan_value, minus_infty, nan_value, plus_infty, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csin, nan_value, 9.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csin, nan_value, -9.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (csin, 0.0, nan_value, 0.0, nan_value);
+  TEST_c_c (csin, minus_zero, nan_value, minus_zero, nan_value);
+
+  TEST_c_c (csin, 10.0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csin, nan_value, -10.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (csin, plus_infty, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csin, minus_infty, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (csin, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (csin, 0.7L, 1.2L, 1.1664563419657581376L, 1.1544997246948547371L);
+
+  TEST_c_c (csin, -2, -3, -9.1544991469114295734L, 4.1689069599665643507L);
+
+  END (csin, complex);
+}
+
+
+static void
+csinh_test (void)
+{
+  errno = 0;
+  FUNC(csinh) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (csinh);
+
+  TEST_c_c (csinh, 0.0, 0.0, 0.0, 0.0);
+  TEST_c_c (csinh, minus_zero, 0.0, minus_zero, 0.0);
+  TEST_c_c (csinh, 0.0, minus_zero, 0.0, minus_zero);
+  TEST_c_c (csinh, minus_zero, minus_zero, minus_zero, minus_zero);
+
+  TEST_c_c (csinh, 0.0, plus_infty, 0.0, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csinh, minus_zero, plus_infty, 0.0, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csinh, 0.0, minus_infty, 0.0, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csinh, minus_zero, minus_infty, 0.0, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csinh, plus_infty, 0.0, plus_infty, 0.0);
+  TEST_c_c (csinh, minus_infty, 0.0, minus_infty, 0.0);
+  TEST_c_c (csinh, plus_infty, minus_zero, plus_infty, minus_zero);
+  TEST_c_c (csinh, minus_infty, minus_zero, minus_infty, minus_zero);
+
+  TEST_c_c (csinh, plus_infty, plus_infty, plus_infty, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csinh, minus_infty, plus_infty, plus_infty, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csinh, plus_infty, minus_infty, plus_infty, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csinh, minus_infty, minus_infty, plus_infty, nan_value, INVALID_EXCEPTION|IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csinh, plus_infty, 4.625, minus_infty, minus_infty);
+  TEST_c_c (csinh, minus_infty, 4.625, plus_infty, minus_infty);
+  TEST_c_c (csinh, plus_infty, -4.625, minus_infty, plus_infty);
+  TEST_c_c (csinh, minus_infty, -4.625, plus_infty, plus_infty);
+
+  TEST_c_c (csinh, 6.75, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (csinh, -6.75, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (csinh, 6.75, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (csinh, -6.75, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (csinh, 0.0, nan_value, 0.0, nan_value, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csinh, minus_zero, nan_value, 0.0, nan_value, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csinh, plus_infty, nan_value, plus_infty, nan_value, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (csinh, minus_infty, nan_value, plus_infty, nan_value, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csinh, 9.0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csinh, -9.0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (csinh, nan_value, 0.0, nan_value, 0.0);
+  TEST_c_c (csinh, nan_value, minus_zero, nan_value, minus_zero);
+
+  TEST_c_c (csinh, nan_value, 10.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csinh, nan_value, -10.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (csinh, nan_value, plus_infty, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csinh, nan_value, minus_infty, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (csinh, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (csinh, 0.7L, 1.2L, 0.27487868678117583582L, 1.1698665727426565139L);
+  TEST_c_c (csinh, -2, -3, 3.5905645899857799520L, -0.5309210862485198052L);
+
+  END (csinh, complex);
+}
+
+static void
+csqrt_test (void)
+{
+  errno = 0;
+  FUNC(csqrt) (BUILD_COMPLEX (-1, 0));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (csqrt);
+
+  TEST_c_c (csqrt, 0, 0, 0.0, 0.0);
+  TEST_c_c (csqrt, 0, minus_zero, 0, minus_zero);
+  TEST_c_c (csqrt, minus_zero, 0, 0.0, 0.0);
+  TEST_c_c (csqrt, minus_zero, minus_zero, 0.0, minus_zero);
+
+  TEST_c_c (csqrt, minus_infty, 0, 0.0, plus_infty);
+  TEST_c_c (csqrt, minus_infty, 6, 0.0, plus_infty);
+  TEST_c_c (csqrt, minus_infty, minus_zero, 0.0, minus_infty);
+  TEST_c_c (csqrt, minus_infty, -6, 0.0, minus_infty);
+
+  TEST_c_c (csqrt, plus_infty, 0, plus_infty, 0.0);
+  TEST_c_c (csqrt, plus_infty, 6, plus_infty, 0.0);
+  TEST_c_c (csqrt, plus_infty, minus_zero, plus_infty, minus_zero);
+  TEST_c_c (csqrt, plus_infty, -6, plus_infty, minus_zero);
+
+  TEST_c_c (csqrt, 0, plus_infty, plus_infty, plus_infty);
+  TEST_c_c (csqrt, 4, plus_infty, plus_infty, plus_infty);
+  TEST_c_c (csqrt, plus_infty, plus_infty, plus_infty, plus_infty);
+  TEST_c_c (csqrt, minus_zero, plus_infty, plus_infty, plus_infty);
+  TEST_c_c (csqrt, -4, plus_infty, plus_infty, plus_infty);
+  TEST_c_c (csqrt, minus_infty, plus_infty, plus_infty, plus_infty);
+  TEST_c_c (csqrt, 0, minus_infty, plus_infty, minus_infty);
+  TEST_c_c (csqrt, 4, minus_infty, plus_infty, minus_infty);
+  TEST_c_c (csqrt, plus_infty, minus_infty, plus_infty, minus_infty);
+  TEST_c_c (csqrt, minus_zero, minus_infty, plus_infty, minus_infty);
+  TEST_c_c (csqrt, -4, minus_infty, plus_infty, minus_infty);
+  TEST_c_c (csqrt, minus_infty, minus_infty, plus_infty, minus_infty);
+
+  TEST_c_c (csqrt, minus_infty, nan_value, nan_value, plus_infty, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (csqrt, plus_infty, nan_value, plus_infty, nan_value);
+
+  TEST_c_c (csqrt, 0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csqrt, 1, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csqrt, minus_zero, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csqrt, -1, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (csqrt, nan_value, 0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csqrt, nan_value, 8, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csqrt, nan_value, minus_zero, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (csqrt, nan_value, -8, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (csqrt, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (csqrt, 16.0, -30.0, 5.0, -3.0);
+  TEST_c_c (csqrt, -1, 0, 0.0, 1.0);
+  TEST_c_c (csqrt, 0, 2, 1.0, 1.0);
+  TEST_c_c (csqrt, 119, 120, 12.0, 5.0);
+  TEST_c_c (csqrt, 0.7L, 1.2L, 1.022067610030026450706487883081139L, 0.58704531296356521154977678719838035L);
+  TEST_c_c (csqrt, -2, -3, 0.89597747612983812471573375529004348L, -1.6741492280355400404480393008490519L);
+  TEST_c_c (csqrt, -2, 3, 0.89597747612983812471573375529004348L, 1.6741492280355400404480393008490519L);
+
+  END (csqrt, complex);
+}
+
+static void
+ctan_test (void)
+{
+  errno = 0;
+  FUNC(ctan) (BUILD_COMPLEX (0.7L, 1.2L));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (ctan);
+
+  TEST_c_c (ctan, 0, 0, 0.0, 0.0);
+  TEST_c_c (ctan, 0, minus_zero, 0.0, minus_zero);
+  TEST_c_c (ctan, minus_zero, 0, minus_zero, 0.0);
+  TEST_c_c (ctan, minus_zero, minus_zero, minus_zero, minus_zero);
+
+  TEST_c_c (ctan, 0, plus_infty, 0.0, 1.0);
+  TEST_c_c (ctan, 1, plus_infty, 0.0, 1.0);
+  TEST_c_c (ctan, minus_zero, plus_infty, minus_zero, 1.0);
+  TEST_c_c (ctan, -1, plus_infty, minus_zero, 1.0);
+
+  TEST_c_c (ctan, 0, minus_infty, 0.0, -1.0);
+  TEST_c_c (ctan, 1, minus_infty, 0.0, -1.0);
+  TEST_c_c (ctan, minus_zero, minus_infty, minus_zero, -1.0);
+  TEST_c_c (ctan, -1, minus_infty, minus_zero, -1.0);
+
+  TEST_c_c (ctan, plus_infty, 0, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctan, plus_infty, 2, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctan, minus_infty, 0, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctan, minus_infty, 2, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctan, plus_infty, minus_zero, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctan, plus_infty, -2, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctan, minus_infty, minus_zero, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctan, minus_infty, -2, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (ctan, nan_value, plus_infty, 0.0, 1.0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ctan, nan_value, minus_infty, 0.0, -1.0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (ctan, 0, nan_value, 0.0, nan_value);
+  TEST_c_c (ctan, minus_zero, nan_value, minus_zero, nan_value);
+
+  TEST_c_c (ctan, 0.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ctan, -4.5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ctan, nan_value, 0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ctan, nan_value, 5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ctan, nan_value, minus_zero, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ctan, nan_value, -0.25, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ctan, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (ctan, 0.7L, 1.2L, 0.1720734197630349001L, 0.9544807059989405538L);
+  TEST_c_c (ctan, -2, -3, 0.0037640256415042482L, -1.0032386273536098014L);
+
+  END (ctan, complex);
+}
+
+
+static void
+ctanh_test (void)
+{
+  errno = 0;
+  FUNC(ctanh) (BUILD_COMPLEX (0, 0));
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (ctanh);
+
+  TEST_c_c (ctanh, 0, 0, 0.0, 0.0);
+  TEST_c_c (ctanh, 0, minus_zero, 0.0, minus_zero);
+  TEST_c_c (ctanh, minus_zero, 0, minus_zero, 0.0);
+  TEST_c_c (ctanh, minus_zero, minus_zero, minus_zero, minus_zero);
+
+  TEST_c_c (ctanh, plus_infty, 0, 1.0, 0.0);
+  TEST_c_c (ctanh, plus_infty, 1, 1.0, 0.0);
+  TEST_c_c (ctanh, plus_infty, minus_zero, 1.0, minus_zero);
+  TEST_c_c (ctanh, plus_infty, -1, 1.0, minus_zero);
+  TEST_c_c (ctanh, minus_infty, 0, -1.0, 0.0);
+  TEST_c_c (ctanh, minus_infty, 1, -1.0, 0.0);
+  TEST_c_c (ctanh, minus_infty, minus_zero, -1.0, minus_zero);
+  TEST_c_c (ctanh, minus_infty, -1, -1.0, minus_zero);
+
+  TEST_c_c (ctanh, 0, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctanh, 2, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctanh, 0, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctanh, 2, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctanh, minus_zero, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctanh, -2, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctanh, minus_zero, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_c_c (ctanh, -2, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+
+  TEST_c_c (ctanh, plus_infty, nan_value, 1.0, 0.0, IGNORE_ZERO_INF_SIGN);
+  TEST_c_c (ctanh, minus_infty, nan_value, -1.0, 0.0, IGNORE_ZERO_INF_SIGN);
+
+  TEST_c_c (ctanh, nan_value, 0, nan_value, 0.0);
+  TEST_c_c (ctanh, nan_value, minus_zero, nan_value, minus_zero);
+
+  TEST_c_c (ctanh, nan_value, 0.5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ctanh, nan_value, -4.5, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ctanh, 0, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ctanh, 5, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ctanh, minus_zero, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_c_c (ctanh, -0.25, nan_value, nan_value, nan_value, INVALID_EXCEPTION_OK);
+
+  TEST_c_c (ctanh, nan_value, nan_value, nan_value, nan_value);
+
+  TEST_c_c (ctanh, 0, M_PI_4l, 0.0, 1.0);
+
+  TEST_c_c (ctanh, 0.7L, 1.2L, 1.3472197399061191630L, 0.4778641038326365540L);
+  TEST_c_c (ctanh, -2, -3, -0.9653858790221331242L, 0.0098843750383224937L);
+
+  END (ctanh, complex);
+}
+#endif
+
+static void
+erf_test (void)
+{
+  errno = 0;
+  FUNC(erf) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (erf);
+
+  TEST_f_f (erf, 0, 0);
+  TEST_f_f (erf, minus_zero, minus_zero);
+  TEST_f_f (erf, plus_infty, 1);
+  TEST_f_f (erf, minus_infty, -1);
+  TEST_f_f (erf, nan_value, nan_value);
+
+  TEST_f_f (erf, 0.7L, 0.67780119383741847297L);
+
+  TEST_f_f (erf, 1.2L, 0.91031397822963538024L);
+  TEST_f_f (erf, 2.0, 0.99532226501895273416L);
+  TEST_f_f (erf, 4.1L, 0.99999999329997234592L);
+  TEST_f_f (erf, 27, 1.0L);
+
+  END (erf);
+}
+
+
+static void
+erfc_test (void)
+{
+  errno = 0;
+  FUNC(erfc) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (erfc);
+
+  TEST_f_f (erfc, plus_infty, 0.0);
+  TEST_f_f (erfc, minus_infty, 2.0);
+  TEST_f_f (erfc, 0.0, 1.0);
+  TEST_f_f (erfc, minus_zero, 1.0);
+  TEST_f_f (erfc, nan_value, nan_value);
+
+  TEST_f_f (erfc, 0.7L, 0.32219880616258152702L);
+
+  TEST_f_f (erfc, 1.2L, 0.089686021770364619762L);
+  TEST_f_f (erfc, 2.0, 0.0046777349810472658379L);
+  TEST_f_f (erfc, 4.1L, 0.67000276540848983727e-8L);
+  TEST_f_f (erfc, 9, 0.41370317465138102381e-36L);
+
+  END (erfc);
+}
+
+static void
+exp_test (void)
+{
+  errno = 0;
+  FUNC(exp) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (exp);
+
+  TEST_f_f (exp, 0, 1);
+  TEST_f_f (exp, minus_zero, 1);
+
+#ifndef TEST_INLINE
+  TEST_f_f (exp, plus_infty, plus_infty);
+  TEST_f_f (exp, minus_infty, 0);
+#endif
+  TEST_f_f (exp, nan_value, nan_value);
+  TEST_f_f (exp, 1, M_El);
+
+  TEST_f_f (exp, 2, M_E2l);
+  TEST_f_f (exp, 3, M_E3l);
+  TEST_f_f (exp, 0.7L, 2.0137527074704765216L);
+  TEST_f_f (exp, 50.0L, 5184705528587072464087.45332293348538L);
+#ifdef TEST_LDOUBLE
+  /* The result can only be represented in long double.  */
+  TEST_f_f (exp, 1000.0L, 0.197007111401704699388887935224332313e435L);
+#endif
+  END (exp);
+}
+
+
+#if 0
+static void
+exp10_test (void)
+{
+  errno = 0;
+  FUNC(exp10) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (exp10);
+
+  TEST_f_f (exp10, 0, 1);
+  TEST_f_f (exp10, minus_zero, 1);
+
+  TEST_f_f (exp10, plus_infty, plus_infty);
+  TEST_f_f (exp10, minus_infty, 0);
+  TEST_f_f (exp10, nan_value, nan_value);
+  TEST_f_f (exp10, 3, 1000);
+  TEST_f_f (exp10, -1, 0.1L);
+  TEST_f_f (exp10, 1e6, plus_infty);
+  TEST_f_f (exp10, -1e6, 0);
+  TEST_f_f (exp10, 0.7L, 5.0118723362727228500155418688494574L);
+
+  END (exp10);
+}
+
+static void
+exp2_test (void)
+{
+  errno = 0;
+  FUNC(exp2) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (exp2);
+
+  TEST_f_f (exp2, 0, 1);
+  TEST_f_f (exp2, minus_zero, 1);
+  TEST_f_f (exp2, plus_infty, plus_infty);
+  TEST_f_f (exp2, minus_infty, 0);
+  TEST_f_f (exp2, nan_value, nan_value);
+
+  TEST_f_f (exp2, 10, 1024);
+  TEST_f_f (exp2, -1, 0.5);
+  TEST_f_f (exp2, 1e6, plus_infty);
+  TEST_f_f (exp2, -1e6, 0);
+  TEST_f_f (exp2, 0.7L, 1.6245047927124710452L);
+
+  END (exp2);
+}
+#endif
+
+static void
+expm1_test (void)
+{
+  errno = 0;
+  FUNC(expm1) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (expm1);
+
+  TEST_f_f (expm1, 0, 0);
+  TEST_f_f (expm1, minus_zero, minus_zero);
+
+#ifndef TEST_INLINE
+  TEST_f_f (expm1, plus_infty, plus_infty);
+  TEST_f_f (expm1, minus_infty, -1);
+#endif
+  TEST_f_f (expm1, nan_value, nan_value);
+
+  TEST_f_f (expm1, 1, M_El - 1.0);
+  TEST_f_f (expm1, 0.7L, 1.0137527074704765216L);
+
+  END (expm1);
+}
+
+static void
+fabs_test (void)
+{
+  START (fabs);
+
+  TEST_f_f (fabs, 0, 0);
+  TEST_f_f (fabs, minus_zero, 0);
+
+  TEST_f_f (fabs, plus_infty, plus_infty);
+  TEST_f_f (fabs, minus_infty, plus_infty);
+  TEST_f_f (fabs, nan_value, nan_value);
+
+  TEST_f_f (fabs, 38.0, 38.0);
+  TEST_f_f (fabs, -M_El, M_El);
+
+  END (fabs);
+}
+
+#if 0
+static void
+fdim_test (void)
+{
+  START (fdim);
+
+  TEST_ff_f (fdim, 0, 0, 0);
+  TEST_ff_f (fdim, 9, 0, 9);
+  TEST_ff_f (fdim, 0, 9, 0);
+  TEST_ff_f (fdim, -9, 0, 0);
+  TEST_ff_f (fdim, 0, -9, 9);
+
+  TEST_ff_f (fdim, plus_infty, 9, plus_infty);
+  TEST_ff_f (fdim, plus_infty, -9, plus_infty);
+  TEST_ff_f (fdim, minus_infty, 9, 0);
+  TEST_ff_f (fdim, minus_infty, -9, 0);
+  TEST_ff_f (fdim, 9, minus_infty, plus_infty);
+  TEST_ff_f (fdim, -9, minus_infty, plus_infty);
+  TEST_ff_f (fdim, 9, plus_infty, 0);
+  TEST_ff_f (fdim, -9, plus_infty, 0);
+
+  TEST_ff_f (fdim, 0, nan_value, nan_value);
+  TEST_ff_f (fdim, 9, nan_value, nan_value);
+  TEST_ff_f (fdim, -9, nan_value, nan_value);
+  TEST_ff_f (fdim, nan_value, 9, nan_value);
+  TEST_ff_f (fdim, nan_value, -9, nan_value);
+  TEST_ff_f (fdim, plus_infty, nan_value, nan_value);
+  TEST_ff_f (fdim, minus_infty, nan_value, nan_value);
+  TEST_ff_f (fdim, nan_value, plus_infty, nan_value);
+  TEST_ff_f (fdim, nan_value, minus_infty, nan_value);
+  TEST_ff_f (fdim, nan_value, nan_value, nan_value);
+
+  END (fdim);
+}
+#endif
+
+static void
+floor_test (void)
+{
+  START (floor);
+
+  TEST_f_f (floor, 0.0, 0.0);
+  TEST_f_f (floor, minus_zero, minus_zero);
+  TEST_f_f (floor, plus_infty, plus_infty);
+  TEST_f_f (floor, minus_infty, minus_infty);
+  TEST_f_f (floor, nan_value, nan_value);
+
+  TEST_f_f (floor, M_PIl, 3.0);
+  TEST_f_f (floor, -M_PIl, -4.0);
+
+  END (floor);
+}
+
+#if 0
+static void
+fma_test (void)
+{
+  START (fma);
+
+  TEST_fff_f (fma, 1.0, 2.0, 3.0, 5.0);
+  TEST_fff_f (fma, nan_value, 2.0, 3.0, nan_value);
+  TEST_fff_f (fma, 1.0, nan_value, 3.0, nan_value);
+  TEST_fff_f (fma, 1.0, 2.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_fff_f (fma, plus_infty, 0.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_fff_f (fma, minus_infty, 0.0, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_fff_f (fma, 0.0, plus_infty, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_fff_f (fma, 0.0, minus_infty, nan_value, nan_value, INVALID_EXCEPTION_OK);
+  TEST_fff_f (fma, plus_infty, 0.0, 1.0, nan_value, INVALID_EXCEPTION);
+  TEST_fff_f (fma, minus_infty, 0.0, 1.0, nan_value, INVALID_EXCEPTION);
+  TEST_fff_f (fma, 0.0, plus_infty, 1.0, nan_value, INVALID_EXCEPTION);
+  TEST_fff_f (fma, 0.0, minus_infty, 1.0, nan_value, INVALID_EXCEPTION);
+
+  TEST_fff_f (fma, plus_infty, plus_infty, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_fff_f (fma, minus_infty, plus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_fff_f (fma, plus_infty, minus_infty, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_fff_f (fma, minus_infty, minus_infty, minus_infty, nan_value, INVALID_EXCEPTION);
+
+  END (fma);
+}
+
+
+static void
+fmax_test (void)
+{
+  START (fmax);
+
+  TEST_ff_f (fmax, 0, 0, 0);
+  TEST_ff_f (fmax, minus_zero, minus_zero, minus_zero);
+  TEST_ff_f (fmax, 9, 0, 9);
+  TEST_ff_f (fmax, 0, 9, 9);
+  TEST_ff_f (fmax, -9, 0, 0);
+  TEST_ff_f (fmax, 0, -9, 0);
+
+  TEST_ff_f (fmax, plus_infty, 9, plus_infty);
+  TEST_ff_f (fmax, 0, plus_infty, plus_infty);
+  TEST_ff_f (fmax, -9, plus_infty, plus_infty);
+  TEST_ff_f (fmax, plus_infty, -9, plus_infty);
+
+  TEST_ff_f (fmax, minus_infty, 9, 9);
+  TEST_ff_f (fmax, minus_infty, -9, -9);
+  TEST_ff_f (fmax, 9, minus_infty, 9);
+  TEST_ff_f (fmax, -9, minus_infty, -9);
+
+  TEST_ff_f (fmax, 0, nan_value, 0);
+  TEST_ff_f (fmax, 9, nan_value, 9);
+  TEST_ff_f (fmax, -9, nan_value, -9);
+  TEST_ff_f (fmax, nan_value, 0, 0);
+  TEST_ff_f (fmax, nan_value, 9, 9);
+  TEST_ff_f (fmax, nan_value, -9, -9);
+  TEST_ff_f (fmax, plus_infty, nan_value, plus_infty);
+  TEST_ff_f (fmax, minus_infty, nan_value, minus_infty);
+  TEST_ff_f (fmax, nan_value, plus_infty, plus_infty);
+  TEST_ff_f (fmax, nan_value, minus_infty, minus_infty);
+  TEST_ff_f (fmax, nan_value, nan_value, nan_value);
+
+  END (fmax);
+}
+
+
+static void
+fmin_test (void)
+{
+  START (fmin);
+
+  TEST_ff_f (fmin, 0, 0, 0);
+  TEST_ff_f (fmin, minus_zero, minus_zero, minus_zero);
+  TEST_ff_f (fmin, 9, 0, 0);
+  TEST_ff_f (fmin, 0, 9, 0);
+  TEST_ff_f (fmin, -9, 0, -9);
+  TEST_ff_f (fmin, 0, -9, -9);
+
+  TEST_ff_f (fmin, plus_infty, 9, 9);
+  TEST_ff_f (fmin, 9, plus_infty, 9);
+  TEST_ff_f (fmin, plus_infty, -9, -9);
+  TEST_ff_f (fmin, -9, plus_infty, -9);
+  TEST_ff_f (fmin, minus_infty, 9, minus_infty);
+  TEST_ff_f (fmin, minus_infty, -9, minus_infty);
+  TEST_ff_f (fmin, 9, minus_infty, minus_infty);
+  TEST_ff_f (fmin, -9, minus_infty, minus_infty);
+
+  TEST_ff_f (fmin, 0, nan_value, 0);
+  TEST_ff_f (fmin, 9, nan_value, 9);
+  TEST_ff_f (fmin, -9, nan_value, -9);
+  TEST_ff_f (fmin, nan_value, 0, 0);
+  TEST_ff_f (fmin, nan_value, 9, 9);
+  TEST_ff_f (fmin, nan_value, -9, -9);
+  TEST_ff_f (fmin, plus_infty, nan_value, plus_infty);
+  TEST_ff_f (fmin, minus_infty, nan_value, minus_infty);
+  TEST_ff_f (fmin, nan_value, plus_infty, plus_infty);
+  TEST_ff_f (fmin, nan_value, minus_infty, minus_infty);
+  TEST_ff_f (fmin, nan_value, nan_value, nan_value);
+
+  END (fmin);
+}
+#endif
+
+static void
+fmod_test (void)
+{
+  errno = 0;
+  FUNC(fmod) (6.5, 2.3L);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (fmod);
+
+  /* fmod (+0, y) == +0 for y != 0.  */
+  TEST_ff_f (fmod, 0, 3, 0);
+
+  /* fmod (-0, y) == -0 for y != 0.  */
+  TEST_ff_f (fmod, minus_zero, 3, minus_zero);
+
+  /* fmod (+inf, y) == NaN plus invalid exception.  */
+  TEST_ff_f (fmod, plus_infty, 3, nan_value, INVALID_EXCEPTION);
+  /* fmod (-inf, y) == NaN plus invalid exception.  */
+  TEST_ff_f (fmod, minus_infty, 3, nan_value, INVALID_EXCEPTION);
+  /* fmod (x, +0) == NaN plus invalid exception.  */
+  TEST_ff_f (fmod, 3, 0, nan_value, INVALID_EXCEPTION);
+  /* fmod (x, -0) == NaN plus invalid exception.  */
+  TEST_ff_f (fmod, 3, minus_zero, nan_value, INVALID_EXCEPTION);
+
+  /* fmod (x, +inf) == x for x not infinite.  */
+  TEST_ff_f (fmod, 3.0, plus_infty, 3.0);
+  /* fmod (x, -inf) == x for x not infinite.  */
+  TEST_ff_f (fmod, 3.0, minus_infty, 3.0);
+
+  TEST_ff_f (fmod, nan_value, nan_value, nan_value);
+
+  TEST_ff_f (fmod, 6.5, 2.3L, 1.9L);
+  TEST_ff_f (fmod, -6.5, 2.3L, -1.9L);
+  TEST_ff_f (fmod, 6.5, -2.3L, 1.9L);
+  TEST_ff_f (fmod, -6.5, -2.3L, -1.9L);
+
+  END (fmod);
+}
+
+static void
+fpclassify_test (void)
+{
+  START (fpclassify);
+
+  TEST_f_i (fpclassify, nan_value, FP_NAN);
+  TEST_f_i (fpclassify, plus_infty, FP_INFINITE);
+  TEST_f_i (fpclassify, minus_infty, FP_INFINITE);
+  TEST_f_i (fpclassify, plus_zero, FP_ZERO);
+  TEST_f_i (fpclassify, minus_zero, FP_ZERO);
+  TEST_f_i (fpclassify, 1000, FP_NORMAL);
+
+  END (fpclassify);
+}
+
+
+static void
+frexp_test (void)
+{
+  int x;
+
+  START (frexp);
+
+  TEST_fI_f1 (frexp, plus_infty, plus_infty, IGNORE);
+  TEST_fI_f1 (frexp, minus_infty, minus_infty, IGNORE);
+  TEST_fI_f1 (frexp, nan_value, nan_value, IGNORE);
+
+  TEST_fI_f1 (frexp, 0.0, 0.0, 0.0);
+  TEST_fI_f1 (frexp, minus_zero, minus_zero, 0.0);
+
+  TEST_fI_f1 (frexp, 12.8L, 0.8L, 4);
+  TEST_fI_f1 (frexp, -27.34L, -0.854375L, 5);
+
+  END (frexp);
+}
+
+
+static void
+gamma_test (void)
+{
+  errno = 0;
+  FUNC(gamma) (1);
+
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+  feclearexcept (FE_ALL_EXCEPT);
+
+  START (gamma);
+
+  TEST_f_f (gamma, plus_infty, plus_infty);
+  TEST_f_f (gamma, 0, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (gamma, -3, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (gamma, minus_infty, plus_infty);
+  TEST_f_f (gamma, nan_value, nan_value);
+
+  TEST_f_f1 (gamma, 1, 0, 1);
+  TEST_f_f1 (gamma, 3, M_LN2l, 1);
+
+  TEST_f_f1 (gamma, 0.5, M_LOG_SQRT_PIl, 1);
+  TEST_f_f1 (gamma, -0.5, M_LOG_2_SQRT_PIl, -1);
+
+  END (gamma);
+}
+
+static void
+hypot_test (void)
+{
+  errno = 0;
+  FUNC(hypot) (0.7L, 12.4L);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (hypot);
+
+  TEST_ff_f (hypot, plus_infty, 1, plus_infty, IGNORE_ZERO_INF_SIGN);
+  TEST_ff_f (hypot, minus_infty, 1, plus_infty, IGNORE_ZERO_INF_SIGN);
+
+#ifndef TEST_INLINE
+  TEST_ff_f (hypot, plus_infty, nan_value, plus_infty);
+  TEST_ff_f (hypot, minus_infty, nan_value, plus_infty);
+  TEST_ff_f (hypot, nan_value, plus_infty, plus_infty);
+  TEST_ff_f (hypot, nan_value, minus_infty, plus_infty);
+#endif
+
+  TEST_ff_f (hypot, nan_value, nan_value, nan_value);
+
+  /* hypot (x,y) == hypot (+-x, +-y)  */
+  TEST_ff_f (hypot, 0.7L, 12.4L, 12.419742348374220601176836866763271L);
+  TEST_ff_f (hypot, -0.7L, 12.4L, 12.419742348374220601176836866763271L);
+  TEST_ff_f (hypot, 0.7L, -12.4L, 12.419742348374220601176836866763271L);
+  TEST_ff_f (hypot, -0.7L, -12.4L, 12.419742348374220601176836866763271L);
+  TEST_ff_f (hypot, 12.4L, 0.7L, 12.419742348374220601176836866763271L);
+  TEST_ff_f (hypot, -12.4L, 0.7L, 12.419742348374220601176836866763271L);
+  TEST_ff_f (hypot, 12.4L, -0.7L, 12.419742348374220601176836866763271L);
+  TEST_ff_f (hypot, -12.4L, -0.7L, 12.419742348374220601176836866763271L);
+
+  /*  hypot (x,0) == fabs (x)  */
+  TEST_ff_f (hypot, 0.7L, 0, 0.7L);
+  TEST_ff_f (hypot, -0.7L, 0, 0.7L);
+  TEST_ff_f (hypot, -5.7e7, 0, 5.7e7L);
+
+  TEST_ff_f (hypot, 0.7L, 1.2L, 1.3892443989449804508432547041028554L);
+
+  END (hypot);
+}
+
+
+static void
+ilogb_test (void)
+{
+  START (ilogb);
+
+  TEST_f_i (ilogb, 1, 0);
+  TEST_f_i (ilogb, M_El, 1);
+  TEST_f_i (ilogb, 1024, 10);
+  TEST_f_i (ilogb, -2000, 10);
+
+  /* XXX We have a problem here: the standard does not tell us whether
+     exceptions are allowed/required.  ignore them for now.  */
+
+  TEST_f_i (ilogb, 0.0, FP_ILOGB0, EXCEPTIONS_OK);
+  TEST_f_i (ilogb, nan_value, FP_ILOGBNAN, EXCEPTIONS_OK);
+  TEST_f_i (ilogb, plus_infty, INT_MAX, EXCEPTIONS_OK);
+  TEST_f_i (ilogb, minus_infty, INT_MAX, EXCEPTIONS_OK);
+
+  END (ilogb);
+}
+
+static void
+isfinite_test (void)
+{
+  START (isfinite);
+
+  TEST_f_b (isfinite, 0, 1);
+  TEST_f_b (isfinite, minus_zero, 1);
+  TEST_f_b (isfinite, 10, 1);
+  TEST_f_b (isfinite, plus_infty, 0);
+  TEST_f_b (isfinite, minus_infty, 0);
+  TEST_f_b (isfinite, nan_value, 0);
+
+  END (isfinite);
+}
+
+static void
+isnormal_test (void)
+{
+  START (isnormal);
+
+  TEST_f_b (isnormal, 0, 0);
+  TEST_f_b (isnormal, minus_zero, 0);
+  TEST_f_b (isnormal, 10, 1);
+  TEST_f_b (isnormal, plus_infty, 0);
+  TEST_f_b (isnormal, minus_infty, 0);
+  TEST_f_b (isnormal, nan_value, 0);
+
+  END (isnormal);
+}
+
+static void
+j0_test (void)
+{
+  errno = 0;
+#if 0
+  FLOAT s, c;
+  FUNC (sincos) (0, &s, &c);
+  if (errno == ENOSYS)
+    /* Required function not implemented.  */
+    return;
+#endif
+  FUNC(j0) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (j0);
+
+  /* j0 is the Bessel function of the first kind of order 0 */
+  TEST_f_f (j0, nan_value, nan_value);
+  TEST_f_f (j0, plus_infty, 0);
+  TEST_f_f (j0, -1.0, 0.76519768655796655145L);
+  TEST_f_f (j0, 0.0, 1.0);
+  TEST_f_f (j0, 0.1L, 0.99750156206604003228L);
+  TEST_f_f (j0, 0.7L, 0.88120088860740528084L);
+  TEST_f_f (j0, 1.0, 0.76519768655796655145L);
+  TEST_f_f (j0, 1.5, 0.51182767173591812875L);
+  TEST_f_f (j0, 2.0, 0.22389077914123566805L);
+  TEST_f_f (j0, 8.0, 0.17165080713755390609L);
+  TEST_f_f (j0, 10.0, -0.24593576445134833520L);
+  TEST_f_f (j0, 4.0, -3.9714980986384737228659076845169804197562E-1L);
+  TEST_f_f (j0, -4.0, -3.9714980986384737228659076845169804197562E-1L);
+
+  END (j0);
+}
+
+
+static void
+j1_test (void)
+{
+  errno = 0;
+#if 0
+  FLOAT s, c;
+  FUNC (sincos) (0, &s, &c);
+  if (errno == ENOSYS)
+    /* Required function not implemented.  */
+    return;
+#endif
+  FUNC(j1) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  /* j1 is the Bessel function of the first kind of order 1 */
+
+  START (j1);
+
+  TEST_f_f (j1, nan_value, nan_value);
+  TEST_f_f (j1, plus_infty, 0);
+
+  TEST_f_f (j1, -1.0, -0.44005058574493351596L);
+  TEST_f_f (j1, 0.0, 0.0);
+  TEST_f_f (j1, 0.1L, 0.049937526036241997556L);
+  TEST_f_f (j1, 0.7L, 0.32899574154005894785L);
+  TEST_f_f (j1, 1.0, 0.44005058574493351596L);
+  TEST_f_f (j1, 1.5, 0.55793650791009964199L);
+  TEST_f_f (j1, 2.0, 0.57672480775687338720L);
+  TEST_f_f (j1, 8.0, 0.23463634685391462438L);
+  TEST_f_f (j1, 10.0, 0.043472746168861436670L);
+
+  END (j1);
+}
+
+static void
+jn_test (void)
+{
+  errno = 0;
+#if 0
+  FLOAT s, c;
+  FUNC (sincos) (0, &s, &c);
+  if (errno == ENOSYS)
+    /* Required function not implemented.  */
+    return;
+#endif
+  FUNC(jn) (1, 1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  /* jn is the Bessel function of the first kind of order n.  */
+  START (jn);
+
+  /* jn (0, x) == j0 (x)  */
+  TEST_ff_f (jn, 0, nan_value, nan_value);
+  TEST_ff_f (jn, 0, plus_infty, 0);
+  TEST_ff_f (jn, 0, -1.0, 0.76519768655796655145L);
+  TEST_ff_f (jn, 0, 0.0, 1.0);
+  TEST_ff_f (jn, 0, 0.1L, 0.99750156206604003228L);
+  TEST_ff_f (jn, 0, 0.7L, 0.88120088860740528084L);
+  TEST_ff_f (jn, 0, 1.0, 0.76519768655796655145L);
+  TEST_ff_f (jn, 0, 1.5, 0.51182767173591812875L);
+  TEST_ff_f (jn, 0, 2.0, 0.22389077914123566805L);
+  TEST_ff_f (jn, 0, 8.0, 0.17165080713755390609L);
+  TEST_ff_f (jn, 0, 10.0, -0.24593576445134833520L);
+
+  /* jn (1, x) == j1 (x)  */
+  TEST_ff_f (jn, 1, nan_value, nan_value);
+  TEST_ff_f (jn, 1, plus_infty, 0);
+
+  TEST_ff_f (jn, 1, -1.0, -0.44005058574493351596L);
+  TEST_ff_f (jn, 1, 0.0, 0.0);
+  TEST_ff_f (jn, 1, 0.1L, 0.049937526036241997556L);
+  TEST_ff_f (jn, 1, 0.7L, 0.32899574154005894785L);
+  TEST_ff_f (jn, 1, 1.0, 0.44005058574493351596L);
+  TEST_ff_f (jn, 1, 1.5, 0.55793650791009964199L);
+  TEST_ff_f (jn, 1, 2.0, 0.57672480775687338720L);
+  TEST_ff_f (jn, 1, 8.0, 0.23463634685391462438L);
+  TEST_ff_f (jn, 1, 10.0, 0.043472746168861436670L);
+
+  /* jn (3, x)  */
+  TEST_ff_f (jn, 3, nan_value, nan_value);
+  TEST_ff_f (jn, 3, plus_infty, 0);
+
+  TEST_ff_f (jn, 3, -1.0, -0.019563353982668405919L);
+  TEST_ff_f (jn, 3, 0.0, 0.0);
+  TEST_ff_f (jn, 3, 0.1L, 0.000020820315754756261429L);
+  TEST_ff_f (jn, 3, 0.7L, 0.0069296548267508408077L);
+  TEST_ff_f (jn, 3, 1.0, 0.019563353982668405919L);
+  TEST_ff_f (jn, 3, 2.0, 0.12894324947440205110L);
+  TEST_ff_f (jn, 3, 10.0, 0.058379379305186812343L);
+
+  /*  jn (10, x)  */
+  TEST_ff_f (jn, 10, nan_value, nan_value);
+  TEST_ff_f (jn, 10, plus_infty, 0);
+
+  TEST_ff_f (jn, 10, -1.0, 0.26306151236874532070e-9L);
+  TEST_ff_f (jn, 10, 0.0, 0.0);
+  TEST_ff_f (jn, 10, 0.1L, 0.26905328954342155795e-19L);
+  TEST_ff_f (jn, 10, 0.7L, 0.75175911502153953928e-11L);
+  TEST_ff_f (jn, 10, 1.0, 0.26306151236874532070e-9L);
+  TEST_ff_f (jn, 10, 2.0, 0.25153862827167367096e-6L);
+  TEST_ff_f (jn, 10, 10.0, 0.20748610663335885770L);
+
+  END (jn);
+}
+
+
+static void
+ldexp_test (void)
+{
+  TEST_ff_f (ldexp, 0, 0, 0);
+  TEST_ff_f (ldexp, minus_zero, 0, minus_zero);
+
+  TEST_ff_f (ldexp, plus_infty, 1, plus_infty);
+  TEST_ff_f (ldexp, minus_infty, 1, minus_infty);
+  TEST_ff_f (ldexp, nan_value, 1, nan_value);
+
+  TEST_ff_f (ldexp, 0.8L, 4, 12.8L);
+  TEST_ff_f (ldexp, -0.854375L, 5, -27.34L);
+
+  /* ldexp (x, 0) == x.  */
+  TEST_ff_f (ldexp, 1.0L, 0L, 1.0L);
+}
+
+static void
+lgamma_test (void)
+{
+  errno = 0;
+  FUNC(lgamma) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+  feclearexcept (FE_ALL_EXCEPT);
+
+  START (lgamma);
+
+  TEST_f_f (lgamma, plus_infty, plus_infty);
+  TEST_f_f (lgamma, 0, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (lgamma, nan_value, nan_value);
+
+  /* lgamma (x) == +inf plus divide by zero exception for integer x <= 0.  */
+  TEST_f_f (lgamma, -3, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (lgamma, minus_infty, plus_infty);
+
+  TEST_f_f1 (lgamma, 1, 0, 1);
+
+  TEST_f_f1 (lgamma, 3, M_LN2l, 1);
+
+  TEST_f_f1 (lgamma, 0.5, M_LOG_SQRT_PIl, 1);
+  TEST_f_f1 (lgamma, -0.5, M_LOG_2_SQRT_PIl, -1);
+  TEST_f_f1 (lgamma, 0.7L, 0.26086724653166651439L, 1);
+  TEST_f_f1 (lgamma, 1.2L, -0.853740900033158497197e-1L, 1);
+
+  END (lgamma);
+}
+
+#if 0
+static void
+lrint_test (void)
+{
+  /* XXX this test is incomplete.  We need to have a way to specifiy
+     the rounding method and test the critical cases.  So far, only
+     unproblematic numbers are tested.  */
+
+  START (lrint);
+
+  TEST_f_l (lrint, 0.0, 0);
+  TEST_f_l (lrint, minus_zero, 0);
+  TEST_f_l (lrint, 0.2L, 0);
+  TEST_f_l (lrint, -0.2L, 0);
+
+  TEST_f_l (lrint, 1.4L, 1);
+  TEST_f_l (lrint, -1.4L, -1);
+
+  TEST_f_l (lrint, 8388600.3L, 8388600);
+  TEST_f_l (lrint, -8388600.3L, -8388600);
+
+  END (lrint);
+}
+
+static void
+llrint_test (void)
+{
+  /* XXX this test is incomplete.  We need to have a way to specifiy
+     the rounding method and test the critical cases.  So far, only
+     unproblematic numbers are tested.  */
+
+  START (llrint);
+
+  TEST_f_L (llrint, 0.0, 0);
+  TEST_f_L (llrint, minus_zero, 0);
+  TEST_f_L (llrint, 0.2L, 0);
+  TEST_f_L (llrint, -0.2L, 0);
+
+  TEST_f_L (llrint, 1.4L, 1);
+  TEST_f_L (llrint, -1.4L, -1);
+
+  TEST_f_L (llrint, 8388600.3L, 8388600);
+  TEST_f_L (llrint, -8388600.3L, -8388600);
+
+  /* Test boundary conditions.  */
+  /* 0x1FFFFF */
+  TEST_f_L (llrint, 2097151.0,2097151LL);
+  /* 0x800000 */
+  TEST_f_L (llrint, 8388608.0, 8388608LL);
+  /* 0x1000000 */
+  TEST_f_L (llrint, 16777216.0, 16777216LL);
+  /* 0x20000000000 */
+  TEST_f_L (llrint, 2199023255552.0, 2199023255552LL);
+  /* 0x40000000000 */
+  TEST_f_L (llrint, 4398046511104.0, 4398046511104LL);
+  /* 0x10000000000000 */
+  TEST_f_L (llrint, 4503599627370496.0, 4503599627370496LL);
+  /* 0x10000080000000 */
+  TEST_f_L (llrint, 4503601774854144.0, 4503601774854144LL);
+  /* 0x20000000000000 */
+  TEST_f_L (llrint, 9007199254740992.0, 9007199254740992LL);
+  /* 0x80000000000000 */
+  TEST_f_L (llrint, 36028797018963968.0, 36028797018963968LL);
+  /* 0x100000000000000 */
+  TEST_f_L (llrint, 72057594037927936.0, 72057594037927936LL);
+
+  END (llrint);
+}
+#endif
+
+static void
+log_test (void)
+{
+  errno = 0;
+  FUNC(log) (1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+  START (log);
+
+  TEST_f_f (log, 0, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (log, minus_zero, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_f_f (log, 1, 0);
+
+  TEST_f_f (log, -1, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (log, plus_infty, plus_infty);
+
+  TEST_f_f (log, M_El, 1);
+  TEST_f_f (log, 1.0 / M_El, -1);
+  TEST_f_f (log, 2, M_LN2l);
+  TEST_f_f (log, 10, M_LN10l);
+  TEST_f_f (log, 0.7L, -0.35667494393873237891263871124118447L);
+
+  END (log);
+}
+
+
+static void
+log10_test (void)
+{
+  errno = 0;
+  FUNC(log10) (1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (log10);
+
+  TEST_f_f (log10, 0, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (log10, minus_zero, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_f_f (log10, 1, 0);
+
+  /* log10 (x) == NaN plus invalid exception if x < 0.  */
+  TEST_f_f (log10, -1, nan_value, INVALID_EXCEPTION);
+
+  TEST_f_f (log10, plus_infty, plus_infty);
+  TEST_f_f (log10, nan_value, nan_value);
+
+  TEST_f_f (log10, 0.1L, -1);
+  TEST_f_f (log10, 10.0, 1);
+  TEST_f_f (log10, 100.0, 2);
+  TEST_f_f (log10, 10000.0, 4);
+  TEST_f_f (log10, M_El, M_LOG10El);
+  TEST_f_f (log10, 0.7L, -0.15490195998574316929L);
+
+  END (log10);
+}
+
+
+static void
+log1p_test (void)
+{
+  errno = 0;
+  FUNC(log1p) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (log1p);
+
+  TEST_f_f (log1p, 0, 0);
+  TEST_f_f (log1p, minus_zero, minus_zero);
+
+  TEST_f_f (log1p, -1, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (log1p, -2, nan_value, INVALID_EXCEPTION);
+
+  TEST_f_f (log1p, plus_infty, plus_infty);
+  TEST_f_f (log1p, nan_value, nan_value);
+
+  TEST_f_f (log1p, M_El - 1.0, 1);
+
+  TEST_f_f (log1p, -0.3L, -0.35667494393873237891263871124118447L);
+
+  END (log1p);
+}
+
+#if 0
+static void
+log2_test (void)
+{
+  errno = 0;
+  FUNC(log2) (1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (log2);
+
+  TEST_f_f (log2, 0, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (log2, minus_zero, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_f_f (log2, 1, 0);
+
+  TEST_f_f (log2, -1, nan_value, INVALID_EXCEPTION);
+
+  TEST_f_f (log2, plus_infty, plus_infty);
+  TEST_f_f (log2, nan_value, nan_value);
+
+  TEST_f_f (log2, M_El, M_LOG2El);
+  TEST_f_f (log2, 2.0, 1);
+  TEST_f_f (log2, 16.0, 4);
+  TEST_f_f (log2, 256.0, 8);
+  TEST_f_f (log2, 0.7L, -0.51457317282975824043L);
+
+  END (log2);
+}
+#endif
+
+
+static void
+logb_test (void)
+{
+  START (logb);
+
+  TEST_f_f (logb, plus_infty, plus_infty);
+  TEST_f_f (logb, minus_infty, plus_infty);
+
+  TEST_f_f (logb, 0, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_f_f (logb, minus_zero, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_f_f (logb, nan_value, nan_value);
+
+  TEST_f_f (logb, 1, 0);
+  TEST_f_f (logb, M_El, 1);
+  TEST_f_f (logb, 1024, 10);
+  TEST_f_f (logb, -2000, 10);
+
+  END (logb);
+}
+
+#if 0
+static void
+lround_test (void)
+{
+  START (lround);
+
+  TEST_f_l (lround, 0, 0);
+  TEST_f_l (lround, minus_zero, 0);
+  TEST_f_l (lround, 0.2L, 0.0);
+  TEST_f_l (lround, -0.2L, 0);
+  TEST_f_l (lround, 0.5, 1);
+  TEST_f_l (lround, -0.5, -1);
+  TEST_f_l (lround, 0.8L, 1);
+  TEST_f_l (lround, -0.8L, -1);
+  TEST_f_l (lround, 1.5, 2);
+  TEST_f_l (lround, -1.5, -2);
+  TEST_f_l (lround, 22514.5, 22515);
+  TEST_f_l (lround, -22514.5, -22515);
+#ifndef TEST_FLOAT
+  TEST_f_l (lround, 2097152.5, 2097153);
+  TEST_f_l (lround, -2097152.5, -2097153);
+#endif
+  END (lround);
+}
+
+
+static void
+llround_test (void)
+{
+  START (llround);
+
+  TEST_f_L (llround, 0, 0);
+  TEST_f_L (llround, minus_zero, 0);
+  TEST_f_L (llround, 0.2L, 0.0);
+  TEST_f_L (llround, -0.2L, 0);
+  TEST_f_L (llround, 0.5, 1);
+  TEST_f_L (llround, -0.5, -1);
+  TEST_f_L (llround, 0.8L, 1);
+  TEST_f_L (llround, -0.8L, -1);
+  TEST_f_L (llround, 1.5, 2);
+  TEST_f_L (llround, -1.5, -2);
+  TEST_f_L (llround, 22514.5, 22515);
+  TEST_f_L (llround, -22514.5, -22515);
+#ifndef TEST_FLOAT
+  TEST_f_L (llround, 2097152.5, 2097153);
+  TEST_f_L (llround, -2097152.5, -2097153);
+  TEST_f_L (llround, 34359738368.5, 34359738369ll);
+  TEST_f_L (llround, -34359738368.5, -34359738369ll);
+#endif
+
+  /* Test boundary conditions.  */
+  /* 0x1FFFFF */
+  TEST_f_L (llround, 2097151.0, 2097151LL);
+  /* 0x800000 */
+  TEST_f_L (llround, 8388608.0, 8388608LL);
+  /* 0x1000000 */
+  TEST_f_L (llround, 16777216.0, 16777216LL);
+  /* 0x20000000000 */
+  TEST_f_L (llround, 2199023255552.0, 2199023255552LL);
+  /* 0x40000000000 */
+  TEST_f_L (llround, 4398046511104.0, 4398046511104LL);
+  /* 0x10000000000000 */
+  TEST_f_L (llround, 4503599627370496.0, 4503599627370496LL);
+  /* 0x10000080000000 */
+  TEST_f_L (llrint, 4503601774854144.0, 4503601774854144LL);
+  /* 0x20000000000000 */
+  TEST_f_L (llround, 9007199254740992.0, 9007199254740992LL);
+  /* 0x80000000000000 */
+  TEST_f_L (llround, 36028797018963968.0, 36028797018963968LL);
+  /* 0x100000000000000 */
+  TEST_f_L (llround, 72057594037927936.0, 72057594037927936LL);
+
+#ifndef TEST_FLOAT
+  /* 0x100000000 */
+  TEST_f_L (llround, 4294967295.5, 4294967296LL);
+  /* 0x200000000 */
+  TEST_f_L (llround, 8589934591.5, 8589934592LL);
+#endif
+
+  END (llround);
+}
+#endif
+
+static void
+modf_test (void)
+{
+  FLOAT x;
+
+  START (modf);
+
+  TEST_fF_f1 (modf, plus_infty, 0, plus_infty);
+  TEST_fF_f1 (modf, minus_infty, minus_zero, minus_infty);
+  TEST_fF_f1 (modf, nan_value, nan_value, nan_value);
+  TEST_fF_f1 (modf, 0, 0, 0);
+  TEST_fF_f1 (modf, 1.5, 0.5, 1);
+  TEST_fF_f1 (modf, 2.5, 0.5, 2);
+  TEST_fF_f1 (modf, -2.5, -0.5, -2);
+  TEST_fF_f1 (modf, 20, 0, 20);
+  TEST_fF_f1 (modf, 21, 0, 21);
+  TEST_fF_f1 (modf, 89.5, 0.5, 89);
+
+  END (modf);
+}
+
+
+#if 0
+static void
+nearbyint_test (void)
+{
+  START (nearbyint);
+
+  TEST_f_f (nearbyint, 0.0, 0.0);
+  TEST_f_f (nearbyint, minus_zero, minus_zero);
+  TEST_f_f (nearbyint, plus_infty, plus_infty);
+  TEST_f_f (nearbyint, minus_infty, minus_infty);
+  TEST_f_f (nearbyint, nan_value, nan_value);
+
+  /* Default rounding mode is round to nearest.  */
+  TEST_f_f (nearbyint, 0.5, 0.0);
+  TEST_f_f (nearbyint, 1.5, 2.0);
+  TEST_f_f (nearbyint, -0.5, minus_zero);
+  TEST_f_f (nearbyint, -1.5, -2.0);
+
+  END (nearbyint);
+}
+
+static void
+nextafter_test (void)
+{
+
+  START (nextafter);
+
+  TEST_ff_f (nextafter, 0, 0, 0);
+  TEST_ff_f (nextafter, minus_zero, 0, 0);
+  TEST_ff_f (nextafter, 0, minus_zero, minus_zero);
+  TEST_ff_f (nextafter, minus_zero, minus_zero, minus_zero);
+
+  TEST_ff_f (nextafter, 9, 9, 9);
+  TEST_ff_f (nextafter, -9, -9, -9);
+  TEST_ff_f (nextafter, plus_infty, plus_infty, plus_infty);
+  TEST_ff_f (nextafter, minus_infty, minus_infty, minus_infty);
+
+  TEST_ff_f (nextafter, nan_value, 1.1L, nan_value);
+  TEST_ff_f (nextafter, 1.1L, nan_value, nan_value);
+  TEST_ff_f (nextafter, nan_value, nan_value, nan_value);
+
+  /* XXX We need the hexadecimal FP number representation here for further
+     tests.  */
+
+  END (nextafter);
+}
+
+
+static void
+nexttoward_test (void)
+{
+  START (nexttoward);
+  TEST_ff_f (nexttoward, 0, 0, 0);
+  TEST_ff_f (nexttoward, minus_zero, 0, 0);
+  TEST_ff_f (nexttoward, 0, minus_zero, minus_zero);
+  TEST_ff_f (nexttoward, minus_zero, minus_zero, minus_zero);
+
+  TEST_ff_f (nexttoward, 9, 9, 9);
+  TEST_ff_f (nexttoward, -9, -9, -9);
+  TEST_ff_f (nexttoward, plus_infty, plus_infty, plus_infty);
+  TEST_ff_f (nexttoward, minus_infty, minus_infty, minus_infty);
+
+  TEST_ff_f (nexttoward, nan_value, 1.1L, nan_value);
+  TEST_ff_f (nexttoward, 1.1L, nan_value, nan_value);
+  TEST_ff_f (nexttoward, nan_value, nan_value, nan_value);
+
+  /* XXX We need the hexadecimal FP number representation here for further
+     tests.  */
+
+  END (nexttoward);
+}
+#endif
+
+static void
+pow_test (void)
+{
+
+  errno = 0;
+  FUNC(pow) (0, 0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (pow);
+
+  TEST_ff_f (pow, 0, 0, 1);
+  TEST_ff_f (pow, 0, minus_zero, 1);
+  TEST_ff_f (pow, minus_zero, 0, 1);
+  TEST_ff_f (pow, minus_zero, minus_zero, 1);
+
+  TEST_ff_f (pow, 10, 0, 1);
+  TEST_ff_f (pow, 10, minus_zero, 1);
+  TEST_ff_f (pow, -10, 0, 1);
+  TEST_ff_f (pow, -10, minus_zero, 1);
+
+  TEST_ff_f (pow, nan_value, 0, 1);
+  TEST_ff_f (pow, nan_value, minus_zero, 1);
+
+
+#ifndef TEST_INLINE
+  TEST_ff_f (pow, 1.1L, plus_infty, plus_infty);
+  TEST_ff_f (pow, plus_infty, plus_infty, plus_infty);
+  TEST_ff_f (pow, -1.1L, plus_infty, plus_infty);
+  TEST_ff_f (pow, minus_infty, plus_infty, plus_infty);
+
+  TEST_ff_f (pow, 0.9L, plus_infty, 0);
+  TEST_ff_f (pow, 1e-7L, plus_infty, 0);
+  TEST_ff_f (pow, -0.9L, plus_infty, 0);
+  TEST_ff_f (pow, -1e-7L, plus_infty, 0);
+
+  TEST_ff_f (pow, 1.1L, minus_infty, 0);
+  TEST_ff_f (pow, plus_infty, minus_infty, 0);
+  TEST_ff_f (pow, -1.1L, minus_infty, 0);
+  TEST_ff_f (pow, minus_infty, minus_infty, 0);
+
+  TEST_ff_f (pow, 0.9L, minus_infty, plus_infty);
+  TEST_ff_f (pow, 1e-7L, minus_infty, plus_infty);
+  TEST_ff_f (pow, -0.9L, minus_infty, plus_infty);
+  TEST_ff_f (pow, -1e-7L, minus_infty, plus_infty);
+
+  TEST_ff_f (pow, plus_infty, 1e-7L, plus_infty);
+  TEST_ff_f (pow, plus_infty, 1, plus_infty);
+  TEST_ff_f (pow, plus_infty, 1e7L, plus_infty);
+
+  TEST_ff_f (pow, plus_infty, -1e-7L, 0);
+  TEST_ff_f (pow, plus_infty, -1, 0);
+  TEST_ff_f (pow, plus_infty, -1e7L, 0);
+
+  TEST_ff_f (pow, minus_infty, 1, minus_infty);
+  TEST_ff_f (pow, minus_infty, 11, minus_infty);
+  TEST_ff_f (pow, minus_infty, 1001, minus_infty);
+
+  TEST_ff_f (pow, minus_infty, 2, plus_infty);
+  TEST_ff_f (pow, minus_infty, 12, plus_infty);
+  TEST_ff_f (pow, minus_infty, 1002, plus_infty);
+  TEST_ff_f (pow, minus_infty, 0.1L, plus_infty);
+  TEST_ff_f (pow, minus_infty, 1.1L, plus_infty);
+  TEST_ff_f (pow, minus_infty, 11.1L, plus_infty);
+  TEST_ff_f (pow, minus_infty, 1001.1L, plus_infty);
+
+  TEST_ff_f (pow, minus_infty, -1, minus_zero);
+  TEST_ff_f (pow, minus_infty, -11, minus_zero);
+  TEST_ff_f (pow, minus_infty, -1001, minus_zero);
+
+  TEST_ff_f (pow, minus_infty, -2, 0);
+  TEST_ff_f (pow, minus_infty, -12, 0);
+  TEST_ff_f (pow, minus_infty, -1002, 0);
+  TEST_ff_f (pow, minus_infty, -0.1L, 0);
+  TEST_ff_f (pow, minus_infty, -1.1L, 0);
+  TEST_ff_f (pow, minus_infty, -11.1L, 0);
+  TEST_ff_f (pow, minus_infty, -1001.1L, 0);
+#endif
+
+  TEST_ff_f (pow, nan_value, nan_value, nan_value);
+  TEST_ff_f (pow, 0, nan_value, nan_value);
+  TEST_ff_f (pow, 1, nan_value, 1);
+  TEST_ff_f (pow, -1, nan_value, nan_value);
+  TEST_ff_f (pow, nan_value, 1, nan_value);
+  TEST_ff_f (pow, nan_value, -1, nan_value);
+
+  /* pow (x, NaN) == NaN.  */
+  TEST_ff_f (pow, 3.0, nan_value, nan_value);
+
+  TEST_ff_f (pow, 1, plus_infty, 1);
+  TEST_ff_f (pow, -1, plus_infty, 1);
+  TEST_ff_f (pow, 1, minus_infty, 1);
+  TEST_ff_f (pow, -1, minus_infty, 1);
+
+  TEST_ff_f (pow, -0.1L, 1.1L, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (pow, -0.1L, -1.1L, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (pow, -10.1L, 1.1L, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (pow, -10.1L, -1.1L, nan_value, INVALID_EXCEPTION);
+
+  TEST_ff_f (pow, 0, -1, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_ff_f (pow, 0, -11, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_ff_f (pow, minus_zero, -1, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_ff_f (pow, minus_zero, -11, minus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+
+  TEST_ff_f (pow, 0, -2, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_ff_f (pow, 0, -11.1L, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_ff_f (pow, minus_zero, -2, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+  TEST_ff_f (pow, minus_zero, -11.1L, plus_infty, DIVIDE_BY_ZERO_EXCEPTION);
+
+
+  TEST_ff_f (pow, 0, 1, 0);
+  TEST_ff_f (pow, 0, 11, 0);
+
+  TEST_ff_f (pow, minus_zero, 1, minus_zero);
+  TEST_ff_f (pow, minus_zero, 11, minus_zero);
+
+
+  TEST_ff_f (pow, 0, 2, 0);
+  TEST_ff_f (pow, 0, 11.1L, 0);
+
+
+  TEST_ff_f (pow, minus_zero, 2, 0);
+  TEST_ff_f (pow, minus_zero, 11.1L, 0);
+
+#ifndef TEST_INLINE
+  /* pow (x, +inf) == +inf for |x| > 1.  */
+  TEST_ff_f (pow, 1.5, plus_infty, plus_infty);
+
+  /* pow (x, +inf) == +0 for |x| < 1.  */
+  TEST_ff_f (pow, 0.5, plus_infty, 0.0);
+
+  /* pow (x, -inf) == +0 for |x| > 1.  */
+  TEST_ff_f (pow, 1.5, minus_infty, 0.0);
+
+  /* pow (x, -inf) == +inf for |x| < 1.  */
+  TEST_ff_f (pow, 0.5, minus_infty, plus_infty);
+#endif
+
+  /* pow (+inf, y) == +inf for y > 0.  */
+  TEST_ff_f (pow, plus_infty, 2, plus_infty);
+
+  /* pow (+inf, y) == +0 for y < 0.  */
+  TEST_ff_f (pow, plus_infty, -1, 0.0);
+
+  /* pow (-inf, y) == -inf for y an odd integer > 0.  */
+  TEST_ff_f (pow, minus_infty, 27, minus_infty);
+
+  /* pow (-inf, y) == +inf for y > 0 and not an odd integer.  */
+  TEST_ff_f (pow, minus_infty, 28, plus_infty);
+
+  /* pow (-inf, y) == -0 for y an odd integer < 0. */
+  TEST_ff_f (pow, minus_infty, -3, minus_zero);
+  /* pow (-inf, y) == +0 for y < 0 and not an odd integer.  */
+  TEST_ff_f (pow, minus_infty, -2.0, 0.0);
+
+  /* pow (+0, y) == +0 for y an odd integer > 0.  */
+  TEST_ff_f (pow, 0.0, 27, 0.0);
+
+  /* pow (-0, y) == -0 for y an odd integer > 0.  */
+  TEST_ff_f (pow, minus_zero, 27, minus_zero);
+
+  /* pow (+0, y) == +0 for y > 0 and not an odd integer.  */
+  TEST_ff_f (pow, 0.0, 4, 0.0);
+
+  /* pow (-0, y) == +0 for y > 0 and not an odd integer.  */
+  TEST_ff_f (pow, minus_zero, 4, 0.0);
+
+  TEST_ff_f (pow, 0.7L, 1.2L, 0.65180494056638638188L);
+
+#if defined TEST_DOUBLE || defined TEST_LDOUBLE
+  TEST_ff_f (pow, -7.49321e+133, -9.80818e+16, 0);
+#endif
+
+  END (pow);
+}
+
+static void
+remainder_test (void)
+{
+  errno = 0;
+  FUNC(remainder) (1.625, 1.0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (remainder);
+
+  TEST_ff_f (remainder, 1, 0, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (remainder, 1, minus_zero, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (remainder, plus_infty, 1, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (remainder, minus_infty, 1, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (remainder, nan_value, nan_value, nan_value);
+
+  TEST_ff_f (remainder, 1.625, 1.0, -0.375);
+  TEST_ff_f (remainder, -1.625, 1.0, 0.375);
+  TEST_ff_f (remainder, 1.625, -1.0, -0.375);
+  TEST_ff_f (remainder, -1.625, -1.0, 0.375);
+  TEST_ff_f (remainder, 5.0, 2.0, 1.0);
+  TEST_ff_f (remainder, 3.0, 2.0, -1.0);
+
+  END (remainder);
+}
+
+#if 0
+static void
+remquo_test (void)
+{
+  /* x is needed.  */
+  int x;
+
+  errno = 0;
+  FUNC(remquo) (1.625, 1.0, &x);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (remquo);
+
+  TEST_ffI_f1 (remquo, 1, 0, nan_value, IGNORE, INVALID_EXCEPTION);
+  TEST_ffI_f1 (remquo, 1, minus_zero, nan_value, IGNORE, INVALID_EXCEPTION);
+  TEST_ffI_f1 (remquo, plus_infty, 1, nan_value, IGNORE, INVALID_EXCEPTION);
+  TEST_ffI_f1 (remquo, minus_infty, 1, nan_value, IGNORE, INVALID_EXCEPTION);
+  TEST_ffI_f1 (remquo, nan_value, nan_value, nan_value, IGNORE);
+
+  TEST_ffI_f1 (remquo, 1.625, 1.0, -0.375, 2);
+  TEST_ffI_f1 (remquo, -1.625, 1.0, 0.375, -2);
+  TEST_ffI_f1 (remquo, 1.625, -1.0, -0.375, -2);
+  TEST_ffI_f1 (remquo, -1.625, -1.0, 0.375, 2);
+
+  TEST_ffI_f1 (remquo, 5, 2, 1, 2);
+  TEST_ffI_f1 (remquo, 3, 2, -1, 2);
+
+  END (remquo);
+}
+#endif
+
+static void
+rint_test (void)
+{
+  START (rint);
+
+  TEST_f_f (rint, 0.0, 0.0);
+  TEST_f_f (rint, minus_zero, minus_zero);
+  TEST_f_f (rint, plus_infty, plus_infty);
+  TEST_f_f (rint, minus_infty, minus_infty);
+
+  /* Default rounding mode is round to even.  */
+  TEST_f_f (rint, 0.5, 0.0);
+  TEST_f_f (rint, 1.5, 2.0);
+  TEST_f_f (rint, 2.5, 2.0);
+  TEST_f_f (rint, 3.5, 4.0);
+  TEST_f_f (rint, 4.5, 4.0);
+  TEST_f_f (rint, -0.5, -0.0);
+  TEST_f_f (rint, -1.5, -2.0);
+  TEST_f_f (rint, -2.5, -2.0);
+  TEST_f_f (rint, -3.5, -4.0);
+  TEST_f_f (rint, -4.5, -4.0);
+
+  END (rint);
+}
+
+#if 0
+static void
+round_test (void)
+{
+  START (round);
+
+  TEST_f_f (round, 0, 0);
+  TEST_f_f (round, minus_zero, minus_zero);
+  TEST_f_f (round, 0.2L, 0.0);
+  TEST_f_f (round, -0.2L, minus_zero);
+  TEST_f_f (round, 0.5, 1.0);
+  TEST_f_f (round, -0.5, -1.0);
+  TEST_f_f (round, 0.8L, 1.0);
+  TEST_f_f (round, -0.8L, -1.0);
+  TEST_f_f (round, 1.5, 2.0);
+  TEST_f_f (round, -1.5, -2.0);
+  TEST_f_f (round, 2097152.5, 2097153);
+  TEST_f_f (round, -2097152.5, -2097153);
+
+  END (round);
+}
+#endif
+
+
+static void
+scalb_test (void)
+{
+
+  START (scalb);
+
+  TEST_ff_f (scalb, 2.0, 0.5, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (scalb, 3.0, -2.5, nan_value, INVALID_EXCEPTION);
+
+  TEST_ff_f (scalb, 0, nan_value, nan_value);
+  TEST_ff_f (scalb, 1, nan_value, nan_value);
+
+  TEST_ff_f (scalb, 1, 0, 1);
+  TEST_ff_f (scalb, -1, 0, -1);
+
+  TEST_ff_f (scalb, 0, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (scalb, minus_zero, plus_infty, nan_value, INVALID_EXCEPTION);
+
+  TEST_ff_f (scalb, 0, 2, 0);
+  TEST_ff_f (scalb, minus_zero, -4, minus_zero);
+  TEST_ff_f (scalb, 0, 0, 0);
+  TEST_ff_f (scalb, minus_zero, 0, minus_zero);
+  TEST_ff_f (scalb, 0, -1, 0);
+  TEST_ff_f (scalb, minus_zero, -10, minus_zero);
+  TEST_ff_f (scalb, 0, minus_infty, 0);
+  TEST_ff_f (scalb, minus_zero, minus_infty, minus_zero);
+
+  TEST_ff_f (scalb, plus_infty, -1, plus_infty);
+  TEST_ff_f (scalb, minus_infty, -10, minus_infty);
+  TEST_ff_f (scalb, plus_infty, 0, plus_infty);
+  TEST_ff_f (scalb, minus_infty, 0, minus_infty);
+  TEST_ff_f (scalb, plus_infty, 2, plus_infty);
+  TEST_ff_f (scalb, minus_infty, 100, minus_infty);
+
+  TEST_ff_f (scalb, 0.1L, minus_infty, 0.0);
+  TEST_ff_f (scalb, -0.1L, minus_infty, minus_zero);
+
+  TEST_ff_f (scalb, 1, plus_infty, plus_infty);
+  TEST_ff_f (scalb, -1, plus_infty, minus_infty);
+  TEST_ff_f (scalb, plus_infty, plus_infty, plus_infty);
+  TEST_ff_f (scalb, minus_infty, plus_infty, minus_infty);
+
+  TEST_ff_f (scalb, plus_infty, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_ff_f (scalb, minus_infty, minus_infty, nan_value, INVALID_EXCEPTION);
+
+  TEST_ff_f (scalb, nan_value, 1, nan_value);
+  TEST_ff_f (scalb, 1, nan_value, nan_value);
+  TEST_ff_f (scalb, nan_value, 0, nan_value);
+  TEST_ff_f (scalb, 0, nan_value, nan_value);
+  TEST_ff_f (scalb, nan_value, plus_infty, nan_value);
+  TEST_ff_f (scalb, plus_infty, nan_value, nan_value);
+  TEST_ff_f (scalb, nan_value, nan_value, nan_value);
+
+  TEST_ff_f (scalb, 0.8L, 4, 12.8L);
+  TEST_ff_f (scalb, -0.854375L, 5, -27.34L);
+
+  END (scalb);
+}
+
+
+static void
+scalbn_test (void)
+{
+
+  START (scalbn);
+
+  TEST_fi_f (scalbn, 0, 0, 0);
+  TEST_fi_f (scalbn, minus_zero, 0, minus_zero);
+
+  TEST_fi_f (scalbn, plus_infty, 1, plus_infty);
+  TEST_fi_f (scalbn, minus_infty, 1, minus_infty);
+  TEST_fi_f (scalbn, nan_value, 1, nan_value);
+
+  TEST_fi_f (scalbn, 0.8L, 4, 12.8L);
+  TEST_fi_f (scalbn, -0.854375L, 5, -27.34L);
+
+  TEST_fi_f (scalbn, 1, 0L, 1);
+
+  END (scalbn);
+}
+
+#if 0
+static void
+scalbln_test (void)
+{
+
+  START (scalbln);
+
+  TEST_fl_f (scalbln, 0, 0, 0);
+  TEST_fl_f (scalbln, minus_zero, 0, minus_zero);
+
+  TEST_fl_f (scalbln, plus_infty, 1, plus_infty);
+  TEST_fl_f (scalbln, minus_infty, 1, minus_infty);
+  TEST_fl_f (scalbln, nan_value, 1, nan_value);
+
+  TEST_fl_f (scalbln, 0.8L, 4, 12.8L);
+  TEST_fl_f (scalbln, -0.854375L, 5, -27.34L);
+
+  TEST_fl_f (scalbln, 1, 0L, 1);
+
+  END (scalbn);
+}
+#endif
+
+static void
+signbit_test (void)
+{
+
+  START (signbit);
+
+  TEST_f_b (signbit, 0, 0);
+  TEST_f_b (signbit, minus_zero, 1);
+  TEST_f_b (signbit, plus_infty, 0);
+  TEST_f_b (signbit, minus_infty, 1);
+
+  /* signbit (x) != 0 for x < 0.  */
+  TEST_f_b (signbit, -1, 1);
+  /* signbit (x) == 0 for x >= 0.  */
+  TEST_f_b (signbit, 1, 0);
+
+  END (signbit);
+}
+
+static void
+sin_test (void)
+{
+  errno = 0;
+  FUNC(sin) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (sin);
+
+  TEST_f_f (sin, 0, 0);
+  TEST_f_f (sin, minus_zero, minus_zero);
+  TEST_f_f (sin, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (sin, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (sin, nan_value, nan_value);
+
+  TEST_f_f (sin, M_PI_6l, 0.5);
+  TEST_f_f (sin, -M_PI_6l, -0.5);
+  TEST_f_f (sin, M_PI_2l, 1);
+  TEST_f_f (sin, -M_PI_2l, -1);
+  TEST_f_f (sin, 0.7L, 0.64421768723769105367261435139872014L);
+
+  END (sin);
+
+}
+
+#if 0
+static void
+sincos_test (void)
+{
+  FLOAT sin_res, cos_res;
+
+  errno = 0;
+  FUNC(sincos) (0, &sin_res, &cos_res);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (sincos);
+
+  /* sincos is treated differently because it returns void.  */
+  TEST_extra (sincos, 0, 0, 1);
+
+  TEST_extra (sincos, minus_zero, minus_zero, 1);
+  TEST_extra (sincos, plus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_extra (sincos, minus_infty, nan_value, nan_value, INVALID_EXCEPTION);
+  TEST_extra (sincos, nan_value, nan_value, nan_value);
+
+  TEST_extra (sincos, M_PI_2l, 1, 0);
+  TEST_extra (sincos, M_PI_6l, 0.5, 0.86602540378443864676372317075293616L);
+  TEST_extra (sincos, M_PI_6l*2.0, 0.86602540378443864676372317075293616L, 0.5);
+  TEST_extra (sincos, 0.7L, 0.64421768723769105367261435139872014L, 0.76484218728448842625585999019186495L);
+
+  END (sincos);
+}
+#endif
+
+static void
+sinh_test (void)
+{
+  errno = 0;
+  FUNC(sinh) (0.7L);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (sinh);
+  TEST_f_f (sinh, 0, 0);
+  TEST_f_f (sinh, minus_zero, minus_zero);
+
+#ifndef TEST_INLINE
+  TEST_f_f (sinh, plus_infty, plus_infty);
+  TEST_f_f (sinh, minus_infty, minus_infty);
+#endif
+  TEST_f_f (sinh, nan_value, nan_value);
+
+  TEST_f_f (sinh, 0.7L, 0.75858370183953350346L);
+  TEST_f_f (sinh, 0x8p-32L, 1.86264514923095703232705808926175479e-9L);
+
+  END (sinh);
+}
+
+static void
+sqrt_test (void)
+{
+  errno = 0;
+  FUNC(sqrt) (1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (sqrt);
+
+  TEST_f_f (sqrt, 0, 0);
+  TEST_f_f (sqrt, nan_value, nan_value);
+  TEST_f_f (sqrt, plus_infty, plus_infty);
+
+  TEST_f_f (sqrt, minus_zero, minus_zero);
+
+  /* sqrt (x) == NaN plus invalid exception for x < 0.  */
+  TEST_f_f (sqrt, -1, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (sqrt, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (sqrt, nan_value, nan_value);
+
+  TEST_f_f (sqrt, 2209, 47);
+  TEST_f_f (sqrt, 4, 2);
+  TEST_f_f (sqrt, 2, M_SQRT2l);
+  TEST_f_f (sqrt, 0.25, 0.5);
+  TEST_f_f (sqrt, 6642.25, 81.5);
+  TEST_f_f (sqrt, 15239.9025L, 123.45L);
+  TEST_f_f (sqrt, 0.7L, 0.83666002653407554797817202578518747L);
+
+  END (sqrt);
+}
+
+static void
+tan_test (void)
+{
+  errno = 0;
+  FUNC(tan) (0);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (tan);
+
+  TEST_f_f (tan, 0, 0);
+  TEST_f_f (tan, minus_zero, minus_zero);
+  TEST_f_f (tan, plus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (tan, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (tan, nan_value, nan_value);
+
+  TEST_f_f (tan, M_PI_4l, 1);
+  TEST_f_f (tan, 0.7L, 0.84228838046307944812813500221293775L);
+
+  END (tan);
+}
+
+static void
+tanh_test (void)
+{
+  errno = 0;
+  FUNC(tanh) (0.7L);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  START (tanh);
+
+  TEST_f_f (tanh, 0, 0);
+  TEST_f_f (tanh, minus_zero, minus_zero);
+
+#ifndef TEST_INLINE
+  TEST_f_f (tanh, plus_infty, 1);
+  TEST_f_f (tanh, minus_infty, -1);
+#endif
+  TEST_f_f (tanh, nan_value, nan_value);
+
+  TEST_f_f (tanh, 0.7L, 0.60436777711716349631L);
+  TEST_f_f (tanh, -0.7L, -0.60436777711716349631L);
+
+  TEST_f_f (tanh, 1.0L, 0.7615941559557648881194582826047935904L);
+  TEST_f_f (tanh, -1.0L, -0.7615941559557648881194582826047935904L);
+
+  /* 2^-57  */
+  TEST_f_f (tanh, 6.938893903907228377647697925567626953125e-18L,6.938893903907228377647697925567626953125e-18L);
+
+  END (tanh);
+}
+
+#if 0
+static void
+tgamma_test (void)
+{
+  errno = 0;
+  FUNC(tgamma) (1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+  feclearexcept (FE_ALL_EXCEPT);
+
+  START (tgamma);
+
+  TEST_f_f (tgamma, plus_infty, plus_infty);
+  TEST_f_f (tgamma, 0, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (tgamma, minus_zero, nan_value, INVALID_EXCEPTION);
+  /* tgamma (x) == NaN plus invalid exception for integer x <= 0.  */
+  TEST_f_f (tgamma, -2, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (tgamma, minus_infty, nan_value, INVALID_EXCEPTION);
+  TEST_f_f (tgamma, nan_value, nan_value);
+
+  TEST_f_f (tgamma, 0.5, M_SQRT_PIl);
+  TEST_f_f (tgamma, -0.5, -M_2_SQRT_PIl);
+
+  TEST_f_f (tgamma, 1, 1);
+  TEST_f_f (tgamma, 4, 6);
+
+  TEST_f_f (tgamma, 0.7L, 1.29805533264755778568L);
+  TEST_f_f (tgamma, 1.2L, 0.91816874239976061064L);
+
+  END (tgamma);
+}
+#endif
+
+#if 0
+static void
+trunc_test (void)
+{
+  START (trunc);
+
+  TEST_f_f (trunc, plus_infty, plus_infty);
+  TEST_f_f (trunc, minus_infty, minus_infty);
+  TEST_f_f (trunc, nan_value, nan_value);
+
+  TEST_f_f (trunc, 0, 0);
+  TEST_f_f (trunc, minus_zero, minus_zero);
+  TEST_f_f (trunc, 0.625, 0);
+  TEST_f_f (trunc, -0.625, minus_zero);
+  TEST_f_f (trunc, 1, 1);
+  TEST_f_f (trunc, -1, -1);
+  TEST_f_f (trunc, 1.625, 1);
+  TEST_f_f (trunc, -1.625, -1);
+
+  TEST_f_f (trunc, 1048580.625L, 1048580L);
+  TEST_f_f (trunc, -1048580.625L, -1048580L);
+
+  TEST_f_f (trunc, 8388610.125L, 8388610.0L);
+  TEST_f_f (trunc, -8388610.125L, -8388610.0L);
+
+  TEST_f_f (trunc, 4294967296.625L, 4294967296.0L);
+  TEST_f_f (trunc, -4294967296.625L, -4294967296.0L);
+
+
+  END (trunc);
+}
+#endif
+
+static void
+y0_test (void)
+{
+  errno = 0;
+#if 0
+  FLOAT s, c;
+  FUNC (sincos) (0, &s, &c);
+  if (errno == ENOSYS)
+    /* Required function not implemented.  */
+    return;
+#endif
+  FUNC(y0) (1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  /* y0 is the Bessel function of the second kind of order 0 */
+  START (y0);
+
+  TEST_f_f (y0, -1.0, minus_infty);
+  TEST_f_f (y0, 0.0, minus_infty);
+  TEST_f_f (y0, nan_value, nan_value);
+  TEST_f_f (y0, plus_infty, 0);
+
+  TEST_f_f (y0, 0.1L, -1.5342386513503668441L);
+  TEST_f_f (y0, 0.7L, -0.19066492933739506743L);
+  TEST_f_f (y0, 1.0, 0.088256964215676957983L);
+  TEST_f_f (y0, 1.5, 0.38244892379775884396L);
+  TEST_f_f (y0, 2.0, 0.51037567264974511960L);
+  TEST_f_f (y0, 8.0, 0.22352148938756622053L);
+  TEST_f_f (y0, 10.0, 0.055671167283599391424L);
+
+  END (y0);
+}
+
+
+static void
+y1_test (void)
+{
+  errno = 0;
+#if 0
+  FLOAT s, c;
+  FUNC (sincos) (0, &s, &c);
+  if (errno == ENOSYS)
+    /* Required function not implemented.  */
+    return;
+#endif
+  FUNC(y1) (1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  /* y1 is the Bessel function of the second kind of order 1 */
+  START (y1);
+
+  TEST_f_f (y1, -1.0, minus_infty);
+  TEST_f_f (y1, 0.0, minus_infty);
+  TEST_f_f (y1, plus_infty, 0);
+  TEST_f_f (y1, nan_value, nan_value);
+
+  TEST_f_f (y1, 0.1L, -6.4589510947020269877L);
+  TEST_f_f (y1, 0.7L, -1.1032498719076333697L);
+  TEST_f_f (y1, 1.0, -0.78121282130028871655L);
+  TEST_f_f (y1, 1.5, -0.41230862697391129595L);
+  TEST_f_f (y1, 2.0, -0.10703243154093754689L);
+  TEST_f_f (y1, 8.0, -0.15806046173124749426L);
+  TEST_f_f (y1, 10.0, 0.24901542420695388392L);
+
+  END (y1);
+}
+
+static void
+yn_test (void)
+{
+  errno = 0;
+#if 0
+  FLOAT s, c;
+  FUNC (sincos) (0, &s, &c);
+  if (errno == ENOSYS)
+    /* Required function not implemented.  */
+    return;
+#endif
+  FUNC(yn) (1, 1);
+  if (errno == ENOSYS)
+    /* Function not implemented.  */
+    return;
+
+  /* yn is the Bessel function of the second kind of order n */
+  START (yn);
+
+  /* yn (0, x) == y0 (x)  */
+  TEST_ff_f (yn, 0, -1.0, minus_infty);
+  TEST_ff_f (yn, 0, 0.0, minus_infty);
+  TEST_ff_f (yn, 0, nan_value, nan_value);
+  TEST_ff_f (yn, 0, plus_infty, 0);
+
+  TEST_ff_f (yn, 0, 0.1L, -1.5342386513503668441L);
+  TEST_ff_f (yn, 0, 0.7L, -0.19066492933739506743L);
+  TEST_ff_f (yn, 0, 1.0, 0.088256964215676957983L);
+  TEST_ff_f (yn, 0, 1.5, 0.38244892379775884396L);
+  TEST_ff_f (yn, 0, 2.0, 0.51037567264974511960L);
+  TEST_ff_f (yn, 0, 8.0, 0.22352148938756622053L);
+  TEST_ff_f (yn, 0, 10.0, 0.055671167283599391424L);
+
+  /* yn (1, x) == y1 (x)  */
+  TEST_ff_f (yn, 1, -1.0, minus_infty);
+  TEST_ff_f (yn, 1, 0.0, minus_infty);
+  TEST_ff_f (yn, 1, plus_infty, 0);
+  TEST_ff_f (yn, 1, nan_value, nan_value);
+
+  TEST_ff_f (yn, 1, 0.1L, -6.4589510947020269877L);
+  TEST_ff_f (yn, 1, 0.7L, -1.1032498719076333697L);
+  TEST_ff_f (yn, 1, 1.0, -0.78121282130028871655L);
+  TEST_ff_f (yn, 1, 1.5, -0.41230862697391129595L);
+  TEST_ff_f (yn, 1, 2.0, -0.10703243154093754689L);
+  TEST_ff_f (yn, 1, 8.0, -0.15806046173124749426L);
+  TEST_ff_f (yn, 1, 10.0, 0.24901542420695388392L);
+
+  /* yn (3, x)  */
+  TEST_ff_f (yn, 3, plus_infty, 0);
+  TEST_ff_f (yn, 3, nan_value, nan_value);
+
+  TEST_ff_f (yn, 3, 0.1L, -5099.3323786129048894L);
+  TEST_ff_f (yn, 3, 0.7L, -15.819479052819633505L);
+  TEST_ff_f (yn, 3, 1.0, -5.8215176059647288478L);
+  TEST_ff_f (yn, 3, 2.0, -1.1277837768404277861L);
+  TEST_ff_f (yn, 3, 10.0, -0.25136265718383732978L);
+
+  /* yn (10, x)  */
+  TEST_ff_f (yn, 10, plus_infty, 0);
+  TEST_ff_f (yn, 10, nan_value, nan_value);
+
+  TEST_ff_f (yn, 10, 0.1L, -0.11831335132045197885e19L);
+  TEST_ff_f (yn, 10, 0.7L, -0.42447194260703866924e10L);
+  TEST_ff_f (yn, 10, 1.0, -0.12161801427868918929e9L);
+  TEST_ff_f (yn, 10, 2.0, -129184.54220803928264L);
+  TEST_ff_f (yn, 10, 10.0, -0.35981415218340272205L);
+
+  END (yn);
+
+}
+
+
+
+static void
+initialize (void)
+{
+  fpstack_test ("start *init*");
+  plus_zero = 0.0;
+  nan_value = plus_zero / plus_zero;	/* Suppress GCC warning */
+
+  minus_zero = FUNC(copysign) (0.0, -1.0);
+  plus_infty = CHOOSE (HUGE_VALL, HUGE_VAL, HUGE_VALF,
+		       HUGE_VALL, HUGE_VAL, HUGE_VALF);
+  minus_infty = CHOOSE (-HUGE_VALL, -HUGE_VAL, -HUGE_VALF,
+			-HUGE_VALL, -HUGE_VAL, -HUGE_VALF);
+
+  (void) &plus_zero;
+  (void) &nan_value;
+  (void) &minus_zero;
+  (void) &plus_infty;
+  (void) &minus_infty;
+
+  /* Clear all exceptions.  From now on we must not get random exceptions.  */
+  feclearexcept (FE_ALL_EXCEPT);
+
+  /* Test to make sure we start correctly.  */
+  fpstack_test ("end *init*");
+}
+
+#if 0
+/* function to check our ulp calculation.  */
+void
+check_ulp (void)
+{
+  int i;
+
+  FLOAT u, diff, ulp;
+  /* This gives one ulp.  */
+  u = FUNC(nextafter) (10, 20);
+  check_equal (10.0, u, 1, &diff, &ulp);
+  printf ("One ulp: % .4" PRINTF_NEXPR "\n", ulp);
+
+  /* This gives one more ulp.  */
+  u = FUNC(nextafter) (u, 20);
+  check_equal (10.0, u, 2, &diff, &ulp);
+  printf ("two ulp: % .4" PRINTF_NEXPR "\n", ulp);
+
+  /* And now calculate 100 ulp.  */
+  for (i = 2; i < 100; i++)
+    u = FUNC(nextafter) (u, 20);
+  check_equal (10.0, u, 100, &diff, &ulp);
+  printf ("100 ulp: % .4" PRINTF_NEXPR "\n", ulp);
+}
+#endif
+
+int
+main (int argc, char **argv)
+{
+
+  int key, remaining;
+
+  verbose = 1;
+  output_ulps = 0;
+  output_max_error = 1;
+  output_points = 1;
+  /* XXX set to 0 for releases.  */
+  ignore_max_ulp = 0;
+
+  /* Parse and process arguments.  */
+  while ((key = getopt(argc, argv, "fi:puv")) > 0) {
+      switch (key)
+      {
+	  case 'f':
+	      output_max_error = 0;
+	      break;
+	  case 'i':
+	      if (strcmp (optarg, "yes") == 0)
+		  ignore_max_ulp = 1;
+	      else if (strcmp (optarg, "no") == 0)
+		  ignore_max_ulp = 0;
+	      break;
+	  case 'p':
+	      output_points = 0;
+	      break;
+	  case 'u':
+	      output_ulps = 1;
+	      break;
+	  case 'v':
+	      verbose = 3;
+	      break;
+	  default:
+	      fprintf (stderr, "Unknown argument: %c", key);
+	      exit (EXIT_FAILURE);
+      }
+  }
+
+  if (optind != argc)
+    {
+      fprintf (stderr, "wrong number of arguments");
+      exit (EXIT_FAILURE);
+    }
+
+  if (output_ulps)
+    {
+      ulps_file = fopen ("ULPs", "a");
+      if (ulps_file == NULL)
+	{
+	  perror ("can't open file `ULPs' for writing: ");
+	  exit (1);
+	}
+    }
+
+
+  initialize ();
+  printf (TEST_MSG);
+
+#if 0
+  check_ulp ();
+#endif
+
+  /* Keep the tests a wee bit ordered (according to ISO C99).  */
+  /* Classification macros:  */
+  fpclassify_test ();
+  isfinite_test ();
+  isnormal_test ();
+  signbit_test ();
+
+  /* Trigonometric functions:  */
+  acos_test ();
+  asin_test ();
+  atan_test ();
+  atan2_test ();
+  cos_test ();
+  sin_test ();
+#if 0
+  sincos_test ();
+#endif
+  tan_test ();
+
+  /* Hyperbolic functions:  */
+  acosh_test ();
+  asinh_test ();
+  atanh_test ();
+  cosh_test ();
+  sinh_test ();
+  tanh_test ();
+
+  /* Exponential and logarithmic functions:  */
+  exp_test ();
+#if 0
+  exp10_test ();
+  exp2_test ();
+#endif
+  expm1_test ();
+  frexp_test ();
+  ldexp_test ();
+  log_test ();
+  log10_test ();
+  log1p_test ();
+#if 0
+  log2_test ();
+#endif
+  logb_test ();
+  modf_test ();
+  ilogb_test ();
+  scalb_test ();
+  scalbn_test ();
+#if 0
+  scalbln_test ();
+#endif
+
+  /* Power and absolute value functions:  */
+  cbrt_test ();
+  fabs_test ();
+  hypot_test ();
+  pow_test ();
+  sqrt_test ();
+
+  /* Error and gamma functions:  */
+  erf_test ();
+  erfc_test ();
+  gamma_test ();
+  lgamma_test ();
+#if 0
+  tgamma_test ();
+#endif
+
+  /* Nearest integer functions:  */
+  ceil_test ();
+  floor_test ();
+#if 0
+  nearbyint_test ();
+#endif
+  rint_test ();
+#if 0
+  lrint_test ();
+  llrint_test ();
+  round_test ();
+  lround_test ();
+  llround_test ();
+  trunc_test ();
+#endif
+
+  /* Remainder functions:  */
+  fmod_test ();
+  remainder_test ();
+#if 0
+  remquo_test ();
+#endif
+
+  /* Manipulation functions:  */
+  copysign_test ();
+#if 0
+  nextafter_test ();
+  nexttoward_test ();
+
+  /* maximum, minimum and positive difference functions */
+  fdim_test ();
+  fmax_test ();
+  fmin_test ();
+
+  /* Multiply and add:  */
+  fma_test ();
+
+  /* Complex functions:  */
+  cabs_test ();
+  cacos_test ();
+  cacosh_test ();
+  carg_test ();
+  casin_test ();
+  casinh_test ();
+  catan_test ();
+  catanh_test ();
+  ccos_test ();
+  ccosh_test ();
+  cexp_test ();
+  cimag_test ();
+  clog10_test ();
+  clog_test ();
+  conj_test ();
+  cpow_test ();
+  cproj_test ();
+  creal_test ();
+  csin_test ();
+  csinh_test ();
+  csqrt_test ();
+  ctan_test ();
+  ctanh_test ();
+#endif
+
+  /* Bessel functions:  */
+#if 0
+  j0_test ();
+  j1_test ();
+  jn_test ();
+  y0_test ();
+  y1_test ();
+  yn_test ();
+#endif
+
+  if (output_ulps)
+    fclose (ulps_file);
+
+  printf ("\nTest suite completed:\n");
+  printf ("  %d test cases plus %d tests for exception flags executed.\n",
+	  noTests, noExcTests);
+  if (noXFails)
+    printf ("  %d expected failures occurred.\n", noXFails);
+  if (noXPasses)
+    printf ("  %d unexpected passes occurred.\n", noXPasses);
+  if (noErrors)
+    {
+      printf ("  %d errors occurred.\n", noErrors);
+      return 1;
+    }
+  printf ("  All tests passed successfully.\n");
+
+  return 0;
+}
+
+/*
+ * Local Variables:
+ * mode:c
+ * End:
+ */

+ 0 - 108
test/math/mconf.h

@@ -1,108 +0,0 @@
-/*							mconf.h
- *
- *	Common include file for math routines
- *
- *
- *
- * SYNOPSIS:
- *
- * #include "mconf.h"
- *
- *
- *
- * DESCRIPTION:
- *
- * This file contains definitions for error codes that are
- * passed to the common error handling routine mtherr()
- * (which see).
- *
- * The file also includes a conditional assembly definition
- * for the type of computer arithmetic (IEEE, DEC, Motorola
- * IEEE, or UNKnown).
- *
- * For Digital Equipment PDP-11 and VAX computers, certain
- * IBM systems, and others that use numbers with a 56-bit
- * significand, the symbol DEC should be defined.  In this
- * mode, most floating point constants are given as arrays
- * of octal integers to eliminate decimal to binary conversion
- * errors that might be introduced by the compiler.
- *
- * For computers, such as IBM PC, that follow the IEEE 
- * Standard for Binary Floating Point Arithmetic (ANSI/IEEE
- * Std 754-1985), the symbol IBMPC should be defined.  These
- * numbers have 53-bit significands.  In this mode, constants
- * are provided as arrays of hexadecimal 16 bit integers.
- *
- * To accommodate other types of computer arithmetic, all
- * constants are also provided in a normal decimal radix
- * which one can hope are correctly converted to a suitable
- * format by the available C language compiler.  To invoke
- * this mode, the symbol UNK is defined.
- *
- * An important difference among these modes is a predefined
- * set of machine arithmetic constants for each.  The numbers
- * MACHEP (the machine roundoff error), MAXNUM (largest number
- * represented), and several other parameters are preset by
- * the configuration symbol.  Check the file const.c to
- * ensure that these values are correct for your computer.
- *
- */
-
-/*
-Cephes Math Library Release 2.0:  April, 1987
-by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-/* Constant definitions for math error conditions
- */
-
-#define DOMAIN		1	/* argument domain error */
-#define SING		2	/* argument singularity */
-#define OVERFLOW	3	/* overflow range error */
-#define UNDERFLOW	4	/* underflow range error */
-#define TLOSS		5	/* total loss of precision */
-#define PLOSS		6	/* partial loss of precision */
-
-#define EDOM		33
-#define ERANGE		34
-
-/*
-typedef struct
-	{
-	double r;
-	double i;
-	}cmplx;
-*/
-
-/* Type of computer arithmetic */
-
-/* PDP-11, Pro350, VAX:
- */
-/*define DEC 1*/
-
-/* Intel IEEE, low order words come first:
- */
-#define IBMPC 1
-
-/* Motorola IEEE, high order words come first
- * (Sun workstation):
- */
-/*define MIEEE 1*/
-
-/* UNKnown arithmetic, invokes coefficients given in
- * normal decimal format.  Beware of range boundary
- * problems (MACHEP, MAXLOG, etc. in const.c) and
- * roundoff problems in pow.c:
- */
- /*define UNK 1*/
-
-/* Define to ask for infinity support, else undefine. */
-#define INFINITY
-
-/* Define to ask for Not-a-Number support, else undefine. */
-#define NANS
-
-/* Define to support denormal numbers, else undefine. */
-#define DENORMAL

+ 0 - 96
test/math/mtherr.c

@@ -1,96 +0,0 @@
-/*							mtherr.c
- *
- *	Library common error handling routine
- *
- *
- *
- * SYNOPSIS:
- *
- * char *fctnam;
- * int code;
- * void mtherr();
- *
- * mtherr( fctnam, code );
- *
- *
- *
- * DESCRIPTION:
- *
- * This routine may be called to report one of the following
- * error conditions (in the include file mconf.h).
- *  
- *   Mnemonic        Value          Significance
- *
- *    DOMAIN            1       argument domain error
- *    SING              2       function singularity
- *    OVERFLOW          3       overflow range error
- *    UNDERFLOW         4       underflow range error
- *    TLOSS             5       total loss of precision
- *    PLOSS             6       partial loss of precision
- *    EDOM             33       Unix domain error code
- *    ERANGE           34       Unix range error code
- *
- * The default version of the file prints the function name,
- * passed to it by the pointer fctnam, followed by the
- * error condition.  The display is directed to the standard
- * output device.  The routine then returns to the calling
- * program.  Users may wish to modify the program to abort by
- * calling exit() under severe error conditions such as domain
- * errors.
- *
- * Since all error conditions pass control to this function,
- * the display may be easily changed, eliminated, or directed
- * to an error logging device.
- *
- * SEE ALSO:
- *
- * mconf.h
- *
- */
-
-/*
-Cephes Math Library Release 2.0:  April, 1987
-by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include "mconf.h"
-
-/* Notice: the order of appearance of the following
- * messages is bound to the error codes defined
- * in mconf.h.
- */
-static char *ermsg[7] = {
-"unknown",      /* error code 0 */
-"domain",       /* error code 1 */
-"singularity",  /* et seq.      */
-"overflow",
-"underflow",
-"total loss of precision",
-"partial loss of precision"
-};
-
-
-
-void mtherr( name, code )
-char *name;
-int code;
-{
-
-/* Display string passed by calling program,
- * which is supposed to be the name of the
- * function in which the error occurred:
- */
-printf( "\n%s ", name );
-
-/* Display error message defined
- * by the code argument.
- */
-if( (code <= 0) || (code >= 6) )
-	code = 0;
-printf( "%s error\n", ermsg[code] );
-
-/* Return to calling
- * program
- */
-}

+ 34 - 0
test/math/test-double.c

@@ -0,0 +1,34 @@
+/* Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Andreas Jaeger <aj@suse.de>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#define FUNC(function) function
+#define FLOAT double
+#define TEST_MSG "testing double (without inline functions)\n"
+#define MATHCONST(x) x
+#define CHOOSE(Clongdouble,Cdouble,Cfloat,Cinlinelongdouble,Cinlinedouble,Cinlinefloat) Cdouble
+#define PRINTF_EXPR "e"
+#define PRINTF_XEXPR "a"
+#define PRINTF_NEXPR "f"
+#define TEST_DOUBLE 1
+
+#ifndef __NO_MATH_INLINES
+# define __NO_MATH_INLINES
+#endif
+
+#include "libm-test.c"

+ 34 - 0
test/math/test-float.c

@@ -0,0 +1,34 @@
+/* Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Andreas Jaeger <aj@suse.de>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#define FUNC(function) function ## f
+#define FLOAT float
+#define TEST_MSG "testing float (without inline functions)\n"
+#define MATHCONST(x) x
+#define CHOOSE(Clongdouble,Cdouble,Cfloat,Cinlinelongdouble,Cinlinedouble,Cinlinefloat) Cfloat
+#define PRINTF_EXPR "e"
+#define PRINTF_XEXPR "a"
+#define PRINTF_NEXPR "f"
+#define TEST_FLOAT 1
+
+#ifndef __NO_MATH_INLINES
+# define __NO_MATH_INLINES
+#endif
+
+#include "libm-test.c"

+ 35 - 0
test/math/test-idouble.c

@@ -0,0 +1,35 @@
+/* Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Andreas Jaeger <aj@suse.de>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#define FUNC(function) function
+#define FLOAT double
+#define TEST_MSG "testing double (inline functions)\n"
+#define MATHCONST(x) x
+#define CHOOSE(Clongdouble,Cdouble,Cfloat,Cinlinelongdouble,Cinlinedouble,Cinlinefloat) Cinlinedouble
+#define PRINTF_EXPR "e"
+#define PRINTF_XEXPR "a"
+#define PRINTF_NEXPR "f"
+#define TEST_DOUBLE 1
+#define TEST_INLINE
+
+#ifdef __NO_MATH_INLINES
+# undef __NO_MATH_INLINES
+#endif
+
+#include "libm-test.c"

+ 35 - 0
test/math/test-ifloat.c

@@ -0,0 +1,35 @@
+/* Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Andreas Jaeger <aj@suse.de>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#define FUNC(function) function ## f
+#define FLOAT float
+#define TEST_MSG "testing float (inline functions)\n"
+#define MATHCONST(x) x
+#define CHOOSE(Clongdouble,Cdouble,Cfloat,Cinlinelongdouble,Cinlinedouble,Cinlinefloat) Cinlinefloat
+#define PRINTF_EXPR "e"
+#define PRINTF_XEXPR "a"
+#define PRINTF_NEXPR "f"
+#define TEST_FLOAT 1
+#define TEST_INLINE 1
+
+#ifdef __NO_MATH_INLINES
+# undef __NO_MATH_INLINES
+#endif
+
+#include "libm-test.c"

+ 35 - 0
test/math/test-ildoubl.c

@@ -0,0 +1,35 @@
+/* Copyright (C) 1997, 1999, 2001 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Andreas Jaeger <aj@suse.de>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#define FUNC(function) function##l
+#define FLOAT long double
+#define TEST_MSG "testing long double (inline functions)\n"
+#define MATHCONST(x) x##L
+#define CHOOSE(Clongdouble,Cdouble,Cfloat,Cinlinelongdouble,Cinlinedouble,Cinlinefloat) Cinlinelongdouble
+#define PRINTF_EXPR "Le"
+#define PRINTF_XEXPR "La"
+#define PRINTF_NEXPR "Lf"
+#define TEST_INLINE
+#define TEST_LDOUBLE 1
+
+#ifdef __NO_MATH_INLINES
+# undef __NO_MATH_INLINES
+#endif
+
+#include "libm-test.c"

+ 34 - 0
test/math/test-ldouble.c

@@ -0,0 +1,34 @@
+/* Copyright (C) 1997, 1999, 2001 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Andreas Jaeger <aj@suse.de>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#define FUNC(function) function##l
+#define FLOAT long double
+#define TEST_MSG "testing long double (without inline functions)\n"
+#define MATHCONST(x) x##L
+#define CHOOSE(Clongdouble,Cdouble,Cfloat,Cinlinelongdouble,Cinlinedouble,Cinlinefloat) Clongdouble
+#define PRINTF_EXPR "Le"
+#define PRINTF_XEXPR "La"
+#define PRINTF_NEXPR "Lf"
+#define TEST_LDOUBLE 1
+
+#ifndef __NO_MATH_INLINES
+# define __NO_MATH_INLINES
+#endif
+
+#include "libm-test.c"