浏览代码

The m68k-elf compiler chokes on this code when compiling for PIC as
compile_regex is one big function (relative function calls further
than cpu32 can do).

The solution was to re-order the code a little to reduce the size of these
relative calls.

So the total sum of the changes is:

* Move compile_regex to the end of the file
* make store_op1 an inline

Unfortunately CVS diff doesn't show this and makes it look like the whole
file has been severely hacked. It hasn't.

David McCullough 24 年之前
父节点
当前提交
fde510315b
共有 1 个文件被更改,包括 3211 次插入3212 次删除
  1. 3211 3212
      libc/misc/regex/regex.c

+ 3211 - 3212
libc/misc/regex/regex.c

@@ -1832,3898 +1832,3897 @@ int num_regs;
 
 #endif							/* not MATCH_MAY_ALLOCATE */
 
-static boolean group_in_compile_stack _RE_ARGS((compile_stack_type
-												compile_stack,
+/* Subroutines for `regex_compile'.  */
 
-												regnum_t regnum));
+/* Store OP at LOC followed by two-byte integer parameter ARG.  */
 
-/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
-   Returns one of error codes defined in `regex.h', or zero for success.
+static inline void store_op1(op, loc, arg)
+re_opcode_t op;
+unsigned char *loc;
+int arg;
+{
+	*loc = (unsigned char) op;
+	STORE_NUMBER(loc + 1, arg);
+}
 
-   Assumes the `allocated' (and perhaps `buffer') and `translate'
-   fields are set in BUFP on entry.
 
-   If it succeeds, results are put in BUFP (if it returns an error, the
-   contents of BUFP are undefined):
-     `buffer' is the compiled pattern;
-     `syntax' is set to SYNTAX;
-     `used' is set to the length of the compiled pattern;
-     `fastmap_accurate' is zero;
-     `re_nsub' is the number of subexpressions in PATTERN;
-     `not_bol' and `not_eol' are zero;
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
 
-   The `fastmap' and `newline_anchor' fields are neither
-   examined nor set.  */
+static void store_op2(op, loc, arg1, arg2)
+re_opcode_t op;
+unsigned char *loc;
+int arg1, arg2;
+{
+	*loc = (unsigned char) op;
+	STORE_NUMBER(loc + 1, arg1);
+	STORE_NUMBER(loc + 3, arg2);
+}
 
-/* Return, freeing storage we allocated.  */
-#define FREE_STACK_RETURN(value)		\
-  return (free (compile_stack.stack), value)
 
-static reg_errcode_t regex_compile(pattern, size, syntax, bufp)
-const char *pattern;
-size_t size;
-reg_syntax_t syntax;
-struct re_pattern_buffer *bufp;
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+   for OP followed by two-byte integer parameter ARG.  */
+
+static void insert_op1(op, loc, arg, end)
+re_opcode_t op;
+unsigned char *loc;
+int arg;
+unsigned char *end;
 {
-	/* We fetch characters from PATTERN here.  Even though PATTERN is
-	   `char *' (i.e., signed), we declare these variables as unsigned, so
-	   they can be reliably used as array indices.  */
-	register unsigned char c, c1;
+	register unsigned char *pfrom = end;
+	register unsigned char *pto = end + 3;
 
-	/* A random temporary spot in PATTERN.  */
-	const char *p1;
+	while (pfrom != loc)
+		*--pto = *--pfrom;
 
-	/* Points to the end of the buffer, where we should append.  */
-	register unsigned char *b;
+	store_op1(op, loc, arg);
+}
 
-	/* Keeps track of unclosed groups.  */
-	compile_stack_type compile_stack;
 
-	/* Points to the current (ending) position in the pattern.  */
-	const char *p = pattern;
-	const char *pend = pattern + size;
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
 
-	/* How to translate the characters in the pattern.  */
-	RE_TRANSLATE_TYPE translate = bufp->translate;
+static void insert_op2(op, loc, arg1, arg2, end)
+re_opcode_t op;
+unsigned char *loc;
+int arg1, arg2;
+unsigned char *end;
+{
+	register unsigned char *pfrom = end;
+	register unsigned char *pto = end + 5;
 
-	/* Address of the count-byte of the most recently inserted `exactn'
-	   command.  This makes it possible to tell if a new exact-match
-	   character can be added to that command or if the character requires
-	   a new `exactn' command.  */
-	unsigned char *pending_exact = 0;
+	while (pfrom != loc)
+		*--pto = *--pfrom;
 
-	/* Address of start of the most recently finished expression.
-	   This tells, e.g., postfix * where to find the start of its
-	   operand.  Reset at the beginning of groups and alternatives.  */
-	unsigned char *laststart = 0;
+	store_op2(op, loc, arg1, arg2);
+}
 
-	/* Address of beginning of regexp, or inside of last group.  */
-	unsigned char *begalt;
 
-	/* Place in the uncompiled pattern (i.e., the {) to
-	   which to go back if the interval is invalid.  */
-	const char *beg_interval;
+/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
+   after an alternative or a begin-subexpression.  We assume there is at
+   least one character before the ^.  */
 
-	/* Address of the place where a forward jump should go to the end of
-	   the containing expression.  Each alternative of an `or' -- except the
-	   last -- ends with a forward jump of this sort.  */
-	unsigned char *fixup_alt_jump = 0;
+static boolean at_begline_loc_p(pattern, p, syntax)
+const char *pattern, *p;
+reg_syntax_t syntax;
+{
+	const char *prev = p - 2;
+	boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
 
-	/* Counts open-groups as they are encountered.  Remembered for the
-	   matching close-group on the compile stack, so the same register
-	   number is put in the stop_memory as the start_memory.  */
-	regnum_t regnum = 0;
+	return
+		/* After a subexpression?  */
+		(*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
+		/* After an alternative?  */
+		|| (*prev == '|'
+			&& (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
+}
 
-#ifdef DEBUG
-	DEBUG_PRINT1("\nCompiling pattern: ");
-	if (debug) {
-		unsigned debug_count;
 
-		for (debug_count = 0; debug_count < size; debug_count++)
-			putchar(pattern[debug_count]);
-		putchar('\n');
-	}
-#endif							/* DEBUG */
+/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
+   at least one character after the $, i.e., `P < PEND'.  */
 
-	/* Initialize the compile stack.  */
-	compile_stack.stack =
-		TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
-	if (compile_stack.stack == NULL)
-		return REG_ESPACE;
+static boolean at_endline_loc_p(p, pend, syntax)
+const char *p, *pend;
+reg_syntax_t syntax;
+{
+	const char *next = p;
+	boolean next_backslash = *next == '\\';
+	const char *next_next = p + 1 < pend ? p + 1 : 0;
 
-	compile_stack.size = INIT_COMPILE_STACK_SIZE;
-	compile_stack.avail = 0;
+	return
+		/* Before a subexpression?  */
+		(syntax & RE_NO_BK_PARENS ? *next == ')'
+		 : next_backslash && next_next && *next_next == ')')
+		/* Before an alternative?  */
+		|| (syntax & RE_NO_BK_VBAR ? *next == '|'
+			: next_backslash && next_next && *next_next == '|');
+}
 
-	/* Initialize the pattern buffer.  */
-	bufp->syntax = syntax;
-	bufp->fastmap_accurate = 0;
-	bufp->not_bol = bufp->not_eol = 0;
 
-	/* Set `used' to zero, so that if we return an error, the pattern
-	   printer (for debugging) will think there's no pattern.  We reset it
-	   at the end.  */
-	bufp->used = 0;
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+   false if it's not.  */
 
-	/* Always count groups, whether or not bufp->no_sub is set.  */
-	bufp->re_nsub = 0;
+static boolean group_in_compile_stack _RE_ARGS((compile_stack_type
+												compile_stack,
+												regnum_t regnum));
 
-#if !defined emacs && !defined SYNTAX_TABLE
-	/* Initialize the syntax table.  */
-	init_syntax_once();
-#endif
+static boolean group_in_compile_stack(compile_stack, regnum)
+compile_stack_type compile_stack;
+regnum_t regnum;
+{
+	int this_element;
 
-	if (bufp->allocated == 0) {
-		if (bufp->buffer) {		/* If zero allocated, but buffer is non-null, try to realloc
-								   enough space.  This loses if buffer's address is bogus, but
-								   that is the user's responsibility.  */
-			RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char);
-		} else {				/* Caller did not allocate a buffer.  Do it for them.  */
-			bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char);
-		}
-		if (!bufp->buffer)
-			FREE_STACK_RETURN(REG_ESPACE);
+	for (this_element = compile_stack.avail - 1;
+		 this_element >= 0; this_element--)
+		if (compile_stack.stack[this_element].regnum == regnum)
+			return true;
 
-		bufp->allocated = INIT_BUF_SIZE;
-	}
+	return false;
+}
 
-	begalt = b = bufp->buffer;
 
-	/* Loop through the uncompiled pattern until we're at the end.  */
-	while (p != pend) {
-		PATFETCH(c);
+/* Read the ending character of a range (in a bracket expression) from the
+   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
+   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
+   Then we set the translation of all bits between the starting and
+   ending characters (inclusive) in the compiled pattern B.
 
-		switch (c) {
-		case '^':
-		{
-			if (				/* If at start of pattern, it's an operator.  */
-				   p == pattern + 1
-				   /* If context independent, it's an operator.  */
-				   || syntax & RE_CONTEXT_INDEP_ANCHORS
-				   /* Otherwise, depends on what's come before.  */
-				   || at_begline_loc_p(pattern, p, syntax))
-				BUF_PUSH(begline);
-			else
-				goto normal_char;
-		}
-			break;
+   Return an error code.
 
+   We use these short variable names so we can use the same macros as
+   `regex_compile' itself.  */
 
-		case '$':
-		{
-			if (				/* If at end of pattern, it's an operator.  */
-				   p == pend
-				   /* If context independent, it's an operator.  */
-				   || syntax & RE_CONTEXT_INDEP_ANCHORS
-				   /* Otherwise, depends on what's next.  */
-				   || at_endline_loc_p(p, pend, syntax))
-				BUF_PUSH(endline);
-			else
-				goto normal_char;
-		}
-			break;
+static reg_errcode_t compile_range(p_ptr, pend, translate, syntax, b)
+const char **p_ptr, *pend;
+RE_TRANSLATE_TYPE translate;
+reg_syntax_t syntax;
+unsigned char *b;
+{
+	unsigned this_char;
 
+	const char *p = *p_ptr;
+	reg_errcode_t ret;
+	char range_start[2];
+	char range_end[2];
+	char ch[2];
 
-		case '+':
-		case '?':
-			if ((syntax & RE_BK_PLUS_QM)
-				|| (syntax & RE_LIMITED_OPS))
-				goto normal_char;
-		  handle_plus:
-		case '*':
-			/* If there is no previous pattern... */
-			if (!laststart) {
-				if (syntax & RE_CONTEXT_INVALID_OPS)
-					FREE_STACK_RETURN(REG_BADRPT);
-				else if (!(syntax & RE_CONTEXT_INDEP_OPS))
-					goto normal_char;
-			}
+	if (p == pend)
+		return REG_ERANGE;
 
-			{
-				/* Are we optimizing this jump?  */
-				boolean keep_string_p = false;
+	/* Fetch the endpoints without translating them; the
+	   appropriate translation is done in the bit-setting loop below.  */
+	range_start[0] = p[-2];
+	range_start[1] = '\0';
+	range_end[0] = p[0];
+	range_end[1] = '\0';
 
-				/* 1 means zero (many) matches is allowed.  */
-				char zero_times_ok = 0, many_times_ok = 0;
+	/* Have to increment the pointer into the pattern string, so the
+	   caller isn't still at the ending character.  */
+	(*p_ptr)++;
 
-				/* If there is a sequence of repetition chars, collapse it
-				   down to just one (the right one).  We can't combine
-				   interval operators with these because of, e.g., `a{2}*',
-				   which should only match an even number of `a's.  */
+	/* Report an error if the range is empty and the syntax prohibits this.  */
+	ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
 
-				for (;;) {
-					zero_times_ok |= c != '+';
-					many_times_ok |= c != '?';
+	/* Here we see why `this_char' has to be larger than an `unsigned
+	   char' -- we would otherwise go into an infinite loop, since all
+	   characters <= 0xff.  */
+	ch[1] = '\0';
+	for (this_char = 0; this_char <= (unsigned char) -1; ++this_char) {
+		ch[0] = this_char;
+		if (strcoll(range_start, ch) <= 0 && strcoll(ch, range_end) <= 0) {
+			SET_LIST_BIT(TRANSLATE(this_char));
+			ret = REG_NOERROR;
+		}
+	}
 
-					if (p == pend)
-						break;
+	return ret;
+}
+
+/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
+   characters can start a string that matches the pattern.  This fastmap
+   is used by re_search to skip quickly over impossible starting points.
 
-					PATFETCH(c);
+   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+   area as BUFP->fastmap.
 
-					if (c == '*'
-						|| (!(syntax & RE_BK_PLUS_QM)
-							&& (c == '+' || c == '?')));
+   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+   the pattern buffer.
 
-					else if (syntax & RE_BK_PLUS_QM && c == '\\') {
-						if (p == pend)
-							FREE_STACK_RETURN(REG_EESCAPE);
+   Returns 0 if we succeed, -2 if an internal error.   */
 
-						PATFETCH(c1);
-						if (!(c1 == '+' || c1 == '?')) {
-							PATUNFETCH;
-							PATUNFETCH;
-							break;
-						}
+int re_compile_fastmap(bufp)
+struct re_pattern_buffer *bufp;
+{
+	int j, k;
 
-						c = c1;
-					} else {
-						PATUNFETCH;
-						break;
-					}
+#ifdef MATCH_MAY_ALLOCATE
+	fail_stack_type fail_stack;
+#endif
+#ifndef REGEX_MALLOC
+	char *destination;
+#endif
 
-					/* If we get here, we found another repeat character.  */
-				}
+	register char *fastmap = bufp->fastmap;
+	unsigned char *pattern = bufp->buffer;
+	unsigned char *p = pattern;
+	register unsigned char *pend = pattern + bufp->used;
 
-				/* Star, etc. applied to an empty pattern is equivalent
-				   to an empty pattern.  */
-				if (!laststart)
-					break;
+#ifdef REL_ALLOC
+	/* This holds the pointer to the failure stack, when
+	   it is allocated relocatably.  */
+	fail_stack_elt_t *failure_stack_ptr;
+#endif
 
-				/* Now we know whether or not zero matches is allowed
-				   and also whether or not two or more matches is allowed.  */
-				if (many_times_ok) {	/* More than one repetition is allowed, so put in at the
-										   end a backward relative jump from `b' to before the next
-										   jump we're going to put in below (which jumps from
-										   laststart to after this jump).
+	/* Assume that each path through the pattern can be null until
+	   proven otherwise.  We set this false at the bottom of switch
+	   statement, to which we get only if a particular path doesn't
+	   match the empty string.  */
+	boolean path_can_be_null = true;
 
-										   But if we are at the `*' in the exact sequence `.*\n',
-										   insert an unconditional jump backwards to the .,
-										   instead of the beginning of the loop.  This way we only
-										   push a failure point once, instead of every time
-										   through the loop.  */
-					assert(p - 1 > pattern);
+	/* We aren't doing a `succeed_n' to begin with.  */
+	boolean succeed_n_p = false;
 
-					/* Allocate the space for the jump.  */
-					GET_BUFFER_SPACE(3);
+	assert(fastmap != NULL && p != NULL);
 
-					/* We know we are not at the first character of the pattern,
-					   because laststart was nonzero.  And we've already
-					   incremented `p', by the way, to be the character after
-					   the `*'.  Do we have to do something analogous here
-					   for null bytes, because of RE_DOT_NOT_NULL?  */
-					if (TRANSLATE(*(p - 2)) == TRANSLATE('.')
-						&& zero_times_ok
-						&& p < pend && TRANSLATE(*p) == TRANSLATE('\n')
-						&& !(syntax & RE_DOT_NEWLINE)) {	/* We have .*\n.  */
-						STORE_JUMP(jump, b, laststart);
-						keep_string_p = true;
-					} else
-						/* Anything else.  */
-						STORE_JUMP(maybe_pop_jump, b, laststart - 3);
+	INIT_FAIL_STACK();
+	bzero(fastmap, 1 << BYTEWIDTH);	/* Assume nothing's valid.  */
+	bufp->fastmap_accurate = 1;	/* It will be when we're done.  */
+	bufp->can_be_null = 0;
 
-					/* We've added more stuff to the buffer.  */
-					b += 3;
-				}
+	while (1) {
+		if (p == pend || *p == succeed) {
+			/* We have reached the (effective) end of pattern.  */
+			if (!FAIL_STACK_EMPTY()) {
+				bufp->can_be_null |= path_can_be_null;
 
-				/* On failure, jump from laststart to b + 3, which will be the
-				   end of the buffer after this jump is inserted.  */
-				GET_BUFFER_SPACE(3);
-				INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
-							: on_failure_jump, laststart, b + 3);
-				pending_exact = 0;
-				b += 3;
+				/* Reset for next path.  */
+				path_can_be_null = true;
 
-				if (!zero_times_ok) {
-					/* At least one repetition is required, so insert a
-					   `dummy_failure_jump' before the initial
-					   `on_failure_jump' instruction of the loop. This
-					   effects a skip over that instruction the first time
-					   we hit that loop.  */
-					GET_BUFFER_SPACE(3);
-					INSERT_JUMP(dummy_failure_jump, laststart,
-								laststart + 6);
-					b += 3;
-				}
-			}
-			break;
+				p = fail_stack.stack[--fail_stack.avail].pointer;
 
+				continue;
+			} else
+				break;
+		}
 
-		case '.':
-			laststart = b;
-			BUF_PUSH(anychar);
-			break;
+		/* We should never be about to go beyond the end of the pattern.  */
+		assert(p < pend);
 
+		switch (SWITCH_ENUM_CAST((re_opcode_t) * p++)) {
 
-		case '[':
-		{
-			boolean had_char_class = false;
+			/* I guess the idea here is to simply not bother with a fastmap
+			   if a backreference is used, since it's too hard to figure out
+			   the fastmap for the corresponding group.  Setting
+			   `can_be_null' stops `re_search_2' from using the fastmap, so
+			   that is all we do.  */
+		case duplicate:
+			bufp->can_be_null = 1;
+			goto done;
 
-			if (p == pend)
-				FREE_STACK_RETURN(REG_EBRACK);
 
-			/* Ensure that we have enough space to push a charset: the
-			   opcode, the length count, and the bitset; 34 bytes in all.  */
-			GET_BUFFER_SPACE(34);
+			/* Following are the cases which match a character.  These end
+			   with `break'.  */
 
-			laststart = b;
+		case exactn:
+			fastmap[p[1]] = 1;
+			break;
 
-			/* We test `*p == '^' twice, instead of using an if
-			   statement, so we only need one BUF_PUSH.  */
-			BUF_PUSH(*p == '^' ? charset_not : charset);
-			if (*p == '^')
-				p++;
 
-			/* Remember the first position in the bracket expression.  */
-			p1 = p;
+		case charset:
+			for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+				if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+					fastmap[j] = 1;
+			break;
 
-			/* Push the number of bytes in the bitmap.  */
-			BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
 
-			/* Clear the whole map.  */
-			bzero(b, (1 << BYTEWIDTH) / BYTEWIDTH);
+		case charset_not:
+			/* Chars beyond end of map must be allowed.  */
+			for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+				fastmap[j] = 1;
 
-			/* charset_not matches newline according to a syntax bit.  */
-			if ((re_opcode_t) b[-2] == charset_not
-				&& (syntax & RE_HAT_LISTS_NOT_NEWLINE)) SET_LIST_BIT('\n');
+			for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+				if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+					fastmap[j] = 1;
+			break;
 
-			/* Read in characters and ranges, setting map bits.  */
-			for (;;) {
-				if (p == pend)
-					FREE_STACK_RETURN(REG_EBRACK);
 
-				PATFETCH(c);
+		case wordchar:
+			for (j = 0; j < (1 << BYTEWIDTH); j++)
+				if (SYNTAX(j) == Sword)
+					fastmap[j] = 1;
+			break;
 
-				/* \ might escape characters inside [...] and [^...].  */
-				if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') {
-					if (p == pend)
-						FREE_STACK_RETURN(REG_EESCAPE);
 
-					PATFETCH(c1);
-					SET_LIST_BIT(c1);
-					continue;
-				}
+		case notwordchar:
+			for (j = 0; j < (1 << BYTEWIDTH); j++)
+				if (SYNTAX(j) != Sword)
+					fastmap[j] = 1;
+			break;
 
-				/* Could be the end of the bracket expression.  If it's
-				   not (i.e., when the bracket expression is `[]' so
-				   far), the ']' character bit gets set way below.  */
-				if (c == ']' && p != p1 + 1)
-					break;
 
-				/* Look ahead to see if it's a range when the last thing
-				   was a character class.  */
-				if (had_char_class && c == '-' && *p != ']')
-					FREE_STACK_RETURN(REG_ERANGE);
+		case anychar:
+		{
+			int fastmap_newline = fastmap['\n'];
 
-				/* Look ahead to see if it's a range when the last thing
-				   was a character: if this is a hyphen not at the
-				   beginning or the end of a list, then it's the range
-				   operator.  */
-				if (c == '-' && !(p - 2 >= pattern && p[-2] == '[')
-					&& !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
-					&& *p != ']') {
-					reg_errcode_t ret
-						= compile_range(&p, pend, translate, syntax, b);
+			/* `.' matches anything ...  */
+			for (j = 0; j < (1 << BYTEWIDTH); j++)
+				fastmap[j] = 1;
 
-					if (ret != REG_NOERROR)
-						FREE_STACK_RETURN(ret);
-				}
+			/* ... except perhaps newline.  */
+			if (!(bufp->syntax & RE_DOT_NEWLINE))
+				fastmap['\n'] = fastmap_newline;
 
-				else if (p[0] == '-' && p[1] != ']') {	/* This handles ranges made up of characters only.  */
-					reg_errcode_t ret;
+			/* Return if we have already set `can_be_null'; if we have,
+			   then the fastmap is irrelevant.  Something's wrong here.  */
+			else if (bufp->can_be_null)
+				goto done;
 
-					/* Move past the `-'.  */
-					PATFETCH(c1);
+			/* Otherwise, have to check alternative paths.  */
+			break;
+		}
 
-					ret = compile_range(&p, pend, translate, syntax, b);
-					if (ret != REG_NOERROR)
-						FREE_STACK_RETURN(ret);
-				}
+#ifdef emacs
+		case syntaxspec:
+			k = *p++;
+			for (j = 0; j < (1 << BYTEWIDTH); j++)
+				if (SYNTAX(j) == (enum syntaxcode) k)
+					fastmap[j] = 1;
+			break;
 
-				/* See if we're at the beginning of a possible character
-				   class.  */
 
-				else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') {	/* Leave room for the null.  */
-					char str[CHAR_CLASS_MAX_LENGTH + 1];
+		case notsyntaxspec:
+			k = *p++;
+			for (j = 0; j < (1 << BYTEWIDTH); j++)
+				if (SYNTAX(j) != (enum syntaxcode) k)
+					fastmap[j] = 1;
+			break;
 
-					PATFETCH(c);
-					c1 = 0;
 
-					/* If pattern is `[[:'.  */
-					if (p == pend)
-						FREE_STACK_RETURN(REG_EBRACK);
+			/* All cases after this match the empty string.  These end with
+			   `continue'.  */
 
-					for (;;) {
-						PATFETCH(c);
-						if ((c == ':' && *p == ']') || p == pend)
-							break;
-						if (c1 < CHAR_CLASS_MAX_LENGTH)
-							str[c1++] = c;
-						else
-							/* This is in any case an invalid class name.  */
-							str[0] = '\0';
-					}
-					str[c1] = '\0';
 
-					/* If isn't a word bracketed by `[:' and `:]':
-					   undo the ending character, the letters, and leave
-					   the leading `:' and `[' (but set bits for them).  */
-					if (c == ':' && *p == ']') {
-#if defined _LIBC || WIDE_CHAR_SUPPORT
-						boolean is_lower = STREQ(str, "lower");
-						boolean is_upper = STREQ(str, "upper");
-						wctype_t wt;
-						int ch;
+		case before_dot:
+		case at_dot:
+		case after_dot:
+			continue;
+#endif							/* emacs */
 
-						wt = IS_CHAR_CLASS(str);
-						if (wt == 0)
-							FREE_STACK_RETURN(REG_ECTYPE);
 
-						/* Throw away the ] at the end of the character
-						   class.  */
-						PATFETCH(c);
+		case no_op:
+		case begline:
+		case endline:
+		case begbuf:
+		case endbuf:
+		case wordbound:
+		case notwordbound:
+		case wordbeg:
+		case wordend:
+		case push_dummy_failure:
+			continue;
 
-						if (p == pend)
-							FREE_STACK_RETURN(REG_EBRACK);
 
-						for (ch = 0; ch < 1 << BYTEWIDTH; ++ch) {
-# ifdef _LIBC
-							if (__iswctype(__btowc(ch), wt))
-								SET_LIST_BIT(ch);
-# else
-							if (iswctype(btowc(ch), wt))
-								SET_LIST_BIT(ch);
-# endif
+		case jump_n:
+		case pop_failure_jump:
+		case maybe_pop_jump:
+		case jump:
+		case jump_past_alt:
+		case dummy_failure_jump:
+			EXTRACT_NUMBER_AND_INCR(j, p);
+			p += j;
+			if (j > 0)
+				continue;
 
-							if (translate && (is_upper || is_lower)
-								&& (ISUPPER(ch) || ISLOWER(ch)))
-								SET_LIST_BIT(ch);
-						}
+			/* Jump backward implies we just went through the body of a
+			   loop and matched nothing.  Opcode jumped to should be
+			   `on_failure_jump' or `succeed_n'.  Just treat it like an
+			   ordinary jump.  For a * loop, it has pushed its failure
+			   point already; if so, discard that as redundant.  */
+			if ((re_opcode_t) * p != on_failure_jump
+				&& (re_opcode_t) * p != succeed_n)
+				continue;
 
-						had_char_class = true;
-#else
-						int ch;
-						boolean is_alnum = STREQ(str, "alnum");
-						boolean is_alpha = STREQ(str, "alpha");
-						boolean is_blank = STREQ(str, "blank");
-						boolean is_cntrl = STREQ(str, "cntrl");
-						boolean is_digit = STREQ(str, "digit");
-						boolean is_graph = STREQ(str, "graph");
-						boolean is_lower = STREQ(str, "lower");
-						boolean is_print = STREQ(str, "print");
-						boolean is_punct = STREQ(str, "punct");
-						boolean is_space = STREQ(str, "space");
-						boolean is_upper = STREQ(str, "upper");
-						boolean is_xdigit = STREQ(str, "xdigit");
+			p++;
+			EXTRACT_NUMBER_AND_INCR(j, p);
+			p += j;
 
-						if (!IS_CHAR_CLASS(str))
-							FREE_STACK_RETURN(REG_ECTYPE);
+			/* If what's on the stack is where we are now, pop it.  */
+			if (!FAIL_STACK_EMPTY()
+				&& fail_stack.stack[fail_stack.avail - 1].pointer == p)
+				fail_stack.avail--;
 
-						/* Throw away the ] at the end of the character
-						   class.  */
-						PATFETCH(c);
+			continue;
 
-						if (p == pend)
-							FREE_STACK_RETURN(REG_EBRACK);
 
-						for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
-							/* This was split into 3 if's to
-							   avoid an arbitrary limit in some compiler.  */
-							if ((is_alnum && ISALNUM(ch))
-								|| (is_alpha && ISALPHA(ch))
-								|| (is_blank && ISBLANK(ch))
-								|| (is_cntrl && ISCNTRL(ch)))
-								SET_LIST_BIT(ch);
-							if ((is_digit && ISDIGIT(ch))
-								|| (is_graph && ISGRAPH(ch))
-								|| (is_lower && ISLOWER(ch))
-								|| (is_print && ISPRINT(ch)))
-								SET_LIST_BIT(ch);
-							if ((is_punct && ISPUNCT(ch))
-								|| (is_space && ISSPACE(ch))
-								|| (is_upper && ISUPPER(ch))
-								|| (is_xdigit && ISXDIGIT(ch)))
-								SET_LIST_BIT(ch);
-							if (translate && (is_upper || is_lower)
-								&& (ISUPPER(ch) || ISLOWER(ch)))
-								SET_LIST_BIT(ch);
-						}
-						had_char_class = true;
-#endif							/* libc || wctype.h */
-					} else {
-						c1++;
-						while (c1--)
-							PATUNFETCH;
-						SET_LIST_BIT('[');
-						SET_LIST_BIT(':');
-						had_char_class = false;
-					}
-				} else {
-					had_char_class = false;
-					SET_LIST_BIT(c);
+		case on_failure_jump:
+		case on_failure_keep_string_jump:
+		  handle_on_failure_jump:
+			EXTRACT_NUMBER_AND_INCR(j, p);
+
+			/* For some patterns, e.g., `(a?)?', `p+j' here points to the
+			   end of the pattern.  We don't want to push such a point,
+			   since when we restore it above, entering the switch will
+			   increment `p' past the end of the pattern.  We don't need
+			   to push such a point since we obviously won't find any more
+			   fastmap entries beyond `pend'.  Such a pattern can match
+			   the null string, though.  */
+			if (p + j < pend) {
+				if (!PUSH_PATTERN_OP(p + j, fail_stack)) {
+					RESET_FAIL_STACK();
+					return -2;
 				}
+			} else
+				bufp->can_be_null = 1;
+
+			if (succeed_n_p) {
+				EXTRACT_NUMBER_AND_INCR(k, p);	/* Skip the n.  */
+				succeed_n_p = false;
 			}
 
-			/* Discard any (non)matching list bytes that are all 0 at the
-			   end of the map.  Decrease the map-length byte too.  */
-			while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
-				b[-1]--;
-			b += b[-1];
-		}
-			break;
+			continue;
 
 
-		case '(':
-			if (syntax & RE_NO_BK_PARENS)
-				goto handle_open;
-			else
-				goto normal_char;
+		case succeed_n:
+			/* Get to the number of times to succeed.  */
+			p += 2;
 
+			/* Increment p past the n for when k != 0.  */
+			EXTRACT_NUMBER_AND_INCR(k, p);
+			if (k == 0) {
+				p -= 4;
+				succeed_n_p = true;	/* Spaghetti code alert.  */
+				goto handle_on_failure_jump;
+			}
+			continue;
 
-		case ')':
-			if (syntax & RE_NO_BK_PARENS)
-				goto handle_close;
-			else
-				goto normal_char;
 
+		case set_number_at:
+			p += 4;
+			continue;
 
-		case '\n':
-			if (syntax & RE_NEWLINE_ALT)
-				goto handle_alt;
-			else
-				goto normal_char;
 
+		case start_memory:
+		case stop_memory:
+			p += 2;
+			continue;
 
-		case '|':
-			if (syntax & RE_NO_BK_VBAR)
-				goto handle_alt;
-			else
-				goto normal_char;
 
+		default:
+			abort();			/* We have listed all the cases.  */
+		}						/* switch *p++ */
 
-		case '{':
-			if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
-				goto handle_interval;
-			else
-				goto normal_char;
+		/* Getting here means we have found the possible starting
+		   characters for one path of the pattern -- and that the empty
+		   string does not match.  We need not follow this path further.
+		   Instead, look at the next alternative (remembered on the
+		   stack), or quit if no more.  The test at the top of the loop
+		   does these things.  */
+		path_can_be_null = false;
+		p = pend;
+	}							/* while p */
 
+	/* Set `can_be_null' for the last path (also the first path, if the
+	   pattern is empty).  */
+	bufp->can_be_null |= path_can_be_null;
 
-		case '\\':
-			if (p == pend)
-				FREE_STACK_RETURN(REG_EESCAPE);
+  done:
+	RESET_FAIL_STACK();
+	return 0;
+}								/* re_compile_fastmap */
 
-			/* Do not translate the character after the \, so that we can
-			   distinguish, e.g., \B from \b, even if we normally would
-			   translate, e.g., B to b.  */
-			PATFETCH_RAW(c);
+#ifdef _LIBC
+weak_alias(__re_compile_fastmap, re_compile_fastmap)
+#endif
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
+   this memory for recording register information.  STARTS and ENDS
+   must be allocated using the malloc library routine, and must each
+   be at least NUM_REGS * sizeof (regoff_t) bytes long.
 
-			switch (c) {
-			case '(':
-				if (syntax & RE_NO_BK_PARENS)
-					goto normal_backslash;
+   If NUM_REGS == 0, then subsequent matches should allocate their own
+   register data.
 
-			  handle_open:
-				bufp->re_nsub++;
-				regnum++;
+   Unless this function is called, the first search or match using
+   PATTERN_BUFFER will allocate its own register data, without
+   freeing the old data.  */
+void re_set_registers(bufp, regs, num_regs, starts, ends)
+struct re_pattern_buffer *bufp;
+struct re_registers *regs;
+unsigned num_regs;
+regoff_t *starts, *ends;
+{
+	if (num_regs) {
+		bufp->regs_allocated = REGS_REALLOCATE;
+		regs->num_regs = num_regs;
+		regs->start = starts;
+		regs->end = ends;
+	} else {
+		bufp->regs_allocated = REGS_UNALLOCATED;
+		regs->num_regs = 0;
+		regs->start = regs->end = (regoff_t *) 0;
+	}
+}
 
-				if (COMPILE_STACK_FULL) {
-					RETALLOC(compile_stack.stack, compile_stack.size << 1,
-							 compile_stack_elt_t);
-					if (compile_stack.stack == NULL)
-						return REG_ESPACE;
+#ifdef _LIBC
+weak_alias(__re_set_registers, re_set_registers)
+#endif
+/* Searching routines.  */
+/* Like re_search_2, below, but only one string is specified, and
+   doesn't let you say where to stop matching. */
+int re_search(bufp, string, size, startpos, range, regs)
+struct re_pattern_buffer *bufp;
+const char *string;
+int size, startpos, range;
+struct re_registers *regs;
+{
+	return re_search_2(bufp, NULL, 0, string, size, startpos, range,
+					   regs, size);
+}
 
-					compile_stack.size <<= 1;
-				}
+#ifdef _LIBC
+weak_alias(__re_search, re_search)
+#endif
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
+   virtual concatenation of STRING1 and STRING2, starting first at index
+   STARTPOS, then at STARTPOS + 1, and so on.
 
-				/* These are the values to restore when we hit end of this
-				   group.  They are all relative offsets, so that if the
-				   whole pattern moves because of realloc, they will still
-				   be valid.  */
-				COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
-				COMPILE_STACK_TOP.fixup_alt_jump
-					=
-					fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
-				COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
-				COMPILE_STACK_TOP.regnum = regnum;
+   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
 
-				/* We will eventually replace the 0 with the number of
-				   groups inner to this one.  But do not push a
-				   start_memory for groups beyond the last one we can
-				   represent in the compiled pattern.  */
-				if (regnum <= MAX_REGNUM) {
-					COMPILE_STACK_TOP.inner_group_offset =
-						b - bufp->buffer + 2;
-					BUF_PUSH_3(start_memory, regnum, 0);
-				}
+   RANGE is how far to scan while trying to match.  RANGE = 0 means try
+   only at STARTPOS; in general, the last start tried is STARTPOS +
+   RANGE.
 
-				compile_stack.avail++;
+   In REGS, return the indices of the virtual concatenation of STRING1
+   and STRING2 that matched the entire BUFP->buffer and its contained
+   subexpressions.
 
-				fixup_alt_jump = 0;
-				laststart = 0;
-				begalt = b;
-				/* If we've reached MAX_REGNUM groups, then this open
-				   won't actually generate any code, so we'll have to
-				   clear pending_exact explicitly.  */
-				pending_exact = 0;
-				break;
+   Do not consider matching one past the index STOP in the virtual
+   concatenation of STRING1 and STRING2.
 
+   We return either the position in the strings at which the match was
+   found, -1 if no match, or -2 if error (such as failure
+   stack overflow).  */
+int
+re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs,
+			stop)
+struct re_pattern_buffer *bufp;
+const char *string1, *string2;
+int size1, size2;
+int startpos;
+int range;
+struct re_registers *regs;
+int stop;
+{
+	int val;
+	register char *fastmap = bufp->fastmap;
+	register RE_TRANSLATE_TYPE translate = bufp->translate;
+	int total_size = size1 + size2;
+	int endpos = startpos + range;
 
-			case ')':
-				if (syntax & RE_NO_BK_PARENS)
-					goto normal_backslash;
+	/* Check for out-of-range STARTPOS.  */
+	if (startpos < 0 || startpos > total_size)
+		return -1;
 
-				if (COMPILE_STACK_EMPTY) {
-					if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
-						goto normal_backslash;
-					else
-						FREE_STACK_RETURN(REG_ERPAREN);
-				}
+	/* Fix up RANGE if it might eventually take us outside
+	   the virtual concatenation of STRING1 and STRING2.
+	   Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
+	if (endpos < 0)
+		range = 0 - startpos;
+	else if (endpos > total_size)
+		range = total_size - startpos;
 
-			  handle_close:
-				if (fixup_alt_jump) {	/* Push a dummy failure point at the end of the
-										   alternative for a possible future
-										   `pop_failure_jump' to pop.  See comments at
-										   `push_dummy_failure' in `re_match_2'.  */
-					BUF_PUSH(push_dummy_failure);
+	/* If the search isn't to be a backwards one, don't waste time in a
+	   search for a pattern that must be anchored.  */
+	if (bufp->used > 0 && range > 0
+		&& ((re_opcode_t) bufp->buffer[0] == begbuf
+			/* `begline' is like `begbuf' if it cannot match at newlines.  */
+			|| ((re_opcode_t) bufp->buffer[0] == begline
+				&& !bufp->newline_anchor))) {
+		if (startpos > 0)
+			return -1;
+		else
+			range = 1;
+	}
+#ifdef emacs
+	/* In a forward search for something that starts with \=.
+	   don't keep searching past point.  */
+	if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot
+		&& range > 0) {
+		range = PT - startpos;
+		if (range <= 0)
+			return -1;
+	}
+#endif							/* emacs */
 
-					/* We allocated space for this jump when we assigned
-					   to `fixup_alt_jump', in the `handle_alt' case below.  */
-					STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
-				}
+	/* Update the fastmap now if not correct already.  */
+	if (fastmap && !bufp->fastmap_accurate)
+		if (re_compile_fastmap(bufp) == -2)
+			return -2;
 
-				/* See similar code for backslashed left paren above.  */
-				if (COMPILE_STACK_EMPTY) {
-					if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
-						goto normal_char;
-					else
-						FREE_STACK_RETURN(REG_ERPAREN);
-				}
+	/* Loop through the string, looking for a place to start matching.  */
+	for (;;) {
+		/* If a fastmap is supplied, skip quickly over characters that
+		   cannot be the start of a match.  If the pattern can match the
+		   null string, however, we don't need to skip characters; we want
+		   the first null string.  */
+		if (fastmap && startpos < total_size && !bufp->can_be_null) {
+			if (range > 0) {	/* Searching forwards.  */
+				register const char *d;
+				register int lim = 0;
+				int irange = range;
 
-				/* Since we just checked for an empty stack above, this
-				   ``can't happen''.  */
-				assert(compile_stack.avail != 0);
-				{
-					/* We don't just want to restore into `regnum', because
-					   later groups should continue to be numbered higher,
-					   as in `(ab)c(de)' -- the second group is #2.  */
-					regnum_t this_group_regnum;
+				if (startpos < size1 && startpos + range >= size1)
+					lim = range - (size1 - startpos);
 
-					compile_stack.avail--;
-					begalt =
-						bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
-					fixup_alt_jump =
-						COMPILE_STACK_TOP.fixup_alt_jump ? bufp->buffer +
-						COMPILE_STACK_TOP.fixup_alt_jump - 1 : 0;
-					laststart =
-						bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
-					this_group_regnum = COMPILE_STACK_TOP.regnum;
-					/* If we've reached MAX_REGNUM groups, then this open
-					   won't actually generate any code, so we'll have to
-					   clear pending_exact explicitly.  */
-					pending_exact = 0;
-
-					/* We're at the end of the group, so now we know how many
-					   groups were inside this one.  */
-					if (this_group_regnum <= MAX_REGNUM) {
-						unsigned char *inner_group_loc
-
-							=
-							bufp->buffer +
-							COMPILE_STACK_TOP.inner_group_offset;
-
-						*inner_group_loc = regnum - this_group_regnum;
-						BUF_PUSH_3(stop_memory, this_group_regnum,
-								   regnum - this_group_regnum);
-					}
-				}
-				break;
-
-
-			case '|':			/* `\|'.  */
-				if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
-					goto normal_backslash;
-			  handle_alt:
-				if (syntax & RE_LIMITED_OPS)
-					goto normal_char;
-
-				/* Insert before the previous alternative a jump which
-				   jumps to this alternative if the former fails.  */
-				GET_BUFFER_SPACE(3);
-				INSERT_JUMP(on_failure_jump, begalt, b + 6);
-				pending_exact = 0;
-				b += 3;
-
-				/* The alternative before this one has a jump after it
-				   which gets executed if it gets matched.  Adjust that
-				   jump so it will jump to this alternative's analogous
-				   jump (put in below, which in turn will jump to the next
-				   (if any) alternative's such jump, etc.).  The last such
-				   jump jumps to the correct final destination.  A picture:
-				   _____ _____
-				   |   | |   |
-				   |   v |   v
-				   a | b   | c
-
-				   If we are at `b', then fixup_alt_jump right now points to a
-				   three-byte space after `a'.  We'll put in the jump, set
-				   fixup_alt_jump to right after `b', and leave behind three
-				   bytes which we'll fill in when we get to after `c'.  */
-
-				if (fixup_alt_jump)
-					STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
-
-				/* Mark and leave space for a jump after this alternative,
-				   to be filled in later either by next alternative or
-				   when know we're at the end of a series of alternatives.  */
-				fixup_alt_jump = b;
-				GET_BUFFER_SPACE(3);
-				b += 3;
-
-				laststart = 0;
-				begalt = b;
-				break;
-
-
-			case '{':
-				/* If \{ is a literal.  */
-				if (!(syntax & RE_INTERVALS)
-					/* If we're at `\{' and it's not the open-interval
-					   operator.  */
-					|| ((syntax & RE_INTERVALS)
-						&& (syntax & RE_NO_BK_BRACES)) || (p - 2 == pattern
-														   && p == pend))
-					goto normal_backslash;
-
-			  handle_interval:
-				{
-					/* If got here, then the syntax allows intervals.  */
+				d =
+					(startpos >=
+					 size1 ? string2 - size1 : string1) + startpos;
 
-					/* At least (most) this many matches must be made.  */
-					int lower_bound = -1, upper_bound = -1;
+				/* Written out as an if-else to avoid testing `translate'
+				   inside the loop.  */
+				if (translate)
+					while (range > lim && !fastmap[(unsigned char)
+												   translate[
+															 (unsigned
+															  char) *d++]])
+						range--;
+				else
+					while (range > lim && !fastmap[(unsigned char) *d++])
+						range--;
 
-					beg_interval = p - 1;
+				startpos += irange - range;
+			} else {			/* Searching backwards.  */
 
-					if (p == pend) {
-						if (!(syntax & RE_INTERVALS)
-							&& (syntax & RE_NO_BK_BRACES)) goto
-								unfetch_interval;
-						else
-							FREE_STACK_RETURN(REG_EBRACE);
-					}
+				register char c = (size1 == 0 || startpos >= size1
+								   ? string2[startpos - size1]
+								   : string1[startpos]);
 
-					GET_UNSIGNED_NUMBER(lower_bound);
+				if (!fastmap[(unsigned char) TRANSLATE(c)])
+					goto advance;
+			}
+		}
 
-					if (c == ',') {
-						GET_UNSIGNED_NUMBER(upper_bound);
-						if ((!(syntax & RE_NO_BK_BRACES) && c != '\\')
-							|| ((syntax & RE_NO_BK_BRACES) && c != '}'))
-							FREE_STACK_RETURN(REG_BADBR);
+		/* If can't match the null string, and that's all we have left, fail.  */
+		if (range >= 0 && startpos == total_size && fastmap
+			&& !bufp->can_be_null) return -1;
 
-						if (upper_bound < 0)
-							upper_bound = RE_DUP_MAX;
-					} else
-						/* Interval such as `{1}' => match exactly once. */
-						upper_bound = lower_bound;
+		val = re_match_2_internal(bufp, string1, size1, string2, size2,
+								  startpos, regs, stop);
+#ifndef REGEX_MALLOC
+# ifdef C_ALLOCA
+		alloca(0);
+# endif
+#endif
 
-					if (lower_bound < 0 || upper_bound > RE_DUP_MAX
-						|| lower_bound > upper_bound) {
-						if (!(syntax & RE_INTERVALS)
-							&& (syntax & RE_NO_BK_BRACES)) goto
-								unfetch_interval;
-						else
-							FREE_STACK_RETURN(REG_BADBR);
-					}
+		if (val >= 0)
+			return startpos;
 
-					if (!(syntax & RE_NO_BK_BRACES)) {
-						if (c != '\\')
-							FREE_STACK_RETURN(REG_EBRACE);
+		if (val == -2)
+			return -2;
 
-						PATFETCH(c);
-					}
+	  advance:
+		if (!range)
+			break;
+		else if (range > 0) {
+			range--;
+			startpos++;
+		} else {
+			range++;
+			startpos--;
+		}
+	}
+	return -1;
+}								/* re_search_2 */
 
-					if (c != '}') {
-						if (!(syntax & RE_INTERVALS)
-							&& (syntax & RE_NO_BK_BRACES)) goto
-								unfetch_interval;
-						else
-							FREE_STACK_RETURN(REG_BADBR);
-					}
+#ifdef _LIBC
+weak_alias(__re_search_2, re_search_2)
+#endif
+/* This converts PTR, a pointer into one of the search strings `string1'
+   and `string2' into an offset from the beginning of that string.  */
+#define POINTER_TO_OFFSET(ptr)			\
+  (FIRST_STRING_P (ptr)				\
+   ? ((regoff_t) ((ptr) - string1))		\
+   : ((regoff_t) ((ptr) - string2 + size1)))
+/* Macros for dealing with the split strings in re_match_2.  */
+#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
+/* Call before fetching a character with *d.  This switches over to
+   string2 if necessary.  */
+#define PREFETCH()							\
+  while (d == dend)						    	\
+    {									\
+      /* End of string2 => fail.  */					\
+      if (dend == end_match_2) 						\
+        goto fail;							\
+      /* End of string1 => advance to string2.  */ 			\
+      d = string2;						        \
+      dend = end_match_2;						\
+    }
+/* Test if at very beginning or at very end of the virtual concatenation
+   of `string1' and `string2'.  If only one string, it's `string2'.  */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+/* Test if D points to a character which is word-constituent.  We have
+   two special cases to check for: if past the end of string1, look at
+   the first character in string2; and if before the beginning of
+   string2, look at the last character in string1.  */
+#define WORDCHAR_P(d)							\
+  (SYNTAX ((d) == end1 ? *string2					\
+           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
+   == Sword)
+/* Disabled due to a compiler bug -- see comment at case wordbound */
+#if 0
+/* Test if the character before D and the one at D differ with respect
+   to being word-constituent.  */
+#define AT_WORD_BOUNDARY(d)						\
+  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
+   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+#endif
+/* Free everything we malloc.  */
+#ifdef MATCH_MAY_ALLOCATE
+# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
+# define FREE_VARIABLES()						\
+  do {									\
+    REGEX_FREE_STACK (fail_stack.stack);				\
+    FREE_VAR (regstart);						\
+    FREE_VAR (regend);							\
+    FREE_VAR (old_regstart);						\
+    FREE_VAR (old_regend);						\
+    FREE_VAR (best_regstart);						\
+    FREE_VAR (best_regend);						\
+    FREE_VAR (reg_info);						\
+    FREE_VAR (reg_dummy);						\
+    FREE_VAR (reg_info_dummy);						\
+  } while (0)
+#else
+# define FREE_VARIABLES() ((void)0)	/* Do nothing!  But inhibit gcc warning. */
+#endif							/* not MATCH_MAY_ALLOCATE */
+/* These values must meet several constraints.  They must not be valid
+   register values; since we have a limit of 255 registers (because
+   we use only one byte in the pattern for the register number), we can
+   use numbers larger than 255.  They must differ by 1, because of
+   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
+   be larger than the value for the highest register, so we do not try
+   to actually save any registers when none are active.  */
+#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
+#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
+/* Matching routines.  */
+#ifndef emacs					/* Emacs never uses this.  */
+/* re_match is like re_match_2 except it takes only a single string.  */
+int re_match(bufp, string, size, pos, regs)
+struct re_pattern_buffer *bufp;
+const char *string;
+int size, pos;
+struct re_registers *regs;
+{
+	int result = re_match_2_internal(bufp, NULL, 0, string, size,
+									 pos, regs, size);
 
-					/* We just parsed a valid interval.  */
+# ifndef REGEX_MALLOC
+#  ifdef C_ALLOCA
+	alloca(0);
+#  endif
+# endif
+	return result;
+}
 
-					/* If it's invalid to have no preceding re.  */
-					if (!laststart) {
-						if (syntax & RE_CONTEXT_INVALID_OPS)
-							FREE_STACK_RETURN(REG_BADRPT);
-						else if (syntax & RE_CONTEXT_INDEP_OPS)
-							laststart = b;
-						else
-							goto unfetch_interval;
-					}
+# ifdef _LIBC
+weak_alias(__re_match, re_match)
+# endif
+#endif							/* not emacs */
+static boolean group_match_null_string_p _RE_ARGS((unsigned char **p,
+												   unsigned char *end,
+												   register_info_type *
 
-					/* If the upper bound is zero, don't want to succeed at
-					   all; jump from `laststart' to `b + 3', which will be
-					   the end of the buffer after we insert the jump.  */
-					if (upper_bound == 0) {
-						GET_BUFFER_SPACE(3);
-						INSERT_JUMP(jump, laststart, b + 3);
-						b += 3;
-					}
+												   reg_info));
+static boolean alt_match_null_string_p
+_RE_ARGS(
 
-					/* Otherwise, we have a nontrivial interval.  When
-					   we're all done, the pattern will look like:
-					   set_number_at <jump count> <upper bound>
-					   set_number_at <succeed_n count> <lower bound>
-					   succeed_n <after jump addr> <succeed_n count>
-					   <body of loop>
-					   jump_n <succeed_n addr> <jump count>
-					   (The upper bound and `jump_n' are omitted if
-					   `upper_bound' is 1, though.)  */
-					else {		/* If the upper bound is > 1, we need to insert
-								   more at the end of the loop.  */
-						unsigned nbytes = 10 + (upper_bound > 1) * 10;
+		 (unsigned char *p, unsigned char *end,
+		  register_info_type * reg_info));
+static boolean common_op_match_null_string_p
+_RE_ARGS(
 
-						GET_BUFFER_SPACE(nbytes);
+		 (unsigned char **p, unsigned char *end,
+		  register_info_type * reg_info));
+static int bcmp_translate
+_RE_ARGS((const char *s1, const char *s2, int len, char *translate));
 
-						/* Initialize lower bound of the `succeed_n', even
-						   though it will be set during matching by its
-						   attendant `set_number_at' (inserted next),
-						   because `re_compile_fastmap' needs to know.
-						   Jump to the `jump_n' we might insert below.  */
-						INSERT_JUMP2(succeed_n, laststart,
-									 b + 5 + (upper_bound > 1) * 5,
-									 lower_bound);
-						b += 5;
+/* re_match_2 matches the compiled pattern in BUFP against the
+   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+   and SIZE2, respectively).  We start matching at POS, and stop
+   matching at STOP.
 
-						/* Code to initialize the lower bound.  Insert
-						   before the `succeed_n'.  The `5' is the last two
-						   bytes of this `set_number_at', plus 3 bytes of
-						   the following `succeed_n'.  */
-						insert_op2(set_number_at, laststart, 5,
-								   lower_bound, b);
-						b += 5;
+   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+   store offsets for the substring each group matched in REGS.  See the
+   documentation for exactly how many groups we fill.
 
-						if (upper_bound > 1) {	/* More than one repetition is allowed, so
-												   append a backward jump to the `succeed_n'
-												   that starts this interval.
+   We return -1 if no match, -2 if an internal error (such as the
+   failure stack overflowing).  Otherwise, we return the length of the
+   matched substring.  */
 
-												   When we've reached this during matching,
-												   we'll have matched the interval once, so
-												   jump back only `upper_bound - 1' times.  */
-							STORE_JUMP2(jump_n, b, laststart + 5,
-										upper_bound - 1);
-							b += 5;
+int re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
+struct re_pattern_buffer *bufp;
+const char *string1, *string2;
+int size1, size2;
+int pos;
+struct re_registers *regs;
+int stop;
+{
+	int result = re_match_2_internal(bufp, string1, size1, string2, size2,
+									 pos, regs, stop);
 
-							/* The location we want to set is the second
-							   parameter of the `jump_n'; that is `b-2' as
-							   an absolute address.  `laststart' will be
-							   the `set_number_at' we're about to insert;
-							   `laststart+3' the number to set, the source
-							   for the relative address.  But we are
-							   inserting into the middle of the pattern --
-							   so everything is getting moved up by 5.
-							   Conclusion: (b - 2) - (laststart + 3) + 5,
-							   i.e., b - laststart.
+#ifndef REGEX_MALLOC
+# ifdef C_ALLOCA
+	alloca(0);
+# endif
+#endif
+	return result;
+}
 
-							   We insert this at the beginning of the loop
-							   so that if we fail during matching, we'll
-							   reinitialize the bounds.  */
-							insert_op2(set_number_at, laststart,
-									   b - laststart, upper_bound - 1, b);
-							b += 5;
-						}
-					}
-					pending_exact = 0;
-					beg_interval = NULL;
-				}
-				break;
+#ifdef _LIBC
+weak_alias(__re_match_2, re_match_2)
+#endif
+/* This is a separate function so that we can force an alloca cleanup
+   afterwards.  */
+static int
+re_match_2_internal(bufp, string1, size1, string2, size2, pos, regs, stop)
+struct re_pattern_buffer *bufp;
+const char *string1, *string2;
+int size1, size2;
+int pos;
+struct re_registers *regs;
+int stop;
+{
+	/* General temporaries.  */
+	int mcnt;
+	unsigned char *p1;
 
-			  unfetch_interval:
-				/* If an invalid interval, match the characters as literals.  */
-				assert(beg_interval);
-				p = beg_interval;
-				beg_interval = NULL;
+	/* Just past the end of the corresponding string.  */
+	const char *end1, *end2;
 
-				/* normal_char and normal_backslash need `c'.  */
-				PATFETCH(c);
+	/* Pointers into string1 and string2, just past the last characters in
+	   each to consider matching.  */
+	const char *end_match_1, *end_match_2;
 
-				if (!(syntax & RE_NO_BK_BRACES)) {
-					if (p > pattern && p[-1] == '\\')
-						goto normal_backslash;
-				}
-				goto normal_char;
+	/* Where we are in the data, and the end of the current string.  */
+	const char *d, *dend;
 
-#ifdef emacs
-				/* There is no way to specify the before_dot and after_dot
-				   operators.  rms says this is ok.  --karl  */
-			case '=':
-				BUF_PUSH(at_dot);
-				break;
+	/* Where we are in the pattern, and the end of the pattern.  */
+	unsigned char *p = bufp->buffer;
+	register unsigned char *pend = p + bufp->used;
 
-			case 's':
-				laststart = b;
-				PATFETCH(c);
-				BUF_PUSH_2(syntaxspec, syntax_spec_code[c]);
-				break;
+	/* Mark the opcode just after a start_memory, so we can test for an
+	   empty subpattern when we get to the stop_memory.  */
+	unsigned char *just_past_start_mem = 0;
 
-			case 'S':
-				laststart = b;
-				PATFETCH(c);
-				BUF_PUSH_2(notsyntaxspec, syntax_spec_code[c]);
-				break;
-#endif							/* emacs */
+	/* We use this to map every character in the string.  */
+	RE_TRANSLATE_TYPE translate = bufp->translate;
 
+	/* Failure point stack.  Each place that can handle a failure further
+	   down the line pushes a failure point on this stack.  It consists of
+	   restart, regend, and reg_info for all registers corresponding to
+	   the subexpressions we're currently inside, plus the number of such
+	   registers, and, finally, two char *'s.  The first char * is where
+	   to resume scanning the pattern; the second one is where to resume
+	   scanning the strings.  If the latter is zero, the failure point is
+	   a ``dummy''; if a failure happens and the failure point is a dummy,
+	   it gets discarded and the next next one is tried.  */
+#ifdef MATCH_MAY_ALLOCATE		/* otherwise, this is global.  */
+	fail_stack_type fail_stack;
+#endif
+#ifdef DEBUG
+	static unsigned failure_id;
+	unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
+#endif
 
-			case 'w':
-				if (syntax & RE_NO_GNU_OPS)
-					goto normal_char;
-				laststart = b;
-				BUF_PUSH(wordchar);
-				break;
+#ifdef REL_ALLOC
+	/* This holds the pointer to the failure stack, when
+	   it is allocated relocatably.  */
+	fail_stack_elt_t *failure_stack_ptr;
+#endif
 
+	/* We fill all the registers internally, independent of what we
+	   return, for use in backreferences.  The number here includes
+	   an element for register zero.  */
+	size_t num_regs = bufp->re_nsub + 1;
 
-			case 'W':
-				if (syntax & RE_NO_GNU_OPS)
-					goto normal_char;
-				laststart = b;
-				BUF_PUSH(notwordchar);
-				break;
+	/* The currently active registers.  */
+	active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+	active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
 
+	/* Information on the contents of registers. These are pointers into
+	   the input strings; they record just what was matched (on this
+	   attempt) by a subexpression part of the pattern, that is, the
+	   regnum-th regstart pointer points to where in the pattern we began
+	   matching and the regnum-th regend points to right after where we
+	   stopped matching the regnum-th subexpression.  (The zeroth register
+	   keeps track of what the whole pattern matches.)  */
+#ifdef MATCH_MAY_ALLOCATE		/* otherwise, these are global.  */
+	const char **regstart, **regend;
+#endif
 
-			case '<':
-				if (syntax & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(wordbeg);
-				break;
+	/* If a group that's operated upon by a repetition operator fails to
+	   match anything, then the register for its start will need to be
+	   restored because it will have been set to wherever in the string we
+	   are when we last see its open-group operator.  Similarly for a
+	   register's end.  */
+#ifdef MATCH_MAY_ALLOCATE		/* otherwise, these are global.  */
+	const char **old_regstart, **old_regend;
+#endif
 
-			case '>':
-				if (syntax & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(wordend);
-				break;
+	/* The is_active field of reg_info helps us keep track of which (possibly
+	   nested) subexpressions we are currently in. The matched_something
+	   field of reg_info[reg_num] helps us tell whether or not we have
+	   matched any of the pattern so far this time through the reg_num-th
+	   subexpression.  These two fields get reset each time through any
+	   loop their register is in.  */
+#ifdef MATCH_MAY_ALLOCATE		/* otherwise, this is global.  */
+	register_info_type *reg_info;
+#endif
 
-			case 'b':
-				if (syntax & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(wordbound);
-				break;
+	/* The following record the register info as found in the above
+	   variables when we find a match better than any we've seen before.
+	   This happens as we backtrack through the failure points, which in
+	   turn happens only if we have not yet matched the entire string. */
+	unsigned best_regs_set = false;
 
-			case 'B':
-				if (syntax & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(notwordbound);
-				break;
+#ifdef MATCH_MAY_ALLOCATE		/* otherwise, these are global.  */
+	const char **best_regstart, **best_regend;
+#endif
 
-			case '`':
-				if (syntax & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(begbuf);
-				break;
+	/* Logically, this is `best_regend[0]'.  But we don't want to have to
+	   allocate space for that if we're not allocating space for anything
+	   else (see below).  Also, we never need info about register 0 for
+	   any of the other register vectors, and it seems rather a kludge to
+	   treat `best_regend' differently than the rest.  So we keep track of
+	   the end of the best match so far in a separate variable.  We
+	   initialize this to NULL so that when we backtrack the first time
+	   and need to test it, it's not garbage.  */
+	const char *match_end = NULL;
 
-			case '\'':
-				if (syntax & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(endbuf);
-				break;
+	/* This helps SET_REGS_MATCHED avoid doing redundant work.  */
+	int set_regs_matched_done = 0;
 
-			case '1':
-			case '2':
-			case '3':
-			case '4':
-			case '5':
-			case '6':
-			case '7':
-			case '8':
-			case '9':
-				if (syntax & RE_NO_BK_REFS)
-					goto normal_char;
+	/* Used when we pop values we don't care about.  */
+#ifdef MATCH_MAY_ALLOCATE		/* otherwise, these are global.  */
+	const char **reg_dummy;
+	register_info_type *reg_info_dummy;
+#endif
 
-				c1 = c - '0';
+#ifdef DEBUG
+	/* Counts the total number of registers pushed.  */
+	unsigned num_regs_pushed = 0;
+#endif
 
-				if (c1 > regnum)
-					FREE_STACK_RETURN(REG_ESUBREG);
+	DEBUG_PRINT1("\n\nEntering re_match_2.\n");
 
-				/* Can't back reference to a subexpression if inside of it.  */
-				if (group_in_compile_stack(compile_stack, (regnum_t) c1))
-					goto normal_char;
+	INIT_FAIL_STACK();
 
-				laststart = b;
-				BUF_PUSH_2(duplicate, c1);
-				break;
+#ifdef MATCH_MAY_ALLOCATE
+	/* Do not bother to initialize all the register variables if there are
+	   no groups in the pattern, as it takes a fair amount of time.  If
+	   there are groups, we include space for register 0 (the whole
+	   pattern), even though we never use it, since it simplifies the
+	   array indexing.  We should fix this.  */
+	if (bufp->re_nsub) {
+		regstart = REGEX_TALLOC(num_regs, const char *);
+		regend = REGEX_TALLOC(num_regs, const char *);
+		old_regstart = REGEX_TALLOC(num_regs, const char *);
+		old_regend = REGEX_TALLOC(num_regs, const char *);
+		best_regstart = REGEX_TALLOC(num_regs, const char *);
+		best_regend = REGEX_TALLOC(num_regs, const char *);
 
+		reg_info = REGEX_TALLOC(num_regs, register_info_type);
+		reg_dummy = REGEX_TALLOC(num_regs, const char *);
 
-			case '+':
-			case '?':
-				if (syntax & RE_BK_PLUS_QM)
-					goto handle_plus;
-				else
-					goto normal_backslash;
+		reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type);
 
-			default:
-			  normal_backslash:
-				/* You might think it would be useful for \ to mean
-				   not to translate; but if we don't translate it
-				   it will never match anything.  */
-				c = TRANSLATE(c);
-				goto normal_char;
-			}
-			break;
+		if (!(regstart && regend && old_regstart && old_regend && reg_info
+			  && best_regstart && best_regend && reg_dummy
+			  && reg_info_dummy)) {
+			FREE_VARIABLES();
+			return -2;
+		}
+	} else {
+		/* We must initialize all our variables to NULL, so that
+		   `FREE_VARIABLES' doesn't try to free them.  */
+		regstart = regend = old_regstart = old_regend = best_regstart
+			= best_regend = reg_dummy = NULL;
+		reg_info = reg_info_dummy = (register_info_type *) NULL;
+	}
+#endif							/* MATCH_MAY_ALLOCATE */
 
+	/* The starting position is bogus.  */
+	if (pos < 0 || pos > size1 + size2) {
+		FREE_VARIABLES();
+		return -1;
+	}
 
-		default:
-			/* Expects the character in `c'.  */
-		  normal_char:
-			/* If no exactn currently being built.  */
-			if (!pending_exact
-				/* If last exactn not at current position.  */
-				|| pending_exact + *pending_exact + 1 != b
-				/* We have only one byte following the exactn for the count.  */
-				|| *pending_exact == (1 << BYTEWIDTH) - 1
-				/* If followed by a repetition operator.  */
-				|| *p == '*' || *p == '^' || ((syntax & RE_BK_PLUS_QM)
-											  ? *p == '\\' && (p[1] == '+'
-															   || p[1] ==
-															   '?') : (*p
-																	   ==
-																	   '+'
-																	   ||
-																	   *p
-																	   ==
-																	   '?'))
-				|| ((syntax & RE_INTERVALS)
-					&& ((syntax & RE_NO_BK_BRACES)
-						? *p == '{' : (p[0] == '\\' && p[1] == '{')))) {
-				/* Start building a new exactn.  */
+	/* Initialize subexpression text positions to -1 to mark ones that no
+	   start_memory/stop_memory has been seen for. Also initialize the
+	   register information struct.  */
+	for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
+		regstart[mcnt] = regend[mcnt]
+			= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
 
-				laststart = b;
+		REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
+		IS_ACTIVE(reg_info[mcnt]) = 0;
+		MATCHED_SOMETHING(reg_info[mcnt]) = 0;
+		EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
+	}
 
-				BUF_PUSH_2(exactn, 0);
-				pending_exact = b - 1;
-			}
+	/* We move `string1' into `string2' if the latter's empty -- but not if
+	   `string1' is null.  */
+	if (size2 == 0 && string1 != NULL) {
+		string2 = string1;
+		size2 = size1;
+		string1 = 0;
+		size1 = 0;
+	}
+	end1 = string1 + size1;
+	end2 = string2 + size2;
 
-			BUF_PUSH(c);
-			(*pending_exact)++;
-			break;
-		}						/* switch (c) */
-	}							/* while p != pend */
+	/* Compute where to stop matching, within the two strings.  */
+	if (stop <= size1) {
+		end_match_1 = string1 + stop;
+		end_match_2 = string2;
+	} else {
+		end_match_1 = end1;
+		end_match_2 = string2 + stop - size1;
+	}
 
+	/* `p' scans through the pattern as `d' scans through the data.
+	   `dend' is the end of the input string that `d' points within.  `d'
+	   is advanced into the following input string whenever necessary, but
+	   this happens before fetching; therefore, at the beginning of the
+	   loop, `d' can be pointing at the end of a string, but it cannot
+	   equal `string2'.  */
+	if (size1 > 0 && pos <= size1) {
+		d = string1 + pos;
+		dend = end_match_1;
+	} else {
+		d = string2 + pos - size1;
+		dend = end_match_2;
+	}
 
-	/* Through the pattern now.  */
+	DEBUG_PRINT1("The compiled pattern is:\n");
+	DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
+	DEBUG_PRINT1("The string to match is: `");
+	DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
+	DEBUG_PRINT1("'\n");
 
-	if (fixup_alt_jump)
-		STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
+	/* This loops over pattern commands.  It exits by returning from the
+	   function if the match is complete, or it drops through if the match
+	   fails at this starting point in the input data.  */
+	for (;;) {
+#ifdef _LIBC
+		DEBUG_PRINT2("\n%p: ", p);
+#else
+		DEBUG_PRINT2("\n0x%x: ", p);
+#endif
 
-	if (!COMPILE_STACK_EMPTY)
-		FREE_STACK_RETURN(REG_EPAREN);
+		if (p == pend) {		/* End of pattern means we might have succeeded.  */
+			DEBUG_PRINT1("end of pattern ... ");
 
-	/* If we don't want backtracking, force success
-	   the first time we reach the end of the compiled pattern.  */
-	if (syntax & RE_NO_POSIX_BACKTRACKING)
-		BUF_PUSH(succeed);
+			/* If we haven't matched the entire string, and we want the
+			   longest match, try backtracking.  */
+			if (d != end_match_2) {
+				/* 1 if this match ends in the same string (string1 or string2)
+				   as the best previous match.  */
+				boolean same_str_p = (FIRST_STRING_P(match_end)
+									  == MATCHING_IN_FIRST_STRING);
 
-	free(compile_stack.stack);
+				/* 1 if this match is the best seen so far.  */
+				boolean best_match_p;
 
-	/* We have succeeded; set the length of the buffer.  */
-	bufp->used = b - bufp->buffer;
+				/* AIX compiler got confused when this was combined
+				   with the previous declaration.  */
+				if (same_str_p)
+					best_match_p = d > match_end;
+				else
+					best_match_p = !MATCHING_IN_FIRST_STRING;
 
-#ifdef DEBUG
-	if (debug) {
-		DEBUG_PRINT1("\nCompiled pattern: \n");
-		print_compiled_pattern(bufp);
-	}
-#endif							/* DEBUG */
+				DEBUG_PRINT1("backtracking.\n");
 
-#ifndef MATCH_MAY_ALLOCATE
-	/* Initialize the failure stack to the largest possible stack.  This
-	   isn't necessary unless we're trying to avoid calling alloca in
-	   the search and match routines.  */
-	{
-		int num_regs = bufp->re_nsub + 1;
+				if (!FAIL_STACK_EMPTY()) {	/* More failure points to try.  */
 
-		/* Since DOUBLE_FAIL_STACK refuses to double only if the current size
-		   is strictly greater than re_max_failures, the largest possible stack
-		   is 2 * re_max_failures failure points.  */
-		if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) {
-			fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
+					/* If exceeds best match so far, save it.  */
+					if (!best_regs_set || best_match_p) {
+						best_regs_set = true;
+						match_end = d;
 
-# ifdef emacs
-			if (!fail_stack.stack)
-				fail_stack.stack
-					= (fail_stack_elt_t *) xmalloc(fail_stack.size
-												   *
-												   sizeof
-												   (fail_stack_elt_t));
-			else
-				fail_stack.stack =
-					(fail_stack_elt_t *) xrealloc(fail_stack.stack,
-												  (fail_stack.size *
-												   sizeof
-												   (fail_stack_elt_t)));
-# else							/* not emacs */
-			if (!fail_stack.stack)
-				fail_stack.stack
-					= (fail_stack_elt_t *) malloc(fail_stack.size
-												  *
-												  sizeof
-												  (fail_stack_elt_t));
-			else
-				fail_stack.stack =
-					(fail_stack_elt_t *) realloc(fail_stack.stack,
-												 (fail_stack.size *
-												  sizeof
-												  (fail_stack_elt_t)));
-# endif							/* not emacs */
-		}
+						DEBUG_PRINT1("\nSAVING match as best so far.\n");
 
-		regex_grow_registers(num_regs);
-	}
-#endif							/* not MATCH_MAY_ALLOCATE */
+						for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
+							best_regstart[mcnt] = regstart[mcnt];
+							best_regend[mcnt] = regend[mcnt];
+						}
+					}
+					goto fail;
+				}
 
-	return REG_NOERROR;
-}								/* regex_compile */
-
-/* Subroutines for `regex_compile'.  */
+				/* If no failure points, don't restore garbage.  And if
+				   last match is real best match, don't restore second
+				   best one. */
+				else if (best_regs_set && !best_match_p) {
+				  restore_best_regs:
+					/* Restore best match.  It may happen that `dend ==
+					   end_match_1' while the restored d is in string2.
+					   For example, the pattern `x.*y.*z' against the
+					   strings `x-' and `y-z-', if the two strings are
+					   not consecutive in memory.  */
+					DEBUG_PRINT1("Restoring best registers.\n");
 
-/* Store OP at LOC followed by two-byte integer parameter ARG.  */
+					d = match_end;
+					dend = ((d >= string1 && d <= end1)
+							? end_match_1 : end_match_2);
 
-static void store_op1(op, loc, arg)
-re_opcode_t op;
-unsigned char *loc;
-int arg;
-{
-	*loc = (unsigned char) op;
-	STORE_NUMBER(loc + 1, arg);
-}
+					for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
+						regstart[mcnt] = best_regstart[mcnt];
+						regend[mcnt] = best_regend[mcnt];
+					}
+				}
+			}
+			/* d != end_match_2 */
+		  succeed_label:
+			DEBUG_PRINT1("Accepting match.\n");
 
+			/* If caller wants register contents data back, do it.  */
+			if (regs && !bufp->no_sub) {
+				/* Have the register data arrays been allocated?  */
+				if (bufp->regs_allocated == REGS_UNALLOCATED) {	/* No.  So allocate them with malloc.  We need one
+																   extra element beyond `num_regs' for the `-1' marker
+																   GNU code uses.  */
+					regs->num_regs = MAX(RE_NREGS, num_regs + 1);
+					regs->start = TALLOC(regs->num_regs, regoff_t);
+					regs->end = TALLOC(regs->num_regs, regoff_t);
+					if (regs->start == NULL || regs->end == NULL) {
+						FREE_VARIABLES();
+						return -2;
+					}
+					bufp->regs_allocated = REGS_REALLOCATE;
+				} else if (bufp->regs_allocated == REGS_REALLOCATE) {	/* Yes.  If we need more elements than were already
+																		   allocated, reallocate them.  If we need fewer, just
+																		   leave it alone.  */
+					if (regs->num_regs < num_regs + 1) {
+						regs->num_regs = num_regs + 1;
+						RETALLOC(regs->start, regs->num_regs, regoff_t);
+						RETALLOC(regs->end, regs->num_regs, regoff_t);
+						if (regs->start == NULL || regs->end == NULL) {
+							FREE_VARIABLES();
+							return -2;
+						}
+					}
+				} else {
+					/* These braces fend off a "empty body in an else-statement"
+					   warning under GCC when assert expands to nothing.  */
+					assert(bufp->regs_allocated == REGS_FIXED);
+				}
 
-/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
+				/* Convert the pointer data in `regstart' and `regend' to
+				   indices.  Register zero has to be set differently,
+				   since we haven't kept track of any info for it.  */
+				if (regs->num_regs > 0) {
+					regs->start[0] = pos;
+					regs->end[0] = (MATCHING_IN_FIRST_STRING
+									? ((regoff_t) (d - string1))
+									: ((regoff_t) (d - string2 + size1)));
+				}
 
-static void store_op2(op, loc, arg1, arg2)
-re_opcode_t op;
-unsigned char *loc;
-int arg1, arg2;
-{
-	*loc = (unsigned char) op;
-	STORE_NUMBER(loc + 1, arg1);
-	STORE_NUMBER(loc + 3, arg2);
-}
+				/* Go through the first `min (num_regs, regs->num_regs)'
+				   registers, since that is all we initialized.  */
+				for (mcnt = 1;
+					 (unsigned) mcnt < MIN(num_regs, regs->num_regs);
+					 mcnt++) {
+					if (REG_UNSET(regstart[mcnt])
+						|| REG_UNSET(regend[mcnt])) regs->start[mcnt] =
+							regs->end[mcnt] = -1;
+					else {
+						regs->start[mcnt]
+							= (regoff_t) POINTER_TO_OFFSET(regstart[mcnt]);
+						regs->end[mcnt]
+							= (regoff_t) POINTER_TO_OFFSET(regend[mcnt]);
+					}
+				}
 
+				/* If the regs structure we return has more elements than
+				   were in the pattern, set the extra elements to -1.  If
+				   we (re)allocated the registers, this is the case,
+				   because we always allocate enough to have at least one
+				   -1 at the end.  */
+				for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs;
+					 mcnt++)
+					regs->start[mcnt] = regs->end[mcnt] = -1;
+			}
+			/* regs && !bufp->no_sub */
+			DEBUG_PRINT4
+				("%u failure points pushed, %u popped (%u remain).\n",
+				 nfailure_points_pushed, nfailure_points_popped,
+				 nfailure_points_pushed - nfailure_points_popped);
+			DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed);
 
-/* Copy the bytes from LOC to END to open up three bytes of space at LOC
-   for OP followed by two-byte integer parameter ARG.  */
+			mcnt = d - pos - (MATCHING_IN_FIRST_STRING
+							  ? string1 : string2 - size1);
 
-static void insert_op1(op, loc, arg, end)
-re_opcode_t op;
-unsigned char *loc;
-int arg;
-unsigned char *end;
-{
-	register unsigned char *pfrom = end;
-	register unsigned char *pto = end + 3;
+			DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt);
 
-	while (pfrom != loc)
-		*--pto = *--pfrom;
+			FREE_VARIABLES();
+			return mcnt;
+		}
 
-	store_op1(op, loc, arg);
-}
+		/* Otherwise match next pattern command.  */
+		switch (SWITCH_ENUM_CAST((re_opcode_t) * p++)) {
+			/* Ignore these.  Used to ignore the n of succeed_n's which
+			   currently have n == 0.  */
+		case no_op:
+			DEBUG_PRINT1("EXECUTING no_op.\n");
+			break;
 
+		case succeed:
+			DEBUG_PRINT1("EXECUTING succeed.\n");
+			goto succeed_label;
 
-/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
+			/* Match the next n pattern characters exactly.  The following
+			   byte in the pattern defines n, and the n bytes after that
+			   are the characters to match.  */
+		case exactn:
+			mcnt = *p++;
+			DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt);
 
-static void insert_op2(op, loc, arg1, arg2, end)
-re_opcode_t op;
-unsigned char *loc;
-int arg1, arg2;
-unsigned char *end;
-{
-	register unsigned char *pfrom = end;
-	register unsigned char *pto = end + 5;
+			/* This is written out as an if-else so we don't waste time
+			   testing `translate' inside the loop.  */
+			if (translate) {
+				do {
+					PREFETCH();
+					if ((unsigned char) translate[(unsigned char) *d++]
+						!= (unsigned char) *p++)
+						goto fail;
+				}
+				while (--mcnt);
+			} else {
+				do {
+					PREFETCH();
+					if (*d++ != (char) *p++)
+						goto fail;
+				}
+				while (--mcnt);
+			}
+			SET_REGS_MATCHED();
+			break;
 
-	while (pfrom != loc)
-		*--pto = *--pfrom;
 
-	store_op2(op, loc, arg1, arg2);
-}
+			/* Match any character except possibly a newline or a null.  */
+		case anychar:
+			DEBUG_PRINT1("EXECUTING anychar.\n");
 
+			PREFETCH();
 
-/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
-   after an alternative or a begin-subexpression.  We assume there is at
-   least one character before the ^.  */
+			if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n')
+				|| (bufp->syntax & RE_DOT_NOT_NULL
+					&& TRANSLATE(*d) == '\000')) goto fail;
 
-static boolean at_begline_loc_p(pattern, p, syntax)
-const char *pattern, *p;
-reg_syntax_t syntax;
-{
-	const char *prev = p - 2;
-	boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
+			SET_REGS_MATCHED();
+			DEBUG_PRINT2("  Matched `%d'.\n", *d);
+			d++;
+			break;
 
-	return
-		/* After a subexpression?  */
-		(*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
-		/* After an alternative?  */
-		|| (*prev == '|'
-			&& (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
-}
 
+		case charset:
+		case charset_not:
+		{
+			register unsigned char c;
+			boolean not = (re_opcode_t) * (p - 1) == charset_not;
+
+			DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : "");
 
-/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
-   at least one character after the $, i.e., `P < PEND'.  */
+			PREFETCH();
+			c = TRANSLATE(*d);	/* The character to match.  */
 
-static boolean at_endline_loc_p(p, pend, syntax)
-const char *p, *pend;
-reg_syntax_t syntax;
-{
-	const char *next = p;
-	boolean next_backslash = *next == '\\';
-	const char *next_next = p + 1 < pend ? p + 1 : 0;
+			/* Cast to `unsigned' instead of `unsigned char' in case the
+			   bit list is a full 32 bytes long.  */
+			if (c < (unsigned) (*p * BYTEWIDTH)
+				&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+				not = !not;
 
-	return
-		/* Before a subexpression?  */
-		(syntax & RE_NO_BK_PARENS ? *next == ')'
-		 : next_backslash && next_next && *next_next == ')')
-		/* Before an alternative?  */
-		|| (syntax & RE_NO_BK_VBAR ? *next == '|'
-			: next_backslash && next_next && *next_next == '|');
-}
+			p += 1 + *p;
 
+			if (!not)
+				goto fail;
 
-/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
-   false if it's not.  */
+			SET_REGS_MATCHED();
+			d++;
+			break;
+		}
 
-static boolean group_in_compile_stack(compile_stack, regnum)
-compile_stack_type compile_stack;
-regnum_t regnum;
-{
-	int this_element;
 
-	for (this_element = compile_stack.avail - 1;
-		 this_element >= 0; this_element--)
-		if (compile_stack.stack[this_element].regnum == regnum)
-			return true;
+			/* The beginning of a group is represented by start_memory.
+			   The arguments are the register number in the next byte, and the
+			   number of groups inner to this one in the next.  The text
+			   matched within the group is recorded (in the internal
+			   registers data structure) under the register number.  */
+		case start_memory:
+			DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]);
 
-	return false;
-}
+			/* Find out if this group can match the empty string.  */
+			p1 = p;				/* To send to group_match_null_string_p.  */
 
+			if (REG_MATCH_NULL_STRING_P(reg_info[*p]) ==
+				MATCH_NULL_UNSET_VALUE)
+					REG_MATCH_NULL_STRING_P(reg_info[*p]) =
+					group_match_null_string_p(&p1, pend, reg_info);
 
-/* Read the ending character of a range (in a bracket expression) from the
-   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
-   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
-   Then we set the translation of all bits between the starting and
-   ending characters (inclusive) in the compiled pattern B.
+			/* Save the position in the string where we were the last time
+			   we were at this open-group operator in case the group is
+			   operated upon by a repetition operator, e.g., with `(a*)*b'
+			   against `ab'; then we want to ignore where we are now in
+			   the string in case this attempt to match fails.  */
+			old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
+				? REG_UNSET(regstart[*p]) ? d : regstart[*p]
+				: regstart[*p];
+			DEBUG_PRINT2("  old_regstart: %d\n",
+						 POINTER_TO_OFFSET(old_regstart[*p]));
 
-   Return an error code.
+			regstart[*p] = d;
+			DEBUG_PRINT2("  regstart: %d\n",
+						 POINTER_TO_OFFSET(regstart[*p]));
 
-   We use these short variable names so we can use the same macros as
-   `regex_compile' itself.  */
+			IS_ACTIVE(reg_info[*p]) = 1;
+			MATCHED_SOMETHING(reg_info[*p]) = 0;
 
-static reg_errcode_t compile_range(p_ptr, pend, translate, syntax, b)
-const char **p_ptr, *pend;
-RE_TRANSLATE_TYPE translate;
-reg_syntax_t syntax;
-unsigned char *b;
-{
-	unsigned this_char;
+			/* Clear this whenever we change the register activity status.  */
+			set_regs_matched_done = 0;
 
-	const char *p = *p_ptr;
-	reg_errcode_t ret;
-	char range_start[2];
-	char range_end[2];
-	char ch[2];
+			/* This is the new highest active register.  */
+			highest_active_reg = *p;
 
-	if (p == pend)
-		return REG_ERANGE;
+			/* If nothing was active before, this is the new lowest active
+			   register.  */
+			if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+				lowest_active_reg = *p;
 
-	/* Fetch the endpoints without translating them; the
-	   appropriate translation is done in the bit-setting loop below.  */
-	range_start[0] = p[-2];
-	range_start[1] = '\0';
-	range_end[0] = p[0];
-	range_end[1] = '\0';
+			/* Move past the register number and inner group count.  */
+			p += 2;
+			just_past_start_mem = p;
 
-	/* Have to increment the pointer into the pattern string, so the
-	   caller isn't still at the ending character.  */
-	(*p_ptr)++;
+			break;
 
-	/* Report an error if the range is empty and the syntax prohibits this.  */
-	ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
 
-	/* Here we see why `this_char' has to be larger than an `unsigned
-	   char' -- we would otherwise go into an infinite loop, since all
-	   characters <= 0xff.  */
-	ch[1] = '\0';
-	for (this_char = 0; this_char <= (unsigned char) -1; ++this_char) {
-		ch[0] = this_char;
-		if (strcoll(range_start, ch) <= 0 && strcoll(ch, range_end) <= 0) {
-			SET_LIST_BIT(TRANSLATE(this_char));
-			ret = REG_NOERROR;
-		}
-	}
+			/* The stop_memory opcode represents the end of a group.  Its
+			   arguments are the same as start_memory's: the register
+			   number, and the number of inner groups.  */
+		case stop_memory:
+			DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
 
-	return ret;
-}
-
-/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
-   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
-   characters can start a string that matches the pattern.  This fastmap
-   is used by re_search to skip quickly over impossible starting points.
+			/* We need to save the string position the last time we were at
+			   this close-group operator in case the group is operated
+			   upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+			   against `aba'; then we want to ignore where we are now in
+			   the string in case this attempt to match fails.  */
+			old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
+				? REG_UNSET(regend[*p]) ? d : regend[*p]
+				: regend[*p];
+			DEBUG_PRINT2("      old_regend: %d\n",
+						 POINTER_TO_OFFSET(old_regend[*p]));
 
-   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
-   area as BUFP->fastmap.
+			regend[*p] = d;
+			DEBUG_PRINT2("      regend: %d\n",
+						 POINTER_TO_OFFSET(regend[*p]));
 
-   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
-   the pattern buffer.
+			/* This register isn't active anymore.  */
+			IS_ACTIVE(reg_info[*p]) = 0;
 
-   Returns 0 if we succeed, -2 if an internal error.   */
+			/* Clear this whenever we change the register activity status.  */
+			set_regs_matched_done = 0;
 
-int re_compile_fastmap(bufp)
-struct re_pattern_buffer *bufp;
-{
-	int j, k;
+			/* If this was the only register active, nothing is active
+			   anymore.  */
+			if (lowest_active_reg == highest_active_reg) {
+				lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+				highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+			} else {			/* We must scan for the new highest active register, since
+								   it isn't necessarily one less than now: consider
+								   (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
+								   new highest active register is 1.  */
+				unsigned char r = *p - 1;
 
-#ifdef MATCH_MAY_ALLOCATE
-	fail_stack_type fail_stack;
-#endif
-#ifndef REGEX_MALLOC
-	char *destination;
-#endif
+				while (r > 0 && !IS_ACTIVE(reg_info[r]))
+					r--;
 
-	register char *fastmap = bufp->fastmap;
-	unsigned char *pattern = bufp->buffer;
-	unsigned char *p = pattern;
-	register unsigned char *pend = pattern + bufp->used;
+				/* If we end up at register zero, that means that we saved
+				   the registers as the result of an `on_failure_jump', not
+				   a `start_memory', and we jumped to past the innermost
+				   `stop_memory'.  For example, in ((.)*) we save
+				   registers 1 and 2 as a result of the *, but when we pop
+				   back to the second ), we are at the stop_memory 1.
+				   Thus, nothing is active.  */
+				if (r == 0) {
+					lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+					highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+				} else
+					highest_active_reg = r;
+			}
 
-#ifdef REL_ALLOC
-	/* This holds the pointer to the failure stack, when
-	   it is allocated relocatably.  */
-	fail_stack_elt_t *failure_stack_ptr;
-#endif
+			/* If just failed to match something this time around with a
+			   group that's operated on by a repetition operator, try to
+			   force exit from the ``loop'', and restore the register
+			   information for this group that we had before trying this
+			   last match.  */
+			if ((!MATCHED_SOMETHING(reg_info[*p])
+				 || just_past_start_mem == p - 1)
+				&& (p + 2) < pend) {
+				boolean is_a_jump_n = false;
 
-	/* Assume that each path through the pattern can be null until
-	   proven otherwise.  We set this false at the bottom of switch
-	   statement, to which we get only if a particular path doesn't
-	   match the empty string.  */
-	boolean path_can_be_null = true;
+				p1 = p + 2;
+				mcnt = 0;
+				switch ((re_opcode_t) * p1++) {
+				case jump_n:
+					is_a_jump_n = true;
+				case pop_failure_jump:
+				case maybe_pop_jump:
+				case jump:
+				case dummy_failure_jump:
+					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+					if (is_a_jump_n)
+						p1 += 2;
+					break;
+
+				default:
+					/* do nothing */ ;
+				}
+				p1 += mcnt;
+
+				/* If the next operation is a jump backwards in the pattern
+				   to an on_failure_jump right before the start_memory
+				   corresponding to this stop_memory, exit from the loop
+				   by forcing a failure after pushing on the stack the
+				   on_failure_jump's jump in the pattern, and d.  */
+				if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump
+					&& (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
+					/* If this group ever matched anything, then restore
+					   what its registers were before trying this last
+					   failed match, e.g., with `(a*)*b' against `ab' for
+					   regstart[1], and, e.g., with `((a*)*(b*)*)*'
+					   against `aba' for regend[3].
+
+					   Also restore the registers for inner groups for,
+					   e.g., `((a*)(b*))*' against `aba' (register 3 would
+					   otherwise get trashed).  */
 
-	/* We aren't doing a `succeed_n' to begin with.  */
-	boolean succeed_n_p = false;
+					if (EVER_MATCHED_SOMETHING(reg_info[*p])) {
+						unsigned r;
 
-	assert(fastmap != NULL && p != NULL);
+						EVER_MATCHED_SOMETHING(reg_info[*p]) = 0;
 
-	INIT_FAIL_STACK();
-	bzero(fastmap, 1 << BYTEWIDTH);	/* Assume nothing's valid.  */
-	bufp->fastmap_accurate = 1;	/* It will be when we're done.  */
-	bufp->can_be_null = 0;
+						/* Restore this and inner groups' (if any) registers.  */
+						for (r = *p;
+							 r < (unsigned) *p + (unsigned) *(p + 1); r++) {
+							regstart[r] = old_regstart[r];
 
-	while (1) {
-		if (p == pend || *p == succeed) {
-			/* We have reached the (effective) end of pattern.  */
-			if (!FAIL_STACK_EMPTY()) {
-				bufp->can_be_null |= path_can_be_null;
+							/* xx why this test?  */
+							if (old_regend[r] >= regstart[r])
+								regend[r] = old_regend[r];
+						}
+					}
+					p1++;
+					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+					PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
 
-				/* Reset for next path.  */
-				path_can_be_null = true;
+					goto fail;
+				}
+			}
 
-				p = fail_stack.stack[--fail_stack.avail].pointer;
+			/* Move past the register number and the inner group count.  */
+			p += 2;
+			break;
 
-				continue;
-			} else
-				break;
-		}
 
-		/* We should never be about to go beyond the end of the pattern.  */
-		assert(p < pend);
+			/* \<digit> has been turned into a `duplicate' command which is
+			   followed by the numeric value of <digit> as the register number.  */
+		case duplicate:
+		{
+			register const char *d2, *dend2;
+			int regno = *p++;	/* Get which register to match against.  */
 
-		switch (SWITCH_ENUM_CAST((re_opcode_t) * p++)) {
+			DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno);
 
-			/* I guess the idea here is to simply not bother with a fastmap
-			   if a backreference is used, since it's too hard to figure out
-			   the fastmap for the corresponding group.  Setting
-			   `can_be_null' stops `re_search_2' from using the fastmap, so
-			   that is all we do.  */
-		case duplicate:
-			bufp->can_be_null = 1;
-			goto done;
+			/* Can't back reference a group which we've never matched.  */
+			if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno]))
+				goto fail;
 
+			/* Where in input to try to start matching.  */
+			d2 = regstart[regno];
 
-			/* Following are the cases which match a character.  These end
-			   with `break'.  */
+			/* Where to stop matching; if both the place to start and
+			   the place to stop matching are in the same string, then
+			   set to the place to stop, otherwise, for now have to use
+			   the end of the first string.  */
 
-		case exactn:
-			fastmap[p[1]] = 1;
-			break;
+			dend2 = ((FIRST_STRING_P(regstart[regno])
+					  == FIRST_STRING_P(regend[regno]))
+					 ? regend[regno] : end_match_1);
+			for (;;) {
+				/* If necessary, advance to next segment in register
+				   contents.  */
+				while (d2 == dend2) {
+					if (dend2 == end_match_2)
+						break;
+					if (dend2 == regend[regno])
+						break;
 
+					/* End of string1 => advance to string2. */
+					d2 = string2;
+					dend2 = regend[regno];
+				}
+				/* At end of register contents => success */
+				if (d2 == dend2)
+					break;
 
-		case charset:
-			for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-				if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
-					fastmap[j] = 1;
-			break;
+				/* If necessary, advance to next segment in data.  */
+				PREFETCH();
 
+				/* How many characters left in this segment to match.  */
+				mcnt = dend - d;
 
-		case charset_not:
-			/* Chars beyond end of map must be allowed.  */
-			for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
-				fastmap[j] = 1;
+				/* Want how many consecutive characters we can match in
+				   one shot, so, if necessary, adjust the count.  */
+				if (mcnt > dend2 - d2)
+					mcnt = dend2 - d2;
 
-			for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-				if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
-					fastmap[j] = 1;
+				/* Compare that many; failure if mismatch, else move
+				   past them.  */
+				if (translate ? bcmp_translate(d, d2, mcnt, translate)
+					: memcmp(d, d2, mcnt))
+					goto fail;
+				d += mcnt, d2 += mcnt;
+
+				/* Do this because we've match some characters.  */
+				SET_REGS_MATCHED();
+			}
+		}
 			break;
 
 
-		case wordchar:
-			for (j = 0; j < (1 << BYTEWIDTH); j++)
-				if (SYNTAX(j) == Sword)
-					fastmap[j] = 1;
-			break;
+			/* begline matches the empty string at the beginning of the string
+			   (unless `not_bol' is set in `bufp'), and, if
+			   `newline_anchor' is set, after newlines.  */
+		case begline:
+			DEBUG_PRINT1("EXECUTING begline.\n");
 
+			if (AT_STRINGS_BEG(d)) {
+				if (!bufp->not_bol)
+					break;
+			} else if (d[-1] == '\n' && bufp->newline_anchor) {
+				break;
+			}
+			/* In all other cases, we fail.  */
+			goto fail;
 
-		case notwordchar:
-			for (j = 0; j < (1 << BYTEWIDTH); j++)
-				if (SYNTAX(j) != Sword)
-					fastmap[j] = 1;
-			break;
 
+			/* endline is the dual of begline.  */
+		case endline:
+			DEBUG_PRINT1("EXECUTING endline.\n");
 
-		case anychar:
-		{
-			int fastmap_newline = fastmap['\n'];
+			if (AT_STRINGS_END(d)) {
+				if (!bufp->not_eol)
+					break;
+			}
 
-			/* `.' matches anything ...  */
-			for (j = 0; j < (1 << BYTEWIDTH); j++)
-				fastmap[j] = 1;
+			/* We have to ``prefetch'' the next character.  */
+			else if ((d == end1 ? *string2 : *d) == '\n'
+					 && bufp->newline_anchor) {
+				break;
+			}
+			goto fail;
 
-			/* ... except perhaps newline.  */
-			if (!(bufp->syntax & RE_DOT_NEWLINE))
-				fastmap['\n'] = fastmap_newline;
 
-			/* Return if we have already set `can_be_null'; if we have,
-			   then the fastmap is irrelevant.  Something's wrong here.  */
-			else if (bufp->can_be_null)
-				goto done;
+			/* Match at the very beginning of the data.  */
+		case begbuf:
+			DEBUG_PRINT1("EXECUTING begbuf.\n");
+			if (AT_STRINGS_BEG(d))
+				break;
+			goto fail;
 
-			/* Otherwise, have to check alternative paths.  */
-			break;
-		}
 
-#ifdef emacs
-		case syntaxspec:
-			k = *p++;
-			for (j = 0; j < (1 << BYTEWIDTH); j++)
-				if (SYNTAX(j) == (enum syntaxcode) k)
-					fastmap[j] = 1;
-			break;
+			/* Match at the very end of the data.  */
+		case endbuf:
+			DEBUG_PRINT1("EXECUTING endbuf.\n");
+			if (AT_STRINGS_END(d))
+				break;
+			goto fail;
 
 
-		case notsyntaxspec:
-			k = *p++;
-			for (j = 0; j < (1 << BYTEWIDTH); j++)
-				if (SYNTAX(j) != (enum syntaxcode) k)
-					fastmap[j] = 1;
-			break;
+			/* on_failure_keep_string_jump is used to optimize `.*\n'.  It
+			   pushes NULL as the value for the string on the stack.  Then
+			   `pop_failure_point' will keep the current value for the
+			   string, instead of restoring it.  To see why, consider
+			   matching `foo\nbar' against `.*\n'.  The .* matches the foo;
+			   then the . fails against the \n.  But the next thing we want
+			   to do is match the \n against the \n; if we restored the
+			   string value, we would be back at the foo.
+
+			   Because this is used only in specific cases, we don't need to
+			   check all the things that `on_failure_jump' does, to make
+			   sure the right things get saved on the stack.  Hence we don't
+			   share its code.  The only reason to push anything on the
+			   stack at all is that otherwise we would have to change
+			   `anychar's code to do something besides goto fail in this
+			   case; that seems worse than this.  */
+		case on_failure_keep_string_jump:
+			DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump");
 
+			EXTRACT_NUMBER_AND_INCR(mcnt, p);
+#ifdef _LIBC
+			DEBUG_PRINT3(" %d (to %p):\n", mcnt, p + mcnt);
+#else
+			DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt);
+#endif
 
-			/* All cases after this match the empty string.  These end with
-			   `continue'.  */
+			PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
+			break;
 
 
-		case before_dot:
-		case at_dot:
-		case after_dot:
-			continue;
-#endif							/* emacs */
+			/* Uses of on_failure_jump:
 
+			   Each alternative starts with an on_failure_jump that points
+			   to the beginning of the next alternative.  Each alternative
+			   except the last ends with a jump that in effect jumps past
+			   the rest of the alternatives.  (They really jump to the
+			   ending jump of the following alternative, because tensioning
+			   these jumps is a hassle.)
 
-		case no_op:
-		case begline:
-		case endline:
-		case begbuf:
-		case endbuf:
-		case wordbound:
-		case notwordbound:
-		case wordbeg:
-		case wordend:
-		case push_dummy_failure:
-			continue;
+			   Repeats start with an on_failure_jump that points past both
+			   the repetition text and either the following jump or
+			   pop_failure_jump back to this on_failure_jump.  */
+		case on_failure_jump:
+		  on_failure:
+			DEBUG_PRINT1("EXECUTING on_failure_jump");
 
+			EXTRACT_NUMBER_AND_INCR(mcnt, p);
+#ifdef _LIBC
+			DEBUG_PRINT3(" %d (to %p)", mcnt, p + mcnt);
+#else
+			DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
+#endif
 
-		case jump_n:
-		case pop_failure_jump:
-		case maybe_pop_jump:
-		case jump:
-		case jump_past_alt:
-		case dummy_failure_jump:
-			EXTRACT_NUMBER_AND_INCR(j, p);
-			p += j;
-			if (j > 0)
-				continue;
+			/* If this on_failure_jump comes right before a group (i.e.,
+			   the original * applied to a group), save the information
+			   for that group and all inner ones, so that if we fail back
+			   to this point, the group's information will be correct.
+			   For example, in \(a*\)*\1, we need the preceding group,
+			   and in \(zz\(a*\)b*\)\2, we need the inner group.  */
 
-			/* Jump backward implies we just went through the body of a
-			   loop and matched nothing.  Opcode jumped to should be
-			   `on_failure_jump' or `succeed_n'.  Just treat it like an
-			   ordinary jump.  For a * loop, it has pushed its failure
-			   point already; if so, discard that as redundant.  */
-			if ((re_opcode_t) * p != on_failure_jump
-				&& (re_opcode_t) * p != succeed_n)
-				continue;
+			/* We can't use `p' to check ahead because we push
+			   a failure point to `p + mcnt' after we do this.  */
+			p1 = p;
 
-			p++;
-			EXTRACT_NUMBER_AND_INCR(j, p);
-			p += j;
+			/* We need to skip no_op's before we look for the
+			   start_memory in case this on_failure_jump is happening as
+			   the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+			   against aba.  */
+			while (p1 < pend && (re_opcode_t) * p1 == no_op)
+				p1++;
 
-			/* If what's on the stack is where we are now, pop it.  */
-			if (!FAIL_STACK_EMPTY()
-				&& fail_stack.stack[fail_stack.avail - 1].pointer == p)
-				fail_stack.avail--;
+			if (p1 < pend && (re_opcode_t) * p1 == start_memory) {
+				/* We have a new highest active register now.  This will
+				   get reset at the start_memory we are about to get to,
+				   but we will have saved all the registers relevant to
+				   this repetition op, as described above.  */
+				highest_active_reg = *(p1 + 1) + *(p1 + 2);
+				if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+					lowest_active_reg = *(p1 + 1);
+			}
 
-			continue;
+			DEBUG_PRINT1(":\n");
+			PUSH_FAILURE_POINT(p + mcnt, d, -2);
+			break;
 
 
-		case on_failure_jump:
-		case on_failure_keep_string_jump:
-		  handle_on_failure_jump:
-			EXTRACT_NUMBER_AND_INCR(j, p);
+			/* A smart repeat ends with `maybe_pop_jump'.
+			   We change it to either `pop_failure_jump' or `jump'.  */
+		case maybe_pop_jump:
+			EXTRACT_NUMBER_AND_INCR(mcnt, p);
+			DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt);
+			{
+				register unsigned char *p2 = p;
 
-			/* For some patterns, e.g., `(a?)?', `p+j' here points to the
-			   end of the pattern.  We don't want to push such a point,
-			   since when we restore it above, entering the switch will
-			   increment `p' past the end of the pattern.  We don't need
-			   to push such a point since we obviously won't find any more
-			   fastmap entries beyond `pend'.  Such a pattern can match
-			   the null string, though.  */
-			if (p + j < pend) {
-				if (!PUSH_PATTERN_OP(p + j, fail_stack)) {
-					RESET_FAIL_STACK();
-					return -2;
-				}
-			} else
-				bufp->can_be_null = 1;
+				/* Compare the beginning of the repeat with what in the
+				   pattern follows its end. If we can establish that there
+				   is nothing that they would both match, i.e., that we
+				   would have to backtrack because of (as in, e.g., `a*a')
+				   then we can change to pop_failure_jump, because we'll
+				   never have to backtrack.
 
-			if (succeed_n_p) {
-				EXTRACT_NUMBER_AND_INCR(k, p);	/* Skip the n.  */
-				succeed_n_p = false;
-			}
+				   This is not true in the case of alternatives: in
+				   `(a|ab)*' we do need to backtrack to the `ab' alternative
+				   (e.g., if the string was `ab').  But instead of trying to
+				   detect that here, the alternative has put on a dummy
+				   failure point which is what we will end up popping.  */
 
-			continue;
+				/* Skip over open/close-group commands.
+				   If what follows this loop is a ...+ construct,
+				   look at what begins its body, since we will have to
+				   match at least one of that.  */
+				while (1) {
+					if (p2 + 2 < pend
+						&& ((re_opcode_t) * p2 == stop_memory
+							|| (re_opcode_t) * p2 == start_memory))
+						p2 += 3;
+					else if (p2 + 6 < pend
+							 && (re_opcode_t) * p2 == dummy_failure_jump)
+							p2 += 6;
+					else
+						break;
+				}
 
+				p1 = p + mcnt;
+				/* p1[0] ... p1[2] are the `on_failure_jump' corresponding
+				   to the `maybe_finalize_jump' of this case.  Examine what
+				   follows.  */
 
-		case succeed_n:
-			/* Get to the number of times to succeed.  */
-			p += 2;
+				/* If we're at the end of the pattern, we can change.  */
+				if (p2 == pend) {
+					/* Consider what happens when matching ":\(.*\)"
+					   against ":/".  I don't really understand this code
+					   yet.  */
+					p[-3] = (unsigned char) pop_failure_jump;
+					DEBUG_PRINT1
+						("  End of pattern: change to `pop_failure_jump'.\n");
+				}
 
-			/* Increment p past the n for when k != 0.  */
-			EXTRACT_NUMBER_AND_INCR(k, p);
-			if (k == 0) {
-				p -= 4;
-				succeed_n_p = true;	/* Spaghetti code alert.  */
-				goto handle_on_failure_jump;
-			}
-			continue;
+				else if ((re_opcode_t) * p2 == exactn
+						 || (bufp->newline_anchor
+							 && (re_opcode_t) * p2 == endline)) {
+					register unsigned char c =
+						*p2 == (unsigned char) endline ? '\n' : p2[2];
 
+					if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
+						p[-3] = (unsigned char) pop_failure_jump;
+						DEBUG_PRINT3("  %c != %c => pop_failure_jump.\n",
+									 c, p1[5]);
+					}
 
-		case set_number_at:
-			p += 4;
-			continue;
+					else if ((re_opcode_t) p1[3] == charset
+							 || (re_opcode_t) p1[3] == charset_not) {
+						int not = (re_opcode_t) p1[3] == charset_not;
 
+						if (c < (unsigned char) (p1[4] * BYTEWIDTH)
+							&& p1[5 +
+								  c / BYTEWIDTH] & (1 << (c %
+														  BYTEWIDTH))) not
+								= !not;
 
-		case start_memory:
-		case stop_memory:
-			p += 2;
-			continue;
+						/* `not' is equal to 1 if c would match, which means
+						   that we can't change to pop_failure_jump.  */
+						if (!not) {
+							p[-3] = (unsigned char) pop_failure_jump;
+							DEBUG_PRINT1
+								("  No match => pop_failure_jump.\n");
+						}
+					}
+				} else if ((re_opcode_t) * p2 == charset) {
+					/* We win if the first character of the loop is not part
+					   of the charset.  */
+					if ((re_opcode_t) p1[3] == exactn
+						&& !((int) p2[1] * BYTEWIDTH > (int) p1[5]
+							 && (p2[2 + p1[5] / BYTEWIDTH]
+								 & (1 << (p1[5] % BYTEWIDTH))))) {
+						p[-3] = (unsigned char) pop_failure_jump;
+						DEBUG_PRINT1("  No match => pop_failure_jump.\n");
+					}
 
+					else if ((re_opcode_t) p1[3] == charset_not) {
+						int idx;
 
-		default:
-			abort();			/* We have listed all the cases.  */
-		}						/* switch *p++ */
+						/* We win if the charset_not inside the loop
+						   lists every character listed in the charset after.  */
+						for (idx = 0; idx < (int) p2[1]; idx++)
+							if (!(p2[2 + idx] == 0 || (idx < (int) p1[4]
+													   &&
+													   ((p2
+														 [2 +
+														  idx] & ~p1[5 +
+																	 idx])
+														== 0))))
+								break;
 
-		/* Getting here means we have found the possible starting
-		   characters for one path of the pattern -- and that the empty
-		   string does not match.  We need not follow this path further.
-		   Instead, look at the next alternative (remembered on the
-		   stack), or quit if no more.  The test at the top of the loop
-		   does these things.  */
-		path_can_be_null = false;
-		p = pend;
-	}							/* while p */
+						if (idx == p2[1]) {
+							p[-3] = (unsigned char) pop_failure_jump;
+							DEBUG_PRINT1
+								("  No match => pop_failure_jump.\n");
+						}
+					} else if ((re_opcode_t) p1[3] == charset) {
+						int idx;
 
-	/* Set `can_be_null' for the last path (also the first path, if the
-	   pattern is empty).  */
-	bufp->can_be_null |= path_can_be_null;
+						/* We win if the charset inside the loop
+						   has no overlap with the one after the loop.  */
+						for (idx = 0;
+							 idx < (int) p2[1] && idx < (int) p1[4]; idx++)
+							if ((p2[2 + idx] & p1[5 + idx]) != 0)
+								break;
 
-  done:
-	RESET_FAIL_STACK();
-	return 0;
-}								/* re_compile_fastmap */
+						if (idx == p2[1] || idx == p1[4]) {
+							p[-3] = (unsigned char) pop_failure_jump;
+							DEBUG_PRINT1
+								("  No match => pop_failure_jump.\n");
+						}
+					}
+				}
+			}
+			p -= 2;				/* Point at relative address again.  */
+			if ((re_opcode_t) p[-1] != pop_failure_jump) {
+				p[-1] = (unsigned char) jump;
+				DEBUG_PRINT1("  Match => jump.\n");
+				goto unconditional_jump;
+			}
+			/* Note fall through.  */
 
-#ifdef _LIBC
-weak_alias(__re_compile_fastmap, re_compile_fastmap)
-#endif
-/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
-   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
-   this memory for recording register information.  STARTS and ENDS
-   must be allocated using the malloc library routine, and must each
-   be at least NUM_REGS * sizeof (regoff_t) bytes long.
 
-   If NUM_REGS == 0, then subsequent matches should allocate their own
-   register data.
+			/* The end of a simple repeat has a pop_failure_jump back to
+			   its matching on_failure_jump, where the latter will push a
+			   failure point.  The pop_failure_jump takes off failure
+			   points put on by this pop_failure_jump's matching
+			   on_failure_jump; we got through the pattern to here from the
+			   matching on_failure_jump, so didn't fail.  */
+		case pop_failure_jump:
+		{
+			/* We need to pass separate storage for the lowest and
+			   highest registers, even though we don't care about the
+			   actual values.  Otherwise, we will restore only one
+			   register from the stack, since lowest will == highest in
+			   `pop_failure_point'.  */
+			active_reg_t dummy_low_reg, dummy_high_reg;
+			unsigned char *pdummy;
+			const char *sdummy;
 
-   Unless this function is called, the first search or match using
-   PATTERN_BUFFER will allocate its own register data, without
-   freeing the old data.  */
-void re_set_registers(bufp, regs, num_regs, starts, ends)
-struct re_pattern_buffer *bufp;
-struct re_registers *regs;
-unsigned num_regs;
-regoff_t *starts, *ends;
-{
-	if (num_regs) {
-		bufp->regs_allocated = REGS_REALLOCATE;
-		regs->num_regs = num_regs;
-		regs->start = starts;
-		regs->end = ends;
-	} else {
-		bufp->regs_allocated = REGS_UNALLOCATED;
-		regs->num_regs = 0;
-		regs->start = regs->end = (regoff_t *) 0;
-	}
-}
+			DEBUG_PRINT1("EXECUTING pop_failure_jump.\n");
+			POP_FAILURE_POINT(sdummy, pdummy,
+							  dummy_low_reg, dummy_high_reg,
+							  reg_dummy, reg_dummy, reg_info_dummy);
+		}
+			/* Note fall through.  */
 
+		  unconditional_jump:
 #ifdef _LIBC
-weak_alias(__re_set_registers, re_set_registers)
+			DEBUG_PRINT2("\n%p: ", p);
+#else
+			DEBUG_PRINT2("\n0x%x: ", p);
 #endif
-/* Searching routines.  */
-/* Like re_search_2, below, but only one string is specified, and
-   doesn't let you say where to stop matching. */
-int re_search(bufp, string, size, startpos, range, regs)
-struct re_pattern_buffer *bufp;
-const char *string;
-int size, startpos, range;
-struct re_registers *regs;
-{
-	return re_search_2(bufp, NULL, 0, string, size, startpos, range,
-					   regs, size);
-}
+			/* Note fall through.  */
 
+			/* Unconditionally jump (without popping any failure points).  */
+		case jump:
+			EXTRACT_NUMBER_AND_INCR(mcnt, p);	/* Get the amount to jump.  */
+			DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
+			p += mcnt;			/* Do the jump.  */
 #ifdef _LIBC
-weak_alias(__re_search, re_search)
+			DEBUG_PRINT2("(to %p).\n", p);
+#else
+			DEBUG_PRINT2("(to 0x%x).\n", p);
 #endif
-/* Using the compiled pattern in BUFP->buffer, first tries to match the
-   virtual concatenation of STRING1 and STRING2, starting first at index
-   STARTPOS, then at STARTPOS + 1, and so on.
+			break;
 
-   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
 
-   RANGE is how far to scan while trying to match.  RANGE = 0 means try
-   only at STARTPOS; in general, the last start tried is STARTPOS +
-   RANGE.
+			/* We need this opcode so we can detect where alternatives end
+			   in `group_match_null_string_p' et al.  */
+		case jump_past_alt:
+			DEBUG_PRINT1("EXECUTING jump_past_alt.\n");
+			goto unconditional_jump;
 
-   In REGS, return the indices of the virtual concatenation of STRING1
-   and STRING2 that matched the entire BUFP->buffer and its contained
-   subexpressions.
 
-   Do not consider matching one past the index STOP in the virtual
-   concatenation of STRING1 and STRING2.
+			/* Normally, the on_failure_jump pushes a failure point, which
+			   then gets popped at pop_failure_jump.  We will end up at
+			   pop_failure_jump, also, and with a pattern of, say, `a+', we
+			   are skipping over the on_failure_jump, so we have to push
+			   something meaningless for pop_failure_jump to pop.  */
+		case dummy_failure_jump:
+			DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n");
+			/* It doesn't matter what we push for the string here.  What
+			   the code at `fail' tests is the value for the pattern.  */
+			PUSH_FAILURE_POINT(NULL, NULL, -2);
+			goto unconditional_jump;
 
-   We return either the position in the strings at which the match was
-   found, -1 if no match, or -2 if error (such as failure
-   stack overflow).  */
-int
-re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs,
-			stop)
-struct re_pattern_buffer *bufp;
-const char *string1, *string2;
-int size1, size2;
-int startpos;
-int range;
-struct re_registers *regs;
-int stop;
-{
-	int val;
-	register char *fastmap = bufp->fastmap;
-	register RE_TRANSLATE_TYPE translate = bufp->translate;
-	int total_size = size1 + size2;
-	int endpos = startpos + range;
 
-	/* Check for out-of-range STARTPOS.  */
-	if (startpos < 0 || startpos > total_size)
-		return -1;
+			/* At the end of an alternative, we need to push a dummy failure
+			   point in case we are followed by a `pop_failure_jump', because
+			   we don't want the failure point for the alternative to be
+			   popped.  For example, matching `(a|ab)*' against `aab'
+			   requires that we match the `ab' alternative.  */
+		case push_dummy_failure:
+			DEBUG_PRINT1("EXECUTING push_dummy_failure.\n");
+			/* See comments just above at `dummy_failure_jump' about the
+			   two zeroes.  */
+			PUSH_FAILURE_POINT(NULL, NULL, -2);
+			break;
 
-	/* Fix up RANGE if it might eventually take us outside
-	   the virtual concatenation of STRING1 and STRING2.
-	   Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
-	if (endpos < 0)
-		range = 0 - startpos;
-	else if (endpos > total_size)
-		range = total_size - startpos;
+			/* Have to succeed matching what follows at least n times.
+			   After that, handle like `on_failure_jump'.  */
+		case succeed_n:
+			EXTRACT_NUMBER(mcnt, p + 2);
+			DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt);
 
-	/* If the search isn't to be a backwards one, don't waste time in a
-	   search for a pattern that must be anchored.  */
-	if (bufp->used > 0 && range > 0
-		&& ((re_opcode_t) bufp->buffer[0] == begbuf
-			/* `begline' is like `begbuf' if it cannot match at newlines.  */
-			|| ((re_opcode_t) bufp->buffer[0] == begline
-				&& !bufp->newline_anchor))) {
-		if (startpos > 0)
-			return -1;
-		else
-			range = 1;
-	}
-#ifdef emacs
-	/* In a forward search for something that starts with \=.
-	   don't keep searching past point.  */
-	if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot
-		&& range > 0) {
-		range = PT - startpos;
-		if (range <= 0)
-			return -1;
-	}
-#endif							/* emacs */
+			assert(mcnt >= 0);
+			/* Originally, this is how many times we HAVE to succeed.  */
+			if (mcnt > 0) {
+				mcnt--;
+				p += 2;
+				STORE_NUMBER_AND_INCR(p, mcnt);
+#ifdef _LIBC
+				DEBUG_PRINT3("  Setting %p to %d.\n", p - 2, mcnt);
+#else
+				DEBUG_PRINT3("  Setting 0x%x to %d.\n", p - 2, mcnt);
+#endif
+			} else if (mcnt == 0) {
+#ifdef _LIBC
+				DEBUG_PRINT2("  Setting two bytes from %p to no_op.\n",
+							 p + 2);
+#else
+				DEBUG_PRINT2("  Setting two bytes from 0x%x to no_op.\n",
+							 p + 2);
+#endif
+				p[2] = (unsigned char) no_op;
+				p[3] = (unsigned char) no_op;
+				goto on_failure;
+			}
+			break;
 
-	/* Update the fastmap now if not correct already.  */
-	if (fastmap && !bufp->fastmap_accurate)
-		if (re_compile_fastmap(bufp) == -2)
-			return -2;
+		case jump_n:
+			EXTRACT_NUMBER(mcnt, p + 2);
+			DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt);
 
-	/* Loop through the string, looking for a place to start matching.  */
-	for (;;) {
-		/* If a fastmap is supplied, skip quickly over characters that
-		   cannot be the start of a match.  If the pattern can match the
-		   null string, however, we don't need to skip characters; we want
-		   the first null string.  */
-		if (fastmap && startpos < total_size && !bufp->can_be_null) {
-			if (range > 0) {	/* Searching forwards.  */
-				register const char *d;
-				register int lim = 0;
-				int irange = range;
+			/* Originally, this is how many times we CAN jump.  */
+			if (mcnt) {
+				mcnt--;
+				STORE_NUMBER(p + 2, mcnt);
+#ifdef _LIBC
+				DEBUG_PRINT3("  Setting %p to %d.\n", p + 2, mcnt);
+#else
+				DEBUG_PRINT3("  Setting 0x%x to %d.\n", p + 2, mcnt);
+#endif
+				goto unconditional_jump;
+			}
+			/* If don't have to jump any more, skip over the rest of command.  */
+			else
+				p += 4;
+			break;
 
-				if (startpos < size1 && startpos + range >= size1)
-					lim = range - (size1 - startpos);
+		case set_number_at:
+		{
+			DEBUG_PRINT1("EXECUTING set_number_at.\n");
 
-				d =
-					(startpos >=
-					 size1 ? string2 - size1 : string1) + startpos;
+			EXTRACT_NUMBER_AND_INCR(mcnt, p);
+			p1 = p + mcnt;
+			EXTRACT_NUMBER_AND_INCR(mcnt, p);
+#ifdef _LIBC
+			DEBUG_PRINT3("  Setting %p to %d.\n", p1, mcnt);
+#else
+			DEBUG_PRINT3("  Setting 0x%x to %d.\n", p1, mcnt);
+#endif
+			STORE_NUMBER(p1, mcnt);
+			break;
+		}
 
-				/* Written out as an if-else to avoid testing `translate'
-				   inside the loop.  */
-				if (translate)
-					while (range > lim && !fastmap[(unsigned char)
-												   translate[
-															 (unsigned
-															  char) *d++]])
-						range--;
-				else
-					while (range > lim && !fastmap[(unsigned char) *d++])
-						range--;
+#if 0
+			/* The DEC Alpha C compiler 3.x generates incorrect code for the
+			   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
+			   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
+			   macro and introducing temporary variables works around the bug.  */
+
+		case wordbound:
+			DEBUG_PRINT1("EXECUTING wordbound.\n");
+			if (AT_WORD_BOUNDARY(d))
+				break;
+			goto fail;
 
-				startpos += irange - range;
-			} else {			/* Searching backwards.  */
+		case notwordbound:
+			DEBUG_PRINT1("EXECUTING notwordbound.\n");
+			if (AT_WORD_BOUNDARY(d))
+				goto fail;
+			break;
+#else
+		case wordbound:
+		{
+			boolean prevchar, thischar;
 
-				register char c = (size1 == 0 || startpos >= size1
-								   ? string2[startpos - size1]
-								   : string1[startpos]);
+			DEBUG_PRINT1("EXECUTING wordbound.\n");
+			if (AT_STRINGS_BEG(d) || AT_STRINGS_END(d))
+				break;
 
-				if (!fastmap[(unsigned char) TRANSLATE(c)])
-					goto advance;
-			}
+			prevchar = WORDCHAR_P(d - 1);
+			thischar = WORDCHAR_P(d);
+			if (prevchar != thischar)
+				break;
+			goto fail;
 		}
 
-		/* If can't match the null string, and that's all we have left, fail.  */
-		if (range >= 0 && startpos == total_size && fastmap
-			&& !bufp->can_be_null) return -1;
-
-		val = re_match_2_internal(bufp, string1, size1, string2, size2,
-								  startpos, regs, stop);
-#ifndef REGEX_MALLOC
-# ifdef C_ALLOCA
-		alloca(0);
-# endif
-#endif
-
-		if (val >= 0)
-			return startpos;
+		case notwordbound:
+		{
+			boolean prevchar, thischar;
 
-		if (val == -2)
-			return -2;
+			DEBUG_PRINT1("EXECUTING notwordbound.\n");
+			if (AT_STRINGS_BEG(d) || AT_STRINGS_END(d))
+				goto fail;
 
-	  advance:
-		if (!range)
+			prevchar = WORDCHAR_P(d - 1);
+			thischar = WORDCHAR_P(d);
+			if (prevchar != thischar)
+				goto fail;
 			break;
-		else if (range > 0) {
-			range--;
-			startpos++;
-		} else {
-			range++;
-			startpos--;
 		}
-	}
-	return -1;
-}								/* re_search_2 */
-
-#ifdef _LIBC
-weak_alias(__re_search_2, re_search_2)
-#endif
-/* This converts PTR, a pointer into one of the search strings `string1'
-   and `string2' into an offset from the beginning of that string.  */
-#define POINTER_TO_OFFSET(ptr)			\
-  (FIRST_STRING_P (ptr)				\
-   ? ((regoff_t) ((ptr) - string1))		\
-   : ((regoff_t) ((ptr) - string2 + size1)))
-/* Macros for dealing with the split strings in re_match_2.  */
-#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
-/* Call before fetching a character with *d.  This switches over to
-   string2 if necessary.  */
-#define PREFETCH()							\
-  while (d == dend)						    	\
-    {									\
-      /* End of string2 => fail.  */					\
-      if (dend == end_match_2) 						\
-        goto fail;							\
-      /* End of string1 => advance to string2.  */ 			\
-      d = string2;						        \
-      dend = end_match_2;						\
-    }
-/* Test if at very beginning or at very end of the virtual concatenation
-   of `string1' and `string2'.  If only one string, it's `string2'.  */
-#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
-#define AT_STRINGS_END(d) ((d) == end2)
-/* Test if D points to a character which is word-constituent.  We have
-   two special cases to check for: if past the end of string1, look at
-   the first character in string2; and if before the beginning of
-   string2, look at the last character in string1.  */
-#define WORDCHAR_P(d)							\
-  (SYNTAX ((d) == end1 ? *string2					\
-           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
-   == Sword)
-/* Disabled due to a compiler bug -- see comment at case wordbound */
-#if 0
-/* Test if the character before D and the one at D differ with respect
-   to being word-constituent.  */
-#define AT_WORD_BOUNDARY(d)						\
-  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
-   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
 #endif
-/* Free everything we malloc.  */
-#ifdef MATCH_MAY_ALLOCATE
-# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
-# define FREE_VARIABLES()						\
-  do {									\
-    REGEX_FREE_STACK (fail_stack.stack);				\
-    FREE_VAR (regstart);						\
-    FREE_VAR (regend);							\
-    FREE_VAR (old_regstart);						\
-    FREE_VAR (old_regend);						\
-    FREE_VAR (best_regstart);						\
-    FREE_VAR (best_regend);						\
-    FREE_VAR (reg_info);						\
-    FREE_VAR (reg_dummy);						\
-    FREE_VAR (reg_info_dummy);						\
-  } while (0)
-#else
-# define FREE_VARIABLES() ((void)0)	/* Do nothing!  But inhibit gcc warning. */
-#endif							/* not MATCH_MAY_ALLOCATE */
-/* These values must meet several constraints.  They must not be valid
-   register values; since we have a limit of 255 registers (because
-   we use only one byte in the pattern for the register number), we can
-   use numbers larger than 255.  They must differ by 1, because of
-   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
-   be larger than the value for the highest register, so we do not try
-   to actually save any registers when none are active.  */
-#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
-#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
-/* Matching routines.  */
-#ifndef emacs					/* Emacs never uses this.  */
-/* re_match is like re_match_2 except it takes only a single string.  */
-int re_match(bufp, string, size, pos, regs)
-struct re_pattern_buffer *bufp;
-const char *string;
-int size, pos;
-struct re_registers *regs;
-{
-	int result = re_match_2_internal(bufp, NULL, 0, string, size,
-									 pos, regs, size);
 
-# ifndef REGEX_MALLOC
-#  ifdef C_ALLOCA
-	alloca(0);
-#  endif
-# endif
-	return result;
-}
+		case wordbeg:
+			DEBUG_PRINT1("EXECUTING wordbeg.\n");
+			if (WORDCHAR_P(d) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
+				break;
+			goto fail;
 
-# ifdef _LIBC
-weak_alias(__re_match, re_match)
-# endif
-#endif							/* not emacs */
-static boolean group_match_null_string_p _RE_ARGS((unsigned char **p,
-												   unsigned char *end,
-												   register_info_type *
+		case wordend:
+			DEBUG_PRINT1("EXECUTING wordend.\n");
+			if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
+				&& (!WORDCHAR_P(d) || AT_STRINGS_END(d)))
+				break;
+			goto fail;
 
-												   reg_info));
-static boolean alt_match_null_string_p
-_RE_ARGS(
+#ifdef emacs
+		case before_dot:
+			DEBUG_PRINT1("EXECUTING before_dot.\n");
+			if (PTR_CHAR_POS((unsigned char *) d) >= point)
+				goto fail;
+			break;
 
-		 (unsigned char *p, unsigned char *end,
-		  register_info_type * reg_info));
-static boolean common_op_match_null_string_p
-_RE_ARGS(
+		case at_dot:
+			DEBUG_PRINT1("EXECUTING at_dot.\n");
+			if (PTR_CHAR_POS((unsigned char *) d) != point)
+				goto fail;
+			break;
 
-		 (unsigned char **p, unsigned char *end,
-		  register_info_type * reg_info));
-static int bcmp_translate
-_RE_ARGS((const char *s1, const char *s2, int len, char *translate));
+		case after_dot:
+			DEBUG_PRINT1("EXECUTING after_dot.\n");
+			if (PTR_CHAR_POS((unsigned char *) d) <= point)
+				goto fail;
+			break;
 
-/* re_match_2 matches the compiled pattern in BUFP against the
-   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
-   and SIZE2, respectively).  We start matching at POS, and stop
-   matching at STOP.
+		case syntaxspec:
+			DEBUG_PRINT2("EXECUTING syntaxspec %d.\n", mcnt);
+			mcnt = *p++;
+			goto matchsyntax;
 
-   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
-   store offsets for the substring each group matched in REGS.  See the
-   documentation for exactly how many groups we fill.
+		case wordchar:
+			DEBUG_PRINT1("EXECUTING Emacs wordchar.\n");
+			mcnt = (int) Sword;
+		  matchsyntax:
+			PREFETCH();
+			/* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
+			d++;
+			if (SYNTAX(d[-1]) != (enum syntaxcode) mcnt)
+				goto fail;
+			SET_REGS_MATCHED();
+			break;
 
-   We return -1 if no match, -2 if an internal error (such as the
-   failure stack overflowing).  Otherwise, we return the length of the
-   matched substring.  */
+		case notsyntaxspec:
+			DEBUG_PRINT2("EXECUTING notsyntaxspec %d.\n", mcnt);
+			mcnt = *p++;
+			goto matchnotsyntax;
 
-int re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
-struct re_pattern_buffer *bufp;
-const char *string1, *string2;
-int size1, size2;
-int pos;
-struct re_registers *regs;
-int stop;
-{
-	int result = re_match_2_internal(bufp, string1, size1, string2, size2,
-									 pos, regs, stop);
+		case notwordchar:
+			DEBUG_PRINT1("EXECUTING Emacs notwordchar.\n");
+			mcnt = (int) Sword;
+		  matchnotsyntax:
+			PREFETCH();
+			/* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
+			d++;
+			if (SYNTAX(d[-1]) == (enum syntaxcode) mcnt)
+				goto fail;
+			SET_REGS_MATCHED();
+			break;
 
-#ifndef REGEX_MALLOC
-# ifdef C_ALLOCA
-	alloca(0);
-# endif
-#endif
-	return result;
-}
+#else							/* not emacs */
+		case wordchar:
+			DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n");
+			PREFETCH();
+			if (!WORDCHAR_P(d))
+				goto fail;
+			SET_REGS_MATCHED();
+			d++;
+			break;
 
-#ifdef _LIBC
-weak_alias(__re_match_2, re_match_2)
-#endif
-/* This is a separate function so that we can force an alloca cleanup
-   afterwards.  */
-static int
-re_match_2_internal(bufp, string1, size1, string2, size2, pos, regs, stop)
-struct re_pattern_buffer *bufp;
-const char *string1, *string2;
-int size1, size2;
-int pos;
-struct re_registers *regs;
-int stop;
-{
-	/* General temporaries.  */
-	int mcnt;
-	unsigned char *p1;
+		case notwordchar:
+			DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n");
+			PREFETCH();
+			if (WORDCHAR_P(d))
+				goto fail;
+			SET_REGS_MATCHED();
+			d++;
+			break;
+#endif							/* not emacs */
 
-	/* Just past the end of the corresponding string.  */
-	const char *end1, *end2;
+		default:
+			abort();
+		}
+		continue;				/* Successfully executed one pattern command; keep going.  */
 
-	/* Pointers into string1 and string2, just past the last characters in
-	   each to consider matching.  */
-	const char *end_match_1, *end_match_2;
 
-	/* Where we are in the data, and the end of the current string.  */
-	const char *d, *dend;
+		/* We goto here if a matching operation fails. */
+	  fail:
+		if (!FAIL_STACK_EMPTY()) {	/* A restart point is known.  Restore to that state.  */
+			DEBUG_PRINT1("\nFAIL:\n");
+			POP_FAILURE_POINT(d, p,
+							  lowest_active_reg, highest_active_reg,
+							  regstart, regend, reg_info);
 
-	/* Where we are in the pattern, and the end of the pattern.  */
-	unsigned char *p = bufp->buffer;
-	register unsigned char *pend = p + bufp->used;
+			/* If this failure point is a dummy, try the next one.  */
+			if (!p)
+				goto fail;
 
-	/* Mark the opcode just after a start_memory, so we can test for an
-	   empty subpattern when we get to the stop_memory.  */
-	unsigned char *just_past_start_mem = 0;
+			/* If we failed to the end of the pattern, don't examine *p.  */
+			assert(p <= pend);
+			if (p < pend) {
+				boolean is_a_jump_n = false;
 
-	/* We use this to map every character in the string.  */
-	RE_TRANSLATE_TYPE translate = bufp->translate;
+				/* If failed to a backwards jump that's part of a repetition
+				   loop, need to pop this failure point and use the next one.  */
+				switch ((re_opcode_t) * p) {
+				case jump_n:
+					is_a_jump_n = true;
+				case maybe_pop_jump:
+				case pop_failure_jump:
+				case jump:
+					p1 = p + 1;
+					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+					p1 += mcnt;
 
-	/* Failure point stack.  Each place that can handle a failure further
-	   down the line pushes a failure point on this stack.  It consists of
-	   restart, regend, and reg_info for all registers corresponding to
-	   the subexpressions we're currently inside, plus the number of such
-	   registers, and, finally, two char *'s.  The first char * is where
-	   to resume scanning the pattern; the second one is where to resume
-	   scanning the strings.  If the latter is zero, the failure point is
-	   a ``dummy''; if a failure happens and the failure point is a dummy,
-	   it gets discarded and the next next one is tried.  */
-#ifdef MATCH_MAY_ALLOCATE		/* otherwise, this is global.  */
-	fail_stack_type fail_stack;
-#endif
-#ifdef DEBUG
-	static unsigned failure_id;
-	unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
-#endif
+					if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n)
+						|| (!is_a_jump_n
+							&& (re_opcode_t) * p1 == on_failure_jump))
+							goto fail;
+					break;
+				default:
+					/* do nothing */ ;
+				}
+			}
 
-#ifdef REL_ALLOC
-	/* This holds the pointer to the failure stack, when
-	   it is allocated relocatably.  */
-	fail_stack_elt_t *failure_stack_ptr;
-#endif
+			if (d >= string1 && d <= end1)
+				dend = end_match_1;
+		} else
+			break;				/* Matching at this starting point really fails.  */
+	}							/* for (;;) */
 
-	/* We fill all the registers internally, independent of what we
-	   return, for use in backreferences.  The number here includes
-	   an element for register zero.  */
-	size_t num_regs = bufp->re_nsub + 1;
+	if (best_regs_set)
+		goto restore_best_regs;
 
-	/* The currently active registers.  */
-	active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-	active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+	FREE_VARIABLES();
 
-	/* Information on the contents of registers. These are pointers into
-	   the input strings; they record just what was matched (on this
-	   attempt) by a subexpression part of the pattern, that is, the
-	   regnum-th regstart pointer points to where in the pattern we began
-	   matching and the regnum-th regend points to right after where we
-	   stopped matching the regnum-th subexpression.  (The zeroth register
-	   keeps track of what the whole pattern matches.)  */
-#ifdef MATCH_MAY_ALLOCATE		/* otherwise, these are global.  */
-	const char **regstart, **regend;
-#endif
+	return -1;					/* Failure to match.  */
+}								/* re_match_2 */
+
+/* Subroutine definitions for re_match_2.  */
 
-	/* If a group that's operated upon by a repetition operator fails to
-	   match anything, then the register for its start will need to be
-	   restored because it will have been set to wherever in the string we
-	   are when we last see its open-group operator.  Similarly for a
-	   register's end.  */
-#ifdef MATCH_MAY_ALLOCATE		/* otherwise, these are global.  */
-	const char **old_regstart, **old_regend;
-#endif
 
-	/* The is_active field of reg_info helps us keep track of which (possibly
-	   nested) subexpressions we are currently in. The matched_something
-	   field of reg_info[reg_num] helps us tell whether or not we have
-	   matched any of the pattern so far this time through the reg_num-th
-	   subexpression.  These two fields get reset each time through any
-	   loop their register is in.  */
-#ifdef MATCH_MAY_ALLOCATE		/* otherwise, this is global.  */
-	register_info_type *reg_info;
-#endif
+/* We are passed P pointing to a register number after a start_memory.
 
-	/* The following record the register info as found in the above
-	   variables when we find a match better than any we've seen before.
-	   This happens as we backtrack through the failure points, which in
-	   turn happens only if we have not yet matched the entire string. */
-	unsigned best_regs_set = false;
+   Return true if the pattern up to the corresponding stop_memory can
+   match the empty string, and false otherwise.
 
-#ifdef MATCH_MAY_ALLOCATE		/* otherwise, these are global.  */
-	const char **best_regstart, **best_regend;
-#endif
+   If we find the matching stop_memory, sets P to point to one past its number.
+   Otherwise, sets P to an undefined byte less than or equal to END.
 
-	/* Logically, this is `best_regend[0]'.  But we don't want to have to
-	   allocate space for that if we're not allocating space for anything
-	   else (see below).  Also, we never need info about register 0 for
-	   any of the other register vectors, and it seems rather a kludge to
-	   treat `best_regend' differently than the rest.  So we keep track of
-	   the end of the best match so far in a separate variable.  We
-	   initialize this to NULL so that when we backtrack the first time
-	   and need to test it, it's not garbage.  */
-	const char *match_end = NULL;
+   We don't handle duplicates properly (yet).  */
 
-	/* This helps SET_REGS_MATCHED avoid doing redundant work.  */
-	int set_regs_matched_done = 0;
+static boolean group_match_null_string_p(p, end, reg_info)
+unsigned char **p, *end;
+register_info_type *reg_info;
+{
+	int mcnt;
 
-	/* Used when we pop values we don't care about.  */
-#ifdef MATCH_MAY_ALLOCATE		/* otherwise, these are global.  */
-	const char **reg_dummy;
-	register_info_type *reg_info_dummy;
-#endif
+	/* Point to after the args to the start_memory.  */
+	unsigned char *p1 = *p + 2;
 
-#ifdef DEBUG
-	/* Counts the total number of registers pushed.  */
-	unsigned num_regs_pushed = 0;
-#endif
+	while (p1 < end) {
+		/* Skip over opcodes that can match nothing, and return true or
+		   false, as appropriate, when we get to one that can't, or to the
+		   matching stop_memory.  */
 
-	DEBUG_PRINT1("\n\nEntering re_match_2.\n");
+		switch ((re_opcode_t) * p1) {
+			/* Could be either a loop or a series of alternatives.  */
+		case on_failure_jump:
+			p1++;
+			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
 
-	INIT_FAIL_STACK();
+			/* If the next operation is not a jump backwards in the
+			   pattern.  */
 
-#ifdef MATCH_MAY_ALLOCATE
-	/* Do not bother to initialize all the register variables if there are
-	   no groups in the pattern, as it takes a fair amount of time.  If
-	   there are groups, we include space for register 0 (the whole
-	   pattern), even though we never use it, since it simplifies the
-	   array indexing.  We should fix this.  */
-	if (bufp->re_nsub) {
-		regstart = REGEX_TALLOC(num_regs, const char *);
-		regend = REGEX_TALLOC(num_regs, const char *);
-		old_regstart = REGEX_TALLOC(num_regs, const char *);
-		old_regend = REGEX_TALLOC(num_regs, const char *);
-		best_regstart = REGEX_TALLOC(num_regs, const char *);
-		best_regend = REGEX_TALLOC(num_regs, const char *);
+			if (mcnt >= 0) {
+				/* Go through the on_failure_jumps of the alternatives,
+				   seeing if any of the alternatives cannot match nothing.
+				   The last alternative starts with only a jump,
+				   whereas the rest start with on_failure_jump and end
+				   with a jump, e.g., here is the pattern for `a|b|c':
 
-		reg_info = REGEX_TALLOC(num_regs, register_info_type);
-		reg_dummy = REGEX_TALLOC(num_regs, const char *);
+				   /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+				   /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+				   /exactn/1/c
 
-		reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type);
+				   So, we have to first go through the first (n-1)
+				   alternatives and then deal with the last one separately.  */
 
-		if (!(regstart && regend && old_regstart && old_regend && reg_info
-			  && best_regstart && best_regend && reg_dummy
-			  && reg_info_dummy)) {
-			FREE_VARIABLES();
-			return -2;
-		}
-	} else {
-		/* We must initialize all our variables to NULL, so that
-		   `FREE_VARIABLES' doesn't try to free them.  */
-		regstart = regend = old_regstart = old_regend = best_regstart
-			= best_regend = reg_dummy = NULL;
-		reg_info = reg_info_dummy = (register_info_type *) NULL;
-	}
-#endif							/* MATCH_MAY_ALLOCATE */
 
-	/* The starting position is bogus.  */
-	if (pos < 0 || pos > size1 + size2) {
-		FREE_VARIABLES();
-		return -1;
-	}
+				/* Deal with the first (n-1) alternatives, which start
+				   with an on_failure_jump (see above) that jumps to right
+				   past a jump_past_alt.  */
 
-	/* Initialize subexpression text positions to -1 to mark ones that no
-	   start_memory/stop_memory has been seen for. Also initialize the
-	   register information struct.  */
-	for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
-		regstart[mcnt] = regend[mcnt]
-			= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+				while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) {
+					/* `mcnt' holds how many bytes long the alternative
+					   is, including the ending `jump_past_alt' and
+					   its number.  */
 
-		REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
-		IS_ACTIVE(reg_info[mcnt]) = 0;
-		MATCHED_SOMETHING(reg_info[mcnt]) = 0;
-		EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
-	}
+					if (!alt_match_null_string_p(p1, p1 + mcnt - 3,
+												 reg_info)) return false;
 
-	/* We move `string1' into `string2' if the latter's empty -- but not if
-	   `string1' is null.  */
-	if (size2 == 0 && string1 != NULL) {
-		string2 = string1;
-		size2 = size1;
-		string1 = 0;
-		size1 = 0;
-	}
-	end1 = string1 + size1;
-	end2 = string2 + size2;
+					/* Move to right after this alternative, including the
+					   jump_past_alt.  */
+					p1 += mcnt;
 
-	/* Compute where to stop matching, within the two strings.  */
-	if (stop <= size1) {
-		end_match_1 = string1 + stop;
-		end_match_2 = string2;
-	} else {
-		end_match_1 = end1;
-		end_match_2 = string2 + stop - size1;
-	}
+					/* Break if it's the beginning of an n-th alternative
+					   that doesn't begin with an on_failure_jump.  */
+					if ((re_opcode_t) * p1 != on_failure_jump)
+						break;
 
-	/* `p' scans through the pattern as `d' scans through the data.
-	   `dend' is the end of the input string that `d' points within.  `d'
-	   is advanced into the following input string whenever necessary, but
-	   this happens before fetching; therefore, at the beginning of the
-	   loop, `d' can be pointing at the end of a string, but it cannot
-	   equal `string2'.  */
-	if (size1 > 0 && pos <= size1) {
-		d = string1 + pos;
-		dend = end_match_1;
-	} else {
-		d = string2 + pos - size1;
-		dend = end_match_2;
-	}
+					/* Still have to check that it's not an n-th
+					   alternative that starts with an on_failure_jump.  */
+					p1++;
+					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+					if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) {
+						/* Get to the beginning of the n-th alternative.  */
+						p1 -= 3;
+						break;
+					}
+				}
 
-	DEBUG_PRINT1("The compiled pattern is:\n");
-	DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
-	DEBUG_PRINT1("The string to match is: `");
-	DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
-	DEBUG_PRINT1("'\n");
+				/* Deal with the last alternative: go back and get number
+				   of the `jump_past_alt' just before it.  `mcnt' contains
+				   the length of the alternative.  */
+				EXTRACT_NUMBER(mcnt, p1 - 2);
 
-	/* This loops over pattern commands.  It exits by returning from the
-	   function if the match is complete, or it drops through if the match
-	   fails at this starting point in the input data.  */
-	for (;;) {
-#ifdef _LIBC
-		DEBUG_PRINT2("\n%p: ", p);
-#else
-		DEBUG_PRINT2("\n0x%x: ", p);
-#endif
+				if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info))
+					return false;
 
-		if (p == pend) {		/* End of pattern means we might have succeeded.  */
-			DEBUG_PRINT1("end of pattern ... ");
+				p1 += mcnt;		/* Get past the n-th alternative.  */
+			}					/* if mcnt > 0 */
+			break;
 
-			/* If we haven't matched the entire string, and we want the
-			   longest match, try backtracking.  */
-			if (d != end_match_2) {
-				/* 1 if this match ends in the same string (string1 or string2)
-				   as the best previous match.  */
-				boolean same_str_p = (FIRST_STRING_P(match_end)
-									  == MATCHING_IN_FIRST_STRING);
 
-				/* 1 if this match is the best seen so far.  */
-				boolean best_match_p;
+		case stop_memory:
+			assert(p1[1] == **p);
+			*p = p1 + 2;
+			return true;
 
-				/* AIX compiler got confused when this was combined
-				   with the previous declaration.  */
-				if (same_str_p)
-					best_match_p = d > match_end;
-				else
-					best_match_p = !MATCHING_IN_FIRST_STRING;
 
-				DEBUG_PRINT1("backtracking.\n");
+		default:
+			if (!common_op_match_null_string_p(&p1, end, reg_info))
+				return false;
+		}
+	}							/* while p1 < end */
 
-				if (!FAIL_STACK_EMPTY()) {	/* More failure points to try.  */
+	return false;
+}								/* group_match_null_string_p */
 
-					/* If exceeds best match so far, save it.  */
-					if (!best_regs_set || best_match_p) {
-						best_regs_set = true;
-						match_end = d;
 
-						DEBUG_PRINT1("\nSAVING match as best so far.\n");
+/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
+   It expects P to be the first byte of a single alternative and END one
+   byte past the last. The alternative can contain groups.  */
 
-						for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
-							best_regstart[mcnt] = regstart[mcnt];
-							best_regend[mcnt] = regend[mcnt];
-						}
-					}
-					goto fail;
-				}
+static boolean alt_match_null_string_p(p, end, reg_info)
+unsigned char *p, *end;
+register_info_type *reg_info;
+{
+	int mcnt;
+	unsigned char *p1 = p;
 
-				/* If no failure points, don't restore garbage.  And if
-				   last match is real best match, don't restore second
-				   best one. */
-				else if (best_regs_set && !best_match_p) {
-				  restore_best_regs:
-					/* Restore best match.  It may happen that `dend ==
-					   end_match_1' while the restored d is in string2.
-					   For example, the pattern `x.*y.*z' against the
-					   strings `x-' and `y-z-', if the two strings are
-					   not consecutive in memory.  */
-					DEBUG_PRINT1("Restoring best registers.\n");
+	while (p1 < end) {
+		/* Skip over opcodes that can match nothing, and break when we get
+		   to one that can't.  */
 
-					d = match_end;
-					dend = ((d >= string1 && d <= end1)
-							? end_match_1 : end_match_2);
+		switch ((re_opcode_t) * p1) {
+			/* It's a loop.  */
+		case on_failure_jump:
+			p1++;
+			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+			p1 += mcnt;
+			break;
 
-					for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
-						regstart[mcnt] = best_regstart[mcnt];
-						regend[mcnt] = best_regend[mcnt];
-					}
-				}
-			}
-			/* d != end_match_2 */
-		  succeed_label:
-			DEBUG_PRINT1("Accepting match.\n");
+		default:
+			if (!common_op_match_null_string_p(&p1, end, reg_info))
+				return false;
+		}
+	}							/* while p1 < end */
 
-			/* If caller wants register contents data back, do it.  */
-			if (regs && !bufp->no_sub) {
-				/* Have the register data arrays been allocated?  */
-				if (bufp->regs_allocated == REGS_UNALLOCATED) {	/* No.  So allocate them with malloc.  We need one
-																   extra element beyond `num_regs' for the `-1' marker
-																   GNU code uses.  */
-					regs->num_regs = MAX(RE_NREGS, num_regs + 1);
-					regs->start = TALLOC(regs->num_regs, regoff_t);
-					regs->end = TALLOC(regs->num_regs, regoff_t);
-					if (regs->start == NULL || regs->end == NULL) {
-						FREE_VARIABLES();
-						return -2;
-					}
-					bufp->regs_allocated = REGS_REALLOCATE;
-				} else if (bufp->regs_allocated == REGS_REALLOCATE) {	/* Yes.  If we need more elements than were already
-																		   allocated, reallocate them.  If we need fewer, just
-																		   leave it alone.  */
-					if (regs->num_regs < num_regs + 1) {
-						regs->num_regs = num_regs + 1;
-						RETALLOC(regs->start, regs->num_regs, regoff_t);
-						RETALLOC(regs->end, regs->num_regs, regoff_t);
-						if (regs->start == NULL || regs->end == NULL) {
-							FREE_VARIABLES();
-							return -2;
-						}
-					}
-				} else {
-					/* These braces fend off a "empty body in an else-statement"
-					   warning under GCC when assert expands to nothing.  */
-					assert(bufp->regs_allocated == REGS_FIXED);
-				}
+	return true;
+}								/* alt_match_null_string_p */
 
-				/* Convert the pointer data in `regstart' and `regend' to
-				   indices.  Register zero has to be set differently,
-				   since we haven't kept track of any info for it.  */
-				if (regs->num_regs > 0) {
-					regs->start[0] = pos;
-					regs->end[0] = (MATCHING_IN_FIRST_STRING
-									? ((regoff_t) (d - string1))
-									: ((regoff_t) (d - string2 + size1)));
-				}
 
-				/* Go through the first `min (num_regs, regs->num_regs)'
-				   registers, since that is all we initialized.  */
-				for (mcnt = 1;
-					 (unsigned) mcnt < MIN(num_regs, regs->num_regs);
-					 mcnt++) {
-					if (REG_UNSET(regstart[mcnt])
-						|| REG_UNSET(regend[mcnt])) regs->start[mcnt] =
-							regs->end[mcnt] = -1;
-					else {
-						regs->start[mcnt]
-							= (regoff_t) POINTER_TO_OFFSET(regstart[mcnt]);
-						regs->end[mcnt]
-							= (regoff_t) POINTER_TO_OFFSET(regend[mcnt]);
-					}
-				}
+/* Deals with the ops common to group_match_null_string_p and
+   alt_match_null_string_p.
 
-				/* If the regs structure we return has more elements than
-				   were in the pattern, set the extra elements to -1.  If
-				   we (re)allocated the registers, this is the case,
-				   because we always allocate enough to have at least one
-				   -1 at the end.  */
-				for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs;
-					 mcnt++)
-					regs->start[mcnt] = regs->end[mcnt] = -1;
-			}
-			/* regs && !bufp->no_sub */
-			DEBUG_PRINT4
-				("%u failure points pushed, %u popped (%u remain).\n",
-				 nfailure_points_pushed, nfailure_points_popped,
-				 nfailure_points_pushed - nfailure_points_popped);
-			DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed);
+   Sets P to one after the op and its arguments, if any.  */
+
+static boolean common_op_match_null_string_p(p, end, reg_info)
+unsigned char **p, *end;
+register_info_type *reg_info;
+{
+	int mcnt;
+	boolean ret;
+	int reg_no;
+	unsigned char *p1 = *p;
 
-			mcnt = d - pos - (MATCHING_IN_FIRST_STRING
-							  ? string1 : string2 - size1);
+	switch ((re_opcode_t) * p1++) {
+	case no_op:
+	case begline:
+	case endline:
+	case begbuf:
+	case endbuf:
+	case wordbeg:
+	case wordend:
+	case wordbound:
+	case notwordbound:
+#ifdef emacs
+	case before_dot:
+	case at_dot:
+	case after_dot:
+#endif
+		break;
 
-			DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt);
+	case start_memory:
+		reg_no = *p1;
+		assert(reg_no > 0 && reg_no <= MAX_REGNUM);
+		ret = group_match_null_string_p(&p1, end, reg_info);
 
-			FREE_VARIABLES();
-			return mcnt;
-		}
+		/* Have to set this here in case we're checking a group which
+		   contains a group and a back reference to it.  */
 
-		/* Otherwise match next pattern command.  */
-		switch (SWITCH_ENUM_CAST((re_opcode_t) * p++)) {
-			/* Ignore these.  Used to ignore the n of succeed_n's which
-			   currently have n == 0.  */
-		case no_op:
-			DEBUG_PRINT1("EXECUTING no_op.\n");
-			break;
+		if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) ==
+			MATCH_NULL_UNSET_VALUE)
+				REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
 
-		case succeed:
-			DEBUG_PRINT1("EXECUTING succeed.\n");
-			goto succeed_label;
+		if (!ret)
+			return false;
+		break;
 
-			/* Match the next n pattern characters exactly.  The following
-			   byte in the pattern defines n, and the n bytes after that
-			   are the characters to match.  */
-		case exactn:
-			mcnt = *p++;
-			DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt);
+		/* If this is an optimized succeed_n for zero times, make the jump.  */
+	case jump:
+		EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+		if (mcnt >= 0)
+			p1 += mcnt;
+		else
+			return false;
+		break;
 
-			/* This is written out as an if-else so we don't waste time
-			   testing `translate' inside the loop.  */
-			if (translate) {
-				do {
-					PREFETCH();
-					if ((unsigned char) translate[(unsigned char) *d++]
-						!= (unsigned char) *p++)
-						goto fail;
-				}
-				while (--mcnt);
-			} else {
-				do {
-					PREFETCH();
-					if (*d++ != (char) *p++)
-						goto fail;
-				}
-				while (--mcnt);
-			}
-			SET_REGS_MATCHED();
-			break;
+	case succeed_n:
+		/* Get to the number of times to succeed.  */
+		p1 += 2;
+		EXTRACT_NUMBER_AND_INCR(mcnt, p1);
 
+		if (mcnt == 0) {
+			p1 -= 4;
+			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+			p1 += mcnt;
+		} else
+			return false;
+		break;
 
-			/* Match any character except possibly a newline or a null.  */
-		case anychar:
-			DEBUG_PRINT1("EXECUTING anychar.\n");
+	case duplicate:
+		if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
+			return false;
+		break;
 
-			PREFETCH();
+	case set_number_at:
+		p1 += 4;
 
-			if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n')
-				|| (bufp->syntax & RE_DOT_NOT_NULL
-					&& TRANSLATE(*d) == '\000')) goto fail;
+	default:
+		/* All other opcodes mean we cannot match the empty string.  */
+		return false;
+	}
 
-			SET_REGS_MATCHED();
-			DEBUG_PRINT2("  Matched `%d'.\n", *d);
-			d++;
-			break;
+	*p = p1;
+	return true;
+}								/* common_op_match_null_string_p */
 
 
-		case charset:
-		case charset_not:
-		{
-			register unsigned char c;
-			boolean not = (re_opcode_t) * (p - 1) == charset_not;
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+   bytes; nonzero otherwise.  */
 
-			DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : "");
+static int bcmp_translate(s1, s2, len, translate)
+const char *s1, *s2;
+register int len;
+RE_TRANSLATE_TYPE translate;
+{
+	register const unsigned char *p1 = (const unsigned char *) s1;
+	register const unsigned char *p2 = (const unsigned char *) s2;
 
-			PREFETCH();
-			c = TRANSLATE(*d);	/* The character to match.  */
+	while (len) {
+		if (translate[*p1++] != translate[*p2++])
+			return 1;
+		len--;
+	}
+	return 0;
+}
+
+/* Entry points for GNU code.  */
 
-			/* Cast to `unsigned' instead of `unsigned char' in case the
-			   bit list is a full 32 bytes long.  */
-			if (c < (unsigned) (*p * BYTEWIDTH)
-				&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
-				not = !not;
+/* re_compile_pattern is the GNU regular expression compiler: it
+   compiles PATTERN (of length SIZE) and puts the result in BUFP.
+   Returns 0 if the pattern was valid, otherwise an error string.
 
-			p += 1 + *p;
+   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+   are set in BUFP on entry.
 
-			if (!not)
-				goto fail;
+   We call regex_compile to do the actual compilation.  */
 
-			SET_REGS_MATCHED();
-			d++;
-			break;
-		}
+const char *re_compile_pattern(pattern, length, bufp)
+const char *pattern;
+size_t length;
+struct re_pattern_buffer *bufp;
+{
+	reg_errcode_t ret;
 
+	/* GNU code is written to assume at least RE_NREGS registers will be set
+	   (and at least one extra will be -1).  */
+	bufp->regs_allocated = REGS_UNALLOCATED;
 
-			/* The beginning of a group is represented by start_memory.
-			   The arguments are the register number in the next byte, and the
-			   number of groups inner to this one in the next.  The text
-			   matched within the group is recorded (in the internal
-			   registers data structure) under the register number.  */
-		case start_memory:
-			DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]);
+	/* And GNU code determines whether or not to get register information
+	   by passing null for the REGS argument to re_match, etc., not by
+	   setting no_sub.  */
+	bufp->no_sub = 0;
 
-			/* Find out if this group can match the empty string.  */
-			p1 = p;				/* To send to group_match_null_string_p.  */
+	/* Match anchors at newline.  */
+	bufp->newline_anchor = 1;
 
-			if (REG_MATCH_NULL_STRING_P(reg_info[*p]) ==
-				MATCH_NULL_UNSET_VALUE)
-					REG_MATCH_NULL_STRING_P(reg_info[*p]) =
-					group_match_null_string_p(&p1, pend, reg_info);
+	ret = regex_compile(pattern, length, re_syntax_options, bufp);
 
-			/* Save the position in the string where we were the last time
-			   we were at this open-group operator in case the group is
-			   operated upon by a repetition operator, e.g., with `(a*)*b'
-			   against `ab'; then we want to ignore where we are now in
-			   the string in case this attempt to match fails.  */
-			old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
-				? REG_UNSET(regstart[*p]) ? d : regstart[*p]
-				: regstart[*p];
-			DEBUG_PRINT2("  old_regstart: %d\n",
-						 POINTER_TO_OFFSET(old_regstart[*p]));
+	if (!ret)
+		return NULL;
+	return gettext(re_error_msgid + re_error_msgid_idx[(int) ret]);
+}
 
-			regstart[*p] = d;
-			DEBUG_PRINT2("  regstart: %d\n",
-						 POINTER_TO_OFFSET(regstart[*p]));
+#ifdef _LIBC
+weak_alias(__re_compile_pattern, re_compile_pattern)
+#endif
+/* Entry points compatible with 4.2 BSD regex library.  We don't define
+   them unless specifically requested.  */
+#if defined _REGEX_RE_COMP || defined _LIBC
+/* BSD has one and only one pattern buffer.  */
+static struct re_pattern_buffer re_comp_buf;
 
-			IS_ACTIVE(reg_info[*p]) = 1;
-			MATCHED_SOMETHING(reg_info[*p]) = 0;
+char *
+#ifdef _LIBC
+/* Make these definitions weak in libc, so POSIX programs can redefine
+   these names if they don't use our functions, and still use
+   regcomp/regexec below without link errors.  */ weak_function
+#endif
+re_comp(s)
+const char *s;
+{
+	reg_errcode_t ret;
 
-			/* Clear this whenever we change the register activity status.  */
-			set_regs_matched_done = 0;
+	if (!s) {
+		if (!re_comp_buf.buffer)
+			return gettext("No previous regular expression");
+		return 0;
+	}
 
-			/* This is the new highest active register.  */
-			highest_active_reg = *p;
+	if (!re_comp_buf.buffer) {
+		re_comp_buf.buffer = (unsigned char *) malloc(200);
+		if (re_comp_buf.buffer == NULL)
+			return (char *) gettext(re_error_msgid
+									+
+									re_error_msgid_idx[(int) REG_ESPACE]);
+		re_comp_buf.allocated = 200;
 
-			/* If nothing was active before, this is the new lowest active
-			   register.  */
-			if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
-				lowest_active_reg = *p;
+		re_comp_buf.fastmap = (char *) malloc(1 << BYTEWIDTH);
+		if (re_comp_buf.fastmap == NULL)
+			return (char *) gettext(re_error_msgid
+									+
+									re_error_msgid_idx[(int) REG_ESPACE]);
+	}
+
+	/* Since `re_exec' always passes NULL for the `regs' argument, we
+	   don't need to initialize the pattern buffer fields which affect it.  */
 
-			/* Move past the register number and inner group count.  */
-			p += 2;
-			just_past_start_mem = p;
+	/* Match anchors at newlines.  */
+	re_comp_buf.newline_anchor = 1;
 
-			break;
+	ret = regex_compile(s, strlen(s), re_syntax_options, &re_comp_buf);
 
+	if (!ret)
+		return NULL;
 
-			/* The stop_memory opcode represents the end of a group.  Its
-			   arguments are the same as start_memory's: the register
-			   number, and the number of inner groups.  */
-		case stop_memory:
-			DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
+	/* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
+	return (char *) gettext(re_error_msgid +
+							re_error_msgid_idx[(int) ret]);
+}
 
-			/* We need to save the string position the last time we were at
-			   this close-group operator in case the group is operated
-			   upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
-			   against `aba'; then we want to ignore where we are now in
-			   the string in case this attempt to match fails.  */
-			old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
-				? REG_UNSET(regend[*p]) ? d : regend[*p]
-				: regend[*p];
-			DEBUG_PRINT2("      old_regend: %d\n",
-						 POINTER_TO_OFFSET(old_regend[*p]));
 
-			regend[*p] = d;
-			DEBUG_PRINT2("      regend: %d\n",
-						 POINTER_TO_OFFSET(regend[*p]));
+int
+#ifdef _LIBC
+ weak_function
+#endif
+re_exec(s)
+const char *s;
+{
+	const int len = strlen(s);
 
-			/* This register isn't active anymore.  */
-			IS_ACTIVE(reg_info[*p]) = 0;
+	return
+		0 <= re_search(&re_comp_buf, s, len, 0, len,
+					   (struct re_registers *) 0);
+}
 
-			/* Clear this whenever we change the register activity status.  */
-			set_regs_matched_done = 0;
+#endif							/* _REGEX_RE_COMP */
+
+/* POSIX.2 functions.  Don't define these for Emacs.  */
 
-			/* If this was the only register active, nothing is active
-			   anymore.  */
-			if (lowest_active_reg == highest_active_reg) {
-				lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-				highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-			} else {			/* We must scan for the new highest active register, since
-								   it isn't necessarily one less than now: consider
-								   (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
-								   new highest active register is 1.  */
-				unsigned char r = *p - 1;
+#ifndef emacs
 
-				while (r > 0 && !IS_ACTIVE(reg_info[r]))
-					r--;
+/* regcomp takes a regular expression as a string and compiles it.
 
-				/* If we end up at register zero, that means that we saved
-				   the registers as the result of an `on_failure_jump', not
-				   a `start_memory', and we jumped to past the innermost
-				   `stop_memory'.  For example, in ((.)*) we save
-				   registers 1 and 2 as a result of the *, but when we pop
-				   back to the second ), we are at the stop_memory 1.
-				   Thus, nothing is active.  */
-				if (r == 0) {
-					lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-					highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-				} else
-					highest_active_reg = r;
-			}
+   PREG is a regex_t *.  We do not expect any fields to be initialized,
+   since POSIX says we shouldn't.  Thus, we set
 
-			/* If just failed to match something this time around with a
-			   group that's operated on by a repetition operator, try to
-			   force exit from the ``loop'', and restore the register
-			   information for this group that we had before trying this
-			   last match.  */
-			if ((!MATCHED_SOMETHING(reg_info[*p])
-				 || just_past_start_mem == p - 1)
-				&& (p + 2) < pend) {
-				boolean is_a_jump_n = false;
+     `buffer' to the compiled pattern;
+     `used' to the length of the compiled pattern;
+     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+       REG_EXTENDED bit in CFLAGS is set; otherwise, to
+       RE_SYNTAX_POSIX_BASIC;
+     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
+     `fastmap' to an allocated space for the fastmap;
+     `fastmap_accurate' to zero;
+     `re_nsub' to the number of subexpressions in PATTERN.
 
-				p1 = p + 2;
-				mcnt = 0;
-				switch ((re_opcode_t) * p1++) {
-				case jump_n:
-					is_a_jump_n = true;
-				case pop_failure_jump:
-				case maybe_pop_jump:
-				case jump:
-				case dummy_failure_jump:
-					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-					if (is_a_jump_n)
-						p1 += 2;
-					break;
+   PATTERN is the address of the pattern string.
 
-				default:
-					/* do nothing */ ;
-				}
-				p1 += mcnt;
+   CFLAGS is a series of bits which affect compilation.
 
-				/* If the next operation is a jump backwards in the pattern
-				   to an on_failure_jump right before the start_memory
-				   corresponding to this stop_memory, exit from the loop
-				   by forcing a failure after pushing on the stack the
-				   on_failure_jump's jump in the pattern, and d.  */
-				if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump
-					&& (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
-					/* If this group ever matched anything, then restore
-					   what its registers were before trying this last
-					   failed match, e.g., with `(a*)*b' against `ab' for
-					   regstart[1], and, e.g., with `((a*)*(b*)*)*'
-					   against `aba' for regend[3].
+     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+     use POSIX basic syntax.
 
-					   Also restore the registers for inner groups for,
-					   e.g., `((a*)(b*))*' against `aba' (register 3 would
-					   otherwise get trashed).  */
+     If REG_NEWLINE is set, then . and [^...] don't match newline.
+     Also, regexec will try a match beginning after every newline.
 
-					if (EVER_MATCHED_SOMETHING(reg_info[*p])) {
-						unsigned r;
+     If REG_ICASE is set, then we considers upper- and lowercase
+     versions of letters to be equivalent when matching.
 
-						EVER_MATCHED_SOMETHING(reg_info[*p]) = 0;
+     If REG_NOSUB is set, then when PREG is passed to regexec, that
+     routine will report only success or failure, and nothing about the
+     registers.
 
-						/* Restore this and inner groups' (if any) registers.  */
-						for (r = *p;
-							 r < (unsigned) *p + (unsigned) *(p + 1); r++) {
-							regstart[r] = old_regstart[r];
+   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
+   the return codes and their meanings.)  */
 
-							/* xx why this test?  */
-							if (old_regend[r] >= regstart[r])
-								regend[r] = old_regend[r];
-						}
-					}
-					p1++;
-					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-					PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
+int regcomp(preg, pattern, cflags)
+regex_t *preg;
+const char *pattern;
+int cflags;
+{
+	reg_errcode_t ret;
+	reg_syntax_t syntax
+		= (cflags & REG_EXTENDED) ?
 
-					goto fail;
-				}
-			}
+		RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
 
-			/* Move past the register number and the inner group count.  */
-			p += 2;
-			break;
+	/* regex_compile will allocate the space for the compiled pattern.  */
+	preg->buffer = 0;
+	preg->allocated = 0;
+	preg->used = 0;
 
+	/* Try to allocate space for the fastmap.  */
+	preg->fastmap = (char *) malloc(1 << BYTEWIDTH);
 
-			/* \<digit> has been turned into a `duplicate' command which is
-			   followed by the numeric value of <digit> as the register number.  */
-		case duplicate:
-		{
-			register const char *d2, *dend2;
-			int regno = *p++;	/* Get which register to match against.  */
+	if (cflags & REG_ICASE) {
+		unsigned i;
 
-			DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno);
+		preg->translate
+			= (RE_TRANSLATE_TYPE) malloc(CHAR_SET_SIZE
+										 * sizeof(*(RE_TRANSLATE_TYPE) 0));
+		if (preg->translate == NULL)
+			return (int) REG_ESPACE;
 
-			/* Can't back reference a group which we've never matched.  */
-			if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno]))
-				goto fail;
+		/* Map uppercase characters to corresponding lowercase ones.  */
+		for (i = 0; i < CHAR_SET_SIZE; i++)
+			preg->translate[i] = ISUPPER(i) ? TOLOWER(i) : i;
+	} else
+		preg->translate = NULL;
 
-			/* Where in input to try to start matching.  */
-			d2 = regstart[regno];
+	/* If REG_NEWLINE is set, newlines are treated differently.  */
+	if (cflags & REG_NEWLINE) {	/* REG_NEWLINE implies neither . nor [^...] match newline.  */
+		syntax &= ~RE_DOT_NEWLINE;
+		syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+		/* It also changes the matching behavior.  */
+		preg->newline_anchor = 1;
+	} else
+		preg->newline_anchor = 0;
 
-			/* Where to stop matching; if both the place to start and
-			   the place to stop matching are in the same string, then
-			   set to the place to stop, otherwise, for now have to use
-			   the end of the first string.  */
+	preg->no_sub = !!(cflags & REG_NOSUB);
 
-			dend2 = ((FIRST_STRING_P(regstart[regno])
-					  == FIRST_STRING_P(regend[regno]))
-					 ? regend[regno] : end_match_1);
-			for (;;) {
-				/* If necessary, advance to next segment in register
-				   contents.  */
-				while (d2 == dend2) {
-					if (dend2 == end_match_2)
-						break;
-					if (dend2 == regend[regno])
-						break;
+	/* POSIX says a null character in the pattern terminates it, so we
+	   can use strlen here in compiling the pattern.  */
+	ret = regex_compile(pattern, strlen(pattern), syntax, preg);
 
-					/* End of string1 => advance to string2. */
-					d2 = string2;
-					dend2 = regend[regno];
-				}
-				/* At end of register contents => success */
-				if (d2 == dend2)
-					break;
+	/* POSIX doesn't distinguish between an unmatched open-group and an
+	   unmatched close-group: both are REG_EPAREN.  */
+	if (ret == REG_ERPAREN)
+		ret = REG_EPAREN;
 
-				/* If necessary, advance to next segment in data.  */
-				PREFETCH();
+	if (ret == REG_NOERROR && preg->fastmap) {
+		/* Compute the fastmap now, since regexec cannot modify the pattern
+		   buffer.  */
+		if (re_compile_fastmap(preg) == -2) {
+			/* Some error occurred while computing the fastmap, just forget
+			   about it.  */
+			free(preg->fastmap);
+			preg->fastmap = NULL;
+		}
+	}
+
+	return (int) ret;
+}
 
-				/* How many characters left in this segment to match.  */
-				mcnt = dend - d;
+#ifdef _LIBC
+weak_alias(__regcomp, regcomp)
+#endif
+/* regexec searches for a given pattern, specified by PREG, in the
+   string STRING.
 
-				/* Want how many consecutive characters we can match in
-				   one shot, so, if necessary, adjust the count.  */
-				if (mcnt > dend2 - d2)
-					mcnt = dend2 - d2;
+   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
+   least NMATCH elements, and we set them to the offsets of the
+   corresponding matched substrings.
 
-				/* Compare that many; failure if mismatch, else move
-				   past them.  */
-				if (translate ? bcmp_translate(d, d2, mcnt, translate)
-					: memcmp(d, d2, mcnt))
-					goto fail;
-				d += mcnt, d2 += mcnt;
+   EFLAGS specifies `execution flags' which affect matching: if
+   REG_NOTBOL is set, then ^ does not match at the beginning of the
+   string; if REG_NOTEOL is set, then $ does not match at the end.
 
-				/* Do this because we've match some characters.  */
-				SET_REGS_MATCHED();
-			}
-		}
-			break;
+   We return 0 if we find a match and REG_NOMATCH if not.  */
+int regexec(preg, string, nmatch, pmatch, eflags)
+const regex_t *preg;
+const char *string;
+size_t nmatch;
+regmatch_t pmatch[];
+int eflags;
+{
+	int ret;
+	struct re_registers regs;
+	regex_t private_preg;
+	int len = strlen(string);
+	boolean want_reg_info = !preg->no_sub && nmatch > 0;
 
+	private_preg = *preg;
 
-			/* begline matches the empty string at the beginning of the string
-			   (unless `not_bol' is set in `bufp'), and, if
-			   `newline_anchor' is set, after newlines.  */
-		case begline:
-			DEBUG_PRINT1("EXECUTING begline.\n");
+	private_preg.not_bol = !!(eflags & REG_NOTBOL);
+	private_preg.not_eol = !!(eflags & REG_NOTEOL);
 
-			if (AT_STRINGS_BEG(d)) {
-				if (!bufp->not_bol)
-					break;
-			} else if (d[-1] == '\n' && bufp->newline_anchor) {
-				break;
-			}
-			/* In all other cases, we fail.  */
-			goto fail;
+	/* The user has told us exactly how many registers to return
+	   information about, via `nmatch'.  We have to pass that on to the
+	   matching routines.  */
+	private_preg.regs_allocated = REGS_FIXED;
 
+	if (want_reg_info) {
+		regs.num_regs = nmatch;
+		regs.start = TALLOC(nmatch * 2, regoff_t);
+		if (regs.start == NULL)
+			return (int) REG_NOMATCH;
+		regs.end = regs.start + nmatch;
+	}
 
-			/* endline is the dual of begline.  */
-		case endline:
-			DEBUG_PRINT1("EXECUTING endline.\n");
+	/* Perform the searching operation.  */
+	ret = re_search(&private_preg, string, len,
+					/* start: */ 0, /* range: */ len,
+					want_reg_info ? &regs : (struct re_registers *) 0);
 
-			if (AT_STRINGS_END(d)) {
-				if (!bufp->not_eol)
-					break;
-			}
+	/* Copy the register information to the POSIX structure.  */
+	if (want_reg_info) {
+		if (ret >= 0) {
+			unsigned r;
 
-			/* We have to ``prefetch'' the next character.  */
-			else if ((d == end1 ? *string2 : *d) == '\n'
-					 && bufp->newline_anchor) {
-				break;
+			for (r = 0; r < nmatch; r++) {
+				pmatch[r].rm_so = regs.start[r];
+				pmatch[r].rm_eo = regs.end[r];
 			}
-			goto fail;
-
+		}
 
-			/* Match at the very beginning of the data.  */
-		case begbuf:
-			DEBUG_PRINT1("EXECUTING begbuf.\n");
-			if (AT_STRINGS_BEG(d))
-				break;
-			goto fail;
+		/* If we needed the temporary register info, free the space now.  */
+		free(regs.start);
+	}
 
+	/* We want zero return to mean success, unlike `re_search'.  */
+	return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
+}
 
-			/* Match at the very end of the data.  */
-		case endbuf:
-			DEBUG_PRINT1("EXECUTING endbuf.\n");
-			if (AT_STRINGS_END(d))
-				break;
-			goto fail;
+#ifdef _LIBC
+weak_alias(__regexec, regexec)
+#endif
+/* Returns a message corresponding to an error code, ERRCODE, returned
+   from either regcomp or regexec.   We don't use PREG here.  */
+	size_t regerror(errcode, preg, errbuf, errbuf_size)
+int errcode;
+const regex_t *preg;
+char *errbuf;
+size_t errbuf_size;
+{
+	const char *msg;
+	size_t msg_size;
 
+	if (errcode < 0 || errcode >= (int) (sizeof(re_error_msgid_idx)
+										 / sizeof(re_error_msgid_idx[0])))
+		/* Only error codes returned by the rest of the code should be passed
+		   to this routine.  If we are given anything else, or if other regex
+		   code generates an invalid error code, then the program has a bug.
+		   Dump core so we can fix it.  */
+		abort();
 
-			/* on_failure_keep_string_jump is used to optimize `.*\n'.  It
-			   pushes NULL as the value for the string on the stack.  Then
-			   `pop_failure_point' will keep the current value for the
-			   string, instead of restoring it.  To see why, consider
-			   matching `foo\nbar' against `.*\n'.  The .* matches the foo;
-			   then the . fails against the \n.  But the next thing we want
-			   to do is match the \n against the \n; if we restored the
-			   string value, we would be back at the foo.
+	msg = gettext(re_error_msgid + re_error_msgid_idx[errcode]);
 
-			   Because this is used only in specific cases, we don't need to
-			   check all the things that `on_failure_jump' does, to make
-			   sure the right things get saved on the stack.  Hence we don't
-			   share its code.  The only reason to push anything on the
-			   stack at all is that otherwise we would have to change
-			   `anychar's code to do something besides goto fail in this
-			   case; that seems worse than this.  */
-		case on_failure_keep_string_jump:
-			DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump");
+	msg_size = strlen(msg) + 1;	/* Includes the null.  */
 
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);
-#ifdef _LIBC
-			DEBUG_PRINT3(" %d (to %p):\n", mcnt, p + mcnt);
+	if (errbuf_size != 0) {
+		if (msg_size > errbuf_size) {
+#if defined HAVE_MEMPCPY || defined _LIBC
+			*((char *) __mempcpy(errbuf, msg, errbuf_size - 1)) = '\0';
 #else
-			DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt);
+			memcpy(errbuf, msg, errbuf_size - 1);
+			errbuf[errbuf_size - 1] = 0;
 #endif
+		} else
+			memcpy(errbuf, msg, msg_size);
+	}
 
-			PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
-			break;
+	return msg_size;
+}
 
+#ifdef _LIBC
+weak_alias(__regerror, regerror)
+#endif
+/* Free dynamically allocated space used by PREG.  */
+void regfree(preg)
+regex_t *preg;
+{
+	if (preg->buffer != NULL)
+		free(preg->buffer);
+	preg->buffer = NULL;
 
-			/* Uses of on_failure_jump:
+	preg->allocated = 0;
+	preg->used = 0;
 
-			   Each alternative starts with an on_failure_jump that points
-			   to the beginning of the next alternative.  Each alternative
-			   except the last ends with a jump that in effect jumps past
-			   the rest of the alternatives.  (They really jump to the
-			   ending jump of the following alternative, because tensioning
-			   these jumps is a hassle.)
+	if (preg->fastmap != NULL)
+		free(preg->fastmap);
+	preg->fastmap = NULL;
+	preg->fastmap_accurate = 0;
 
-			   Repeats start with an on_failure_jump that points past both
-			   the repetition text and either the following jump or
-			   pop_failure_jump back to this on_failure_jump.  */
-		case on_failure_jump:
-		  on_failure:
-			DEBUG_PRINT1("EXECUTING on_failure_jump");
+	if (preg->translate != NULL)
+		free(preg->translate);
+	preg->translate = NULL;
+}
 
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);
 #ifdef _LIBC
-			DEBUG_PRINT3(" %d (to %p)", mcnt, p + mcnt);
-#else
-			DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
+weak_alias(__regfree, regfree)
 #endif
+#endif							/* not emacs  */
+
+/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+   Returns one of error codes defined in `regex.h', or zero for success.
 
-			/* If this on_failure_jump comes right before a group (i.e.,
-			   the original * applied to a group), save the information
-			   for that group and all inner ones, so that if we fail back
-			   to this point, the group's information will be correct.
-			   For example, in \(a*\)*\1, we need the preceding group,
-			   and in \(zz\(a*\)b*\)\2, we need the inner group.  */
+   Assumes the `allocated' (and perhaps `buffer') and `translate'
+   fields are set in BUFP on entry.
 
-			/* We can't use `p' to check ahead because we push
-			   a failure point to `p + mcnt' after we do this.  */
-			p1 = p;
+   If it succeeds, results are put in BUFP (if it returns an error, the
+   contents of BUFP are undefined):
+     `buffer' is the compiled pattern;
+     `syntax' is set to SYNTAX;
+     `used' is set to the length of the compiled pattern;
+     `fastmap_accurate' is zero;
+     `re_nsub' is the number of subexpressions in PATTERN;
+     `not_bol' and `not_eol' are zero;
 
-			/* We need to skip no_op's before we look for the
-			   start_memory in case this on_failure_jump is happening as
-			   the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
-			   against aba.  */
-			while (p1 < pend && (re_opcode_t) * p1 == no_op)
-				p1++;
+   The `fastmap' and `newline_anchor' fields are neither
+   examined nor set.  */
 
-			if (p1 < pend && (re_opcode_t) * p1 == start_memory) {
-				/* We have a new highest active register now.  This will
-				   get reset at the start_memory we are about to get to,
-				   but we will have saved all the registers relevant to
-				   this repetition op, as described above.  */
-				highest_active_reg = *(p1 + 1) + *(p1 + 2);
-				if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
-					lowest_active_reg = *(p1 + 1);
-			}
+/* Return, freeing storage we allocated.  */
+#define FREE_STACK_RETURN(value)		\
+  return (free (compile_stack.stack), value)
 
-			DEBUG_PRINT1(":\n");
-			PUSH_FAILURE_POINT(p + mcnt, d, -2);
-			break;
+static reg_errcode_t regex_compile(pattern, size, syntax, bufp)
+const char *pattern;
+size_t size;
+reg_syntax_t syntax;
+struct re_pattern_buffer *bufp;
+{
+	/* We fetch characters from PATTERN here.  Even though PATTERN is
+	   `char *' (i.e., signed), we declare these variables as unsigned, so
+	   they can be reliably used as array indices.  */
+	register unsigned char c, c1;
 
+	/* A random temporary spot in PATTERN.  */
+	const char *p1;
 
-			/* A smart repeat ends with `maybe_pop_jump'.
-			   We change it to either `pop_failure_jump' or `jump'.  */
-		case maybe_pop_jump:
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);
-			DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt);
-			{
-				register unsigned char *p2 = p;
+	/* Points to the end of the buffer, where we should append.  */
+	register unsigned char *b;
 
-				/* Compare the beginning of the repeat with what in the
-				   pattern follows its end. If we can establish that there
-				   is nothing that they would both match, i.e., that we
-				   would have to backtrack because of (as in, e.g., `a*a')
-				   then we can change to pop_failure_jump, because we'll
-				   never have to backtrack.
+	/* Keeps track of unclosed groups.  */
+	compile_stack_type compile_stack;
 
-				   This is not true in the case of alternatives: in
-				   `(a|ab)*' we do need to backtrack to the `ab' alternative
-				   (e.g., if the string was `ab').  But instead of trying to
-				   detect that here, the alternative has put on a dummy
-				   failure point which is what we will end up popping.  */
+	/* Points to the current (ending) position in the pattern.  */
+	const char *p = pattern;
+	const char *pend = pattern + size;
 
-				/* Skip over open/close-group commands.
-				   If what follows this loop is a ...+ construct,
-				   look at what begins its body, since we will have to
-				   match at least one of that.  */
-				while (1) {
-					if (p2 + 2 < pend
-						&& ((re_opcode_t) * p2 == stop_memory
-							|| (re_opcode_t) * p2 == start_memory))
-						p2 += 3;
-					else if (p2 + 6 < pend
-							 && (re_opcode_t) * p2 == dummy_failure_jump)
-							p2 += 6;
-					else
-						break;
-				}
+	/* How to translate the characters in the pattern.  */
+	RE_TRANSLATE_TYPE translate = bufp->translate;
 
-				p1 = p + mcnt;
-				/* p1[0] ... p1[2] are the `on_failure_jump' corresponding
-				   to the `maybe_finalize_jump' of this case.  Examine what
-				   follows.  */
+	/* Address of the count-byte of the most recently inserted `exactn'
+	   command.  This makes it possible to tell if a new exact-match
+	   character can be added to that command or if the character requires
+	   a new `exactn' command.  */
+	unsigned char *pending_exact = 0;
 
-				/* If we're at the end of the pattern, we can change.  */
-				if (p2 == pend) {
-					/* Consider what happens when matching ":\(.*\)"
-					   against ":/".  I don't really understand this code
-					   yet.  */
-					p[-3] = (unsigned char) pop_failure_jump;
-					DEBUG_PRINT1
-						("  End of pattern: change to `pop_failure_jump'.\n");
-				}
+	/* Address of start of the most recently finished expression.
+	   This tells, e.g., postfix * where to find the start of its
+	   operand.  Reset at the beginning of groups and alternatives.  */
+	unsigned char *laststart = 0;
 
-				else if ((re_opcode_t) * p2 == exactn
-						 || (bufp->newline_anchor
-							 && (re_opcode_t) * p2 == endline)) {
-					register unsigned char c =
-						*p2 == (unsigned char) endline ? '\n' : p2[2];
+	/* Address of beginning of regexp, or inside of last group.  */
+	unsigned char *begalt;
 
-					if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
-						p[-3] = (unsigned char) pop_failure_jump;
-						DEBUG_PRINT3("  %c != %c => pop_failure_jump.\n",
-									 c, p1[5]);
-					}
+	/* Place in the uncompiled pattern (i.e., the {) to
+	   which to go back if the interval is invalid.  */
+	const char *beg_interval;
 
-					else if ((re_opcode_t) p1[3] == charset
-							 || (re_opcode_t) p1[3] == charset_not) {
-						int not = (re_opcode_t) p1[3] == charset_not;
+	/* Address of the place where a forward jump should go to the end of
+	   the containing expression.  Each alternative of an `or' -- except the
+	   last -- ends with a forward jump of this sort.  */
+	unsigned char *fixup_alt_jump = 0;
 
-						if (c < (unsigned char) (p1[4] * BYTEWIDTH)
-							&& p1[5 +
-								  c / BYTEWIDTH] & (1 << (c %
-														  BYTEWIDTH))) not
-								= !not;
+	/* Counts open-groups as they are encountered.  Remembered for the
+	   matching close-group on the compile stack, so the same register
+	   number is put in the stop_memory as the start_memory.  */
+	regnum_t regnum = 0;
 
-						/* `not' is equal to 1 if c would match, which means
-						   that we can't change to pop_failure_jump.  */
-						if (!not) {
-							p[-3] = (unsigned char) pop_failure_jump;
-							DEBUG_PRINT1
-								("  No match => pop_failure_jump.\n");
-						}
-					}
-				} else if ((re_opcode_t) * p2 == charset) {
-					/* We win if the first character of the loop is not part
-					   of the charset.  */
-					if ((re_opcode_t) p1[3] == exactn
-						&& !((int) p2[1] * BYTEWIDTH > (int) p1[5]
-							 && (p2[2 + p1[5] / BYTEWIDTH]
-								 & (1 << (p1[5] % BYTEWIDTH))))) {
-						p[-3] = (unsigned char) pop_failure_jump;
-						DEBUG_PRINT1("  No match => pop_failure_jump.\n");
-					}
+#ifdef DEBUG
+	DEBUG_PRINT1("\nCompiling pattern: ");
+	if (debug) {
+		unsigned debug_count;
 
-					else if ((re_opcode_t) p1[3] == charset_not) {
-						int idx;
+		for (debug_count = 0; debug_count < size; debug_count++)
+			putchar(pattern[debug_count]);
+		putchar('\n');
+	}
+#endif							/* DEBUG */
 
-						/* We win if the charset_not inside the loop
-						   lists every character listed in the charset after.  */
-						for (idx = 0; idx < (int) p2[1]; idx++)
-							if (!(p2[2 + idx] == 0 || (idx < (int) p1[4]
-													   &&
-													   ((p2
-														 [2 +
-														  idx] & ~p1[5 +
-																	 idx])
-														== 0))))
-								break;
+	/* Initialize the compile stack.  */
+	compile_stack.stack =
+		TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+	if (compile_stack.stack == NULL)
+		return REG_ESPACE;
 
-						if (idx == p2[1]) {
-							p[-3] = (unsigned char) pop_failure_jump;
-							DEBUG_PRINT1
-								("  No match => pop_failure_jump.\n");
-						}
-					} else if ((re_opcode_t) p1[3] == charset) {
-						int idx;
+	compile_stack.size = INIT_COMPILE_STACK_SIZE;
+	compile_stack.avail = 0;
 
-						/* We win if the charset inside the loop
-						   has no overlap with the one after the loop.  */
-						for (idx = 0;
-							 idx < (int) p2[1] && idx < (int) p1[4]; idx++)
-							if ((p2[2 + idx] & p1[5 + idx]) != 0)
-								break;
+	/* Initialize the pattern buffer.  */
+	bufp->syntax = syntax;
+	bufp->fastmap_accurate = 0;
+	bufp->not_bol = bufp->not_eol = 0;
 
-						if (idx == p2[1] || idx == p1[4]) {
-							p[-3] = (unsigned char) pop_failure_jump;
-							DEBUG_PRINT1
-								("  No match => pop_failure_jump.\n");
-						}
-					}
-				}
-			}
-			p -= 2;				/* Point at relative address again.  */
-			if ((re_opcode_t) p[-1] != pop_failure_jump) {
-				p[-1] = (unsigned char) jump;
-				DEBUG_PRINT1("  Match => jump.\n");
-				goto unconditional_jump;
-			}
-			/* Note fall through.  */
+	/* Set `used' to zero, so that if we return an error, the pattern
+	   printer (for debugging) will think there's no pattern.  We reset it
+	   at the end.  */
+	bufp->used = 0;
 
+	/* Always count groups, whether or not bufp->no_sub is set.  */
+	bufp->re_nsub = 0;
 
-			/* The end of a simple repeat has a pop_failure_jump back to
-			   its matching on_failure_jump, where the latter will push a
-			   failure point.  The pop_failure_jump takes off failure
-			   points put on by this pop_failure_jump's matching
-			   on_failure_jump; we got through the pattern to here from the
-			   matching on_failure_jump, so didn't fail.  */
-		case pop_failure_jump:
-		{
-			/* We need to pass separate storage for the lowest and
-			   highest registers, even though we don't care about the
-			   actual values.  Otherwise, we will restore only one
-			   register from the stack, since lowest will == highest in
-			   `pop_failure_point'.  */
-			active_reg_t dummy_low_reg, dummy_high_reg;
-			unsigned char *pdummy;
-			const char *sdummy;
+#if !defined emacs && !defined SYNTAX_TABLE
+	/* Initialize the syntax table.  */
+	init_syntax_once();
+#endif
 
-			DEBUG_PRINT1("EXECUTING pop_failure_jump.\n");
-			POP_FAILURE_POINT(sdummy, pdummy,
-							  dummy_low_reg, dummy_high_reg,
-							  reg_dummy, reg_dummy, reg_info_dummy);
+	if (bufp->allocated == 0) {
+		if (bufp->buffer) {		/* If zero allocated, but buffer is non-null, try to realloc
+								   enough space.  This loses if buffer's address is bogus, but
+								   that is the user's responsibility.  */
+			RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char);
+		} else {				/* Caller did not allocate a buffer.  Do it for them.  */
+			bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char);
 		}
-			/* Note fall through.  */
+		if (!bufp->buffer)
+			FREE_STACK_RETURN(REG_ESPACE);
 
-		  unconditional_jump:
-#ifdef _LIBC
-			DEBUG_PRINT2("\n%p: ", p);
-#else
-			DEBUG_PRINT2("\n0x%x: ", p);
-#endif
-			/* Note fall through.  */
+		bufp->allocated = INIT_BUF_SIZE;
+	}
 
-			/* Unconditionally jump (without popping any failure points).  */
-		case jump:
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);	/* Get the amount to jump.  */
-			DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
-			p += mcnt;			/* Do the jump.  */
-#ifdef _LIBC
-			DEBUG_PRINT2("(to %p).\n", p);
-#else
-			DEBUG_PRINT2("(to 0x%x).\n", p);
-#endif
+	begalt = b = bufp->buffer;
+
+	/* Loop through the uncompiled pattern until we're at the end.  */
+	while (p != pend) {
+		PATFETCH(c);
+
+		switch (c) {
+		case '^':
+		{
+			if (				/* If at start of pattern, it's an operator.  */
+				   p == pattern + 1
+				   /* If context independent, it's an operator.  */
+				   || syntax & RE_CONTEXT_INDEP_ANCHORS
+				   /* Otherwise, depends on what's come before.  */
+				   || at_begline_loc_p(pattern, p, syntax))
+				BUF_PUSH(begline);
+			else
+				goto normal_char;
+		}
 			break;
 
 
-			/* We need this opcode so we can detect where alternatives end
-			   in `group_match_null_string_p' et al.  */
-		case jump_past_alt:
-			DEBUG_PRINT1("EXECUTING jump_past_alt.\n");
-			goto unconditional_jump;
+		case '$':
+		{
+			if (				/* If at end of pattern, it's an operator.  */
+				   p == pend
+				   /* If context independent, it's an operator.  */
+				   || syntax & RE_CONTEXT_INDEP_ANCHORS
+				   /* Otherwise, depends on what's next.  */
+				   || at_endline_loc_p(p, pend, syntax))
+				BUF_PUSH(endline);
+			else
+				goto normal_char;
+		}
+			break;
 
 
-			/* Normally, the on_failure_jump pushes a failure point, which
-			   then gets popped at pop_failure_jump.  We will end up at
-			   pop_failure_jump, also, and with a pattern of, say, `a+', we
-			   are skipping over the on_failure_jump, so we have to push
-			   something meaningless for pop_failure_jump to pop.  */
-		case dummy_failure_jump:
-			DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n");
-			/* It doesn't matter what we push for the string here.  What
-			   the code at `fail' tests is the value for the pattern.  */
-			PUSH_FAILURE_POINT(NULL, NULL, -2);
-			goto unconditional_jump;
+		case '+':
+		case '?':
+			if ((syntax & RE_BK_PLUS_QM)
+				|| (syntax & RE_LIMITED_OPS))
+				goto normal_char;
+		  handle_plus:
+		case '*':
+			/* If there is no previous pattern... */
+			if (!laststart) {
+				if (syntax & RE_CONTEXT_INVALID_OPS)
+					FREE_STACK_RETURN(REG_BADRPT);
+				else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+					goto normal_char;
+			}
 
+			{
+				/* Are we optimizing this jump?  */
+				boolean keep_string_p = false;
 
-			/* At the end of an alternative, we need to push a dummy failure
-			   point in case we are followed by a `pop_failure_jump', because
-			   we don't want the failure point for the alternative to be
-			   popped.  For example, matching `(a|ab)*' against `aab'
-			   requires that we match the `ab' alternative.  */
-		case push_dummy_failure:
-			DEBUG_PRINT1("EXECUTING push_dummy_failure.\n");
-			/* See comments just above at `dummy_failure_jump' about the
-			   two zeroes.  */
-			PUSH_FAILURE_POINT(NULL, NULL, -2);
-			break;
+				/* 1 means zero (many) matches is allowed.  */
+				char zero_times_ok = 0, many_times_ok = 0;
 
-			/* Have to succeed matching what follows at least n times.
-			   After that, handle like `on_failure_jump'.  */
-		case succeed_n:
-			EXTRACT_NUMBER(mcnt, p + 2);
-			DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt);
+				/* If there is a sequence of repetition chars, collapse it
+				   down to just one (the right one).  We can't combine
+				   interval operators with these because of, e.g., `a{2}*',
+				   which should only match an even number of `a's.  */
 
-			assert(mcnt >= 0);
-			/* Originally, this is how many times we HAVE to succeed.  */
-			if (mcnt > 0) {
-				mcnt--;
-				p += 2;
-				STORE_NUMBER_AND_INCR(p, mcnt);
-#ifdef _LIBC
-				DEBUG_PRINT3("  Setting %p to %d.\n", p - 2, mcnt);
-#else
-				DEBUG_PRINT3("  Setting 0x%x to %d.\n", p - 2, mcnt);
-#endif
-			} else if (mcnt == 0) {
-#ifdef _LIBC
-				DEBUG_PRINT2("  Setting two bytes from %p to no_op.\n",
-							 p + 2);
-#else
-				DEBUG_PRINT2("  Setting two bytes from 0x%x to no_op.\n",
-							 p + 2);
-#endif
-				p[2] = (unsigned char) no_op;
-				p[3] = (unsigned char) no_op;
-				goto on_failure;
-			}
-			break;
+				for (;;) {
+					zero_times_ok |= c != '+';
+					many_times_ok |= c != '?';
 
-		case jump_n:
-			EXTRACT_NUMBER(mcnt, p + 2);
-			DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt);
+					if (p == pend)
+						break;
 
-			/* Originally, this is how many times we CAN jump.  */
-			if (mcnt) {
-				mcnt--;
-				STORE_NUMBER(p + 2, mcnt);
-#ifdef _LIBC
-				DEBUG_PRINT3("  Setting %p to %d.\n", p + 2, mcnt);
-#else
-				DEBUG_PRINT3("  Setting 0x%x to %d.\n", p + 2, mcnt);
-#endif
-				goto unconditional_jump;
-			}
-			/* If don't have to jump any more, skip over the rest of command.  */
-			else
-				p += 4;
-			break;
+					PATFETCH(c);
 
-		case set_number_at:
-		{
-			DEBUG_PRINT1("EXECUTING set_number_at.\n");
+					if (c == '*'
+						|| (!(syntax & RE_BK_PLUS_QM)
+							&& (c == '+' || c == '?')));
 
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);
-			p1 = p + mcnt;
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);
-#ifdef _LIBC
-			DEBUG_PRINT3("  Setting %p to %d.\n", p1, mcnt);
-#else
-			DEBUG_PRINT3("  Setting 0x%x to %d.\n", p1, mcnt);
-#endif
-			STORE_NUMBER(p1, mcnt);
-			break;
-		}
+					else if (syntax & RE_BK_PLUS_QM && c == '\\') {
+						if (p == pend)
+							FREE_STACK_RETURN(REG_EESCAPE);
 
-#if 0
-			/* The DEC Alpha C compiler 3.x generates incorrect code for the
-			   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
-			   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
-			   macro and introducing temporary variables works around the bug.  */
+						PATFETCH(c1);
+						if (!(c1 == '+' || c1 == '?')) {
+							PATUNFETCH;
+							PATUNFETCH;
+							break;
+						}
 
-		case wordbound:
-			DEBUG_PRINT1("EXECUTING wordbound.\n");
-			if (AT_WORD_BOUNDARY(d))
-				break;
-			goto fail;
+						c = c1;
+					} else {
+						PATUNFETCH;
+						break;
+					}
 
-		case notwordbound:
-			DEBUG_PRINT1("EXECUTING notwordbound.\n");
-			if (AT_WORD_BOUNDARY(d))
-				goto fail;
-			break;
-#else
-		case wordbound:
-		{
-			boolean prevchar, thischar;
+					/* If we get here, we found another repeat character.  */
+				}
 
-			DEBUG_PRINT1("EXECUTING wordbound.\n");
-			if (AT_STRINGS_BEG(d) || AT_STRINGS_END(d))
-				break;
+				/* Star, etc. applied to an empty pattern is equivalent
+				   to an empty pattern.  */
+				if (!laststart)
+					break;
 
-			prevchar = WORDCHAR_P(d - 1);
-			thischar = WORDCHAR_P(d);
-			if (prevchar != thischar)
-				break;
-			goto fail;
-		}
+				/* Now we know whether or not zero matches is allowed
+				   and also whether or not two or more matches is allowed.  */
+				if (many_times_ok) {	/* More than one repetition is allowed, so put in at the
+										   end a backward relative jump from `b' to before the next
+										   jump we're going to put in below (which jumps from
+										   laststart to after this jump).
 
-		case notwordbound:
-		{
-			boolean prevchar, thischar;
+										   But if we are at the `*' in the exact sequence `.*\n',
+										   insert an unconditional jump backwards to the .,
+										   instead of the beginning of the loop.  This way we only
+										   push a failure point once, instead of every time
+										   through the loop.  */
+					assert(p - 1 > pattern);
 
-			DEBUG_PRINT1("EXECUTING notwordbound.\n");
-			if (AT_STRINGS_BEG(d) || AT_STRINGS_END(d))
-				goto fail;
+					/* Allocate the space for the jump.  */
+					GET_BUFFER_SPACE(3);
 
-			prevchar = WORDCHAR_P(d - 1);
-			thischar = WORDCHAR_P(d);
-			if (prevchar != thischar)
-				goto fail;
-			break;
-		}
-#endif
+					/* We know we are not at the first character of the pattern,
+					   because laststart was nonzero.  And we've already
+					   incremented `p', by the way, to be the character after
+					   the `*'.  Do we have to do something analogous here
+					   for null bytes, because of RE_DOT_NOT_NULL?  */
+					if (TRANSLATE(*(p - 2)) == TRANSLATE('.')
+						&& zero_times_ok
+						&& p < pend && TRANSLATE(*p) == TRANSLATE('\n')
+						&& !(syntax & RE_DOT_NEWLINE)) {	/* We have .*\n.  */
+						STORE_JUMP(jump, b, laststart);
+						keep_string_p = true;
+					} else
+						/* Anything else.  */
+						STORE_JUMP(maybe_pop_jump, b, laststart - 3);
 
-		case wordbeg:
-			DEBUG_PRINT1("EXECUTING wordbeg.\n");
-			if (WORDCHAR_P(d) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
-				break;
-			goto fail;
+					/* We've added more stuff to the buffer.  */
+					b += 3;
+				}
 
-		case wordend:
-			DEBUG_PRINT1("EXECUTING wordend.\n");
-			if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
-				&& (!WORDCHAR_P(d) || AT_STRINGS_END(d)))
-				break;
-			goto fail;
+				/* On failure, jump from laststart to b + 3, which will be the
+				   end of the buffer after this jump is inserted.  */
+				GET_BUFFER_SPACE(3);
+				INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
+							: on_failure_jump, laststart, b + 3);
+				pending_exact = 0;
+				b += 3;
 
-#ifdef emacs
-		case before_dot:
-			DEBUG_PRINT1("EXECUTING before_dot.\n");
-			if (PTR_CHAR_POS((unsigned char *) d) >= point)
-				goto fail;
+				if (!zero_times_ok) {
+					/* At least one repetition is required, so insert a
+					   `dummy_failure_jump' before the initial
+					   `on_failure_jump' instruction of the loop. This
+					   effects a skip over that instruction the first time
+					   we hit that loop.  */
+					GET_BUFFER_SPACE(3);
+					INSERT_JUMP(dummy_failure_jump, laststart,
+								laststart + 6);
+					b += 3;
+				}
+			}
 			break;
 
-		case at_dot:
-			DEBUG_PRINT1("EXECUTING at_dot.\n");
-			if (PTR_CHAR_POS((unsigned char *) d) != point)
-				goto fail;
-			break;
 
-		case after_dot:
-			DEBUG_PRINT1("EXECUTING after_dot.\n");
-			if (PTR_CHAR_POS((unsigned char *) d) <= point)
-				goto fail;
+		case '.':
+			laststart = b;
+			BUF_PUSH(anychar);
 			break;
 
-		case syntaxspec:
-			DEBUG_PRINT2("EXECUTING syntaxspec %d.\n", mcnt);
-			mcnt = *p++;
-			goto matchsyntax;
 
-		case wordchar:
-			DEBUG_PRINT1("EXECUTING Emacs wordchar.\n");
-			mcnt = (int) Sword;
-		  matchsyntax:
-			PREFETCH();
-			/* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
-			d++;
-			if (SYNTAX(d[-1]) != (enum syntaxcode) mcnt)
-				goto fail;
-			SET_REGS_MATCHED();
-			break;
+		case '[':
+		{
+			boolean had_char_class = false;
 
-		case notsyntaxspec:
-			DEBUG_PRINT2("EXECUTING notsyntaxspec %d.\n", mcnt);
-			mcnt = *p++;
-			goto matchnotsyntax;
+			if (p == pend)
+				FREE_STACK_RETURN(REG_EBRACK);
 
-		case notwordchar:
-			DEBUG_PRINT1("EXECUTING Emacs notwordchar.\n");
-			mcnt = (int) Sword;
-		  matchnotsyntax:
-			PREFETCH();
-			/* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
-			d++;
-			if (SYNTAX(d[-1]) == (enum syntaxcode) mcnt)
-				goto fail;
-			SET_REGS_MATCHED();
-			break;
+			/* Ensure that we have enough space to push a charset: the
+			   opcode, the length count, and the bitset; 34 bytes in all.  */
+			GET_BUFFER_SPACE(34);
 
-#else							/* not emacs */
-		case wordchar:
-			DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n");
-			PREFETCH();
-			if (!WORDCHAR_P(d))
-				goto fail;
-			SET_REGS_MATCHED();
-			d++;
-			break;
+			laststart = b;
 
-		case notwordchar:
-			DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n");
-			PREFETCH();
-			if (WORDCHAR_P(d))
-				goto fail;
-			SET_REGS_MATCHED();
-			d++;
-			break;
-#endif							/* not emacs */
+			/* We test `*p == '^' twice, instead of using an if
+			   statement, so we only need one BUF_PUSH.  */
+			BUF_PUSH(*p == '^' ? charset_not : charset);
+			if (*p == '^')
+				p++;
 
-		default:
-			abort();
-		}
-		continue;				/* Successfully executed one pattern command; keep going.  */
+			/* Remember the first position in the bracket expression.  */
+			p1 = p;
 
+			/* Push the number of bytes in the bitmap.  */
+			BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
 
-		/* We goto here if a matching operation fails. */
-	  fail:
-		if (!FAIL_STACK_EMPTY()) {	/* A restart point is known.  Restore to that state.  */
-			DEBUG_PRINT1("\nFAIL:\n");
-			POP_FAILURE_POINT(d, p,
-							  lowest_active_reg, highest_active_reg,
-							  regstart, regend, reg_info);
+			/* Clear the whole map.  */
+			bzero(b, (1 << BYTEWIDTH) / BYTEWIDTH);
 
-			/* If this failure point is a dummy, try the next one.  */
-			if (!p)
-				goto fail;
+			/* charset_not matches newline according to a syntax bit.  */
+			if ((re_opcode_t) b[-2] == charset_not
+				&& (syntax & RE_HAT_LISTS_NOT_NEWLINE)) SET_LIST_BIT('\n');
 
-			/* If we failed to the end of the pattern, don't examine *p.  */
-			assert(p <= pend);
-			if (p < pend) {
-				boolean is_a_jump_n = false;
+			/* Read in characters and ranges, setting map bits.  */
+			for (;;) {
+				if (p == pend)
+					FREE_STACK_RETURN(REG_EBRACK);
 
-				/* If failed to a backwards jump that's part of a repetition
-				   loop, need to pop this failure point and use the next one.  */
-				switch ((re_opcode_t) * p) {
-				case jump_n:
-					is_a_jump_n = true;
-				case maybe_pop_jump:
-				case pop_failure_jump:
-				case jump:
-					p1 = p + 1;
-					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-					p1 += mcnt;
+				PATFETCH(c);
 
-					if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n)
-						|| (!is_a_jump_n
-							&& (re_opcode_t) * p1 == on_failure_jump))
-							goto fail;
-					break;
-				default:
-					/* do nothing */ ;
-				}
-			}
+				/* \ might escape characters inside [...] and [^...].  */
+				if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') {
+					if (p == pend)
+						FREE_STACK_RETURN(REG_EESCAPE);
 
-			if (d >= string1 && d <= end1)
-				dend = end_match_1;
-		} else
-			break;				/* Matching at this starting point really fails.  */
-	}							/* for (;;) */
+					PATFETCH(c1);
+					SET_LIST_BIT(c1);
+					continue;
+				}
 
-	if (best_regs_set)
-		goto restore_best_regs;
+				/* Could be the end of the bracket expression.  If it's
+				   not (i.e., when the bracket expression is `[]' so
+				   far), the ']' character bit gets set way below.  */
+				if (c == ']' && p != p1 + 1)
+					break;
 
-	FREE_VARIABLES();
+				/* Look ahead to see if it's a range when the last thing
+				   was a character class.  */
+				if (had_char_class && c == '-' && *p != ']')
+					FREE_STACK_RETURN(REG_ERANGE);
 
-	return -1;					/* Failure to match.  */
-}								/* re_match_2 */
-
-/* Subroutine definitions for re_match_2.  */
+				/* Look ahead to see if it's a range when the last thing
+				   was a character: if this is a hyphen not at the
+				   beginning or the end of a list, then it's the range
+				   operator.  */
+				if (c == '-' && !(p - 2 >= pattern && p[-2] == '[')
+					&& !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
+					&& *p != ']') {
+					reg_errcode_t ret
+						= compile_range(&p, pend, translate, syntax, b);
 
+					if (ret != REG_NOERROR)
+						FREE_STACK_RETURN(ret);
+				}
 
-/* We are passed P pointing to a register number after a start_memory.
+				else if (p[0] == '-' && p[1] != ']') {	/* This handles ranges made up of characters only.  */
+					reg_errcode_t ret;
 
-   Return true if the pattern up to the corresponding stop_memory can
-   match the empty string, and false otherwise.
+					/* Move past the `-'.  */
+					PATFETCH(c1);
 
-   If we find the matching stop_memory, sets P to point to one past its number.
-   Otherwise, sets P to an undefined byte less than or equal to END.
+					ret = compile_range(&p, pend, translate, syntax, b);
+					if (ret != REG_NOERROR)
+						FREE_STACK_RETURN(ret);
+				}
 
-   We don't handle duplicates properly (yet).  */
+				/* See if we're at the beginning of a possible character
+				   class.  */
 
-static boolean group_match_null_string_p(p, end, reg_info)
-unsigned char **p, *end;
-register_info_type *reg_info;
-{
-	int mcnt;
+				else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') {	/* Leave room for the null.  */
+					char str[CHAR_CLASS_MAX_LENGTH + 1];
 
-	/* Point to after the args to the start_memory.  */
-	unsigned char *p1 = *p + 2;
+					PATFETCH(c);
+					c1 = 0;
 
-	while (p1 < end) {
-		/* Skip over opcodes that can match nothing, and return true or
-		   false, as appropriate, when we get to one that can't, or to the
-		   matching stop_memory.  */
+					/* If pattern is `[[:'.  */
+					if (p == pend)
+						FREE_STACK_RETURN(REG_EBRACK);
 
-		switch ((re_opcode_t) * p1) {
-			/* Could be either a loop or a series of alternatives.  */
-		case on_failure_jump:
-			p1++;
-			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+					for (;;) {
+						PATFETCH(c);
+						if ((c == ':' && *p == ']') || p == pend)
+							break;
+						if (c1 < CHAR_CLASS_MAX_LENGTH)
+							str[c1++] = c;
+						else
+							/* This is in any case an invalid class name.  */
+							str[0] = '\0';
+					}
+					str[c1] = '\0';
 
-			/* If the next operation is not a jump backwards in the
-			   pattern.  */
+					/* If isn't a word bracketed by `[:' and `:]':
+					   undo the ending character, the letters, and leave
+					   the leading `:' and `[' (but set bits for them).  */
+					if (c == ':' && *p == ']') {
+#if defined _LIBC || WIDE_CHAR_SUPPORT
+						boolean is_lower = STREQ(str, "lower");
+						boolean is_upper = STREQ(str, "upper");
+						wctype_t wt;
+						int ch;
 
-			if (mcnt >= 0) {
-				/* Go through the on_failure_jumps of the alternatives,
-				   seeing if any of the alternatives cannot match nothing.
-				   The last alternative starts with only a jump,
-				   whereas the rest start with on_failure_jump and end
-				   with a jump, e.g., here is the pattern for `a|b|c':
+						wt = IS_CHAR_CLASS(str);
+						if (wt == 0)
+							FREE_STACK_RETURN(REG_ECTYPE);
 
-				   /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
-				   /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
-				   /exactn/1/c
+						/* Throw away the ] at the end of the character
+						   class.  */
+						PATFETCH(c);
 
-				   So, we have to first go through the first (n-1)
-				   alternatives and then deal with the last one separately.  */
+						if (p == pend)
+							FREE_STACK_RETURN(REG_EBRACK);
 
+						for (ch = 0; ch < 1 << BYTEWIDTH; ++ch) {
+# ifdef _LIBC
+							if (__iswctype(__btowc(ch), wt))
+								SET_LIST_BIT(ch);
+# else
+							if (iswctype(btowc(ch), wt))
+								SET_LIST_BIT(ch);
+# endif
 
-				/* Deal with the first (n-1) alternatives, which start
-				   with an on_failure_jump (see above) that jumps to right
-				   past a jump_past_alt.  */
+							if (translate && (is_upper || is_lower)
+								&& (ISUPPER(ch) || ISLOWER(ch)))
+								SET_LIST_BIT(ch);
+						}
 
-				while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) {
-					/* `mcnt' holds how many bytes long the alternative
-					   is, including the ending `jump_past_alt' and
-					   its number.  */
+						had_char_class = true;
+#else
+						int ch;
+						boolean is_alnum = STREQ(str, "alnum");
+						boolean is_alpha = STREQ(str, "alpha");
+						boolean is_blank = STREQ(str, "blank");
+						boolean is_cntrl = STREQ(str, "cntrl");
+						boolean is_digit = STREQ(str, "digit");
+						boolean is_graph = STREQ(str, "graph");
+						boolean is_lower = STREQ(str, "lower");
+						boolean is_print = STREQ(str, "print");
+						boolean is_punct = STREQ(str, "punct");
+						boolean is_space = STREQ(str, "space");
+						boolean is_upper = STREQ(str, "upper");
+						boolean is_xdigit = STREQ(str, "xdigit");
 
-					if (!alt_match_null_string_p(p1, p1 + mcnt - 3,
-												 reg_info)) return false;
+						if (!IS_CHAR_CLASS(str))
+							FREE_STACK_RETURN(REG_ECTYPE);
 
-					/* Move to right after this alternative, including the
-					   jump_past_alt.  */
-					p1 += mcnt;
+						/* Throw away the ] at the end of the character
+						   class.  */
+						PATFETCH(c);
 
-					/* Break if it's the beginning of an n-th alternative
-					   that doesn't begin with an on_failure_jump.  */
-					if ((re_opcode_t) * p1 != on_failure_jump)
-						break;
+						if (p == pend)
+							FREE_STACK_RETURN(REG_EBRACK);
 
-					/* Still have to check that it's not an n-th
-					   alternative that starts with an on_failure_jump.  */
-					p1++;
-					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-					if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) {
-						/* Get to the beginning of the n-th alternative.  */
-						p1 -= 3;
-						break;
+						for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
+							/* This was split into 3 if's to
+							   avoid an arbitrary limit in some compiler.  */
+							if ((is_alnum && ISALNUM(ch))
+								|| (is_alpha && ISALPHA(ch))
+								|| (is_blank && ISBLANK(ch))
+								|| (is_cntrl && ISCNTRL(ch)))
+								SET_LIST_BIT(ch);
+							if ((is_digit && ISDIGIT(ch))
+								|| (is_graph && ISGRAPH(ch))
+								|| (is_lower && ISLOWER(ch))
+								|| (is_print && ISPRINT(ch)))
+								SET_LIST_BIT(ch);
+							if ((is_punct && ISPUNCT(ch))
+								|| (is_space && ISSPACE(ch))
+								|| (is_upper && ISUPPER(ch))
+								|| (is_xdigit && ISXDIGIT(ch)))
+								SET_LIST_BIT(ch);
+							if (translate && (is_upper || is_lower)
+								&& (ISUPPER(ch) || ISLOWER(ch)))
+								SET_LIST_BIT(ch);
+						}
+						had_char_class = true;
+#endif							/* libc || wctype.h */
+					} else {
+						c1++;
+						while (c1--)
+							PATUNFETCH;
+						SET_LIST_BIT('[');
+						SET_LIST_BIT(':');
+						had_char_class = false;
 					}
+				} else {
+					had_char_class = false;
+					SET_LIST_BIT(c);
 				}
+			}
 
-				/* Deal with the last alternative: go back and get number
-				   of the `jump_past_alt' just before it.  `mcnt' contains
-				   the length of the alternative.  */
-				EXTRACT_NUMBER(mcnt, p1 - 2);
+			/* Discard any (non)matching list bytes that are all 0 at the
+			   end of the map.  Decrease the map-length byte too.  */
+			while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+				b[-1]--;
+			b += b[-1];
+		}
+			break;
 
-				if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info))
-					return false;
 
-				p1 += mcnt;		/* Get past the n-th alternative.  */
-			}					/* if mcnt > 0 */
-			break;
+		case '(':
+			if (syntax & RE_NO_BK_PARENS)
+				goto handle_open;
+			else
+				goto normal_char;
 
 
-		case stop_memory:
-			assert(p1[1] == **p);
-			*p = p1 + 2;
-			return true;
+		case ')':
+			if (syntax & RE_NO_BK_PARENS)
+				goto handle_close;
+			else
+				goto normal_char;
 
 
-		default:
-			if (!common_op_match_null_string_p(&p1, end, reg_info))
-				return false;
-		}
-	}							/* while p1 < end */
+		case '\n':
+			if (syntax & RE_NEWLINE_ALT)
+				goto handle_alt;
+			else
+				goto normal_char;
 
-	return false;
-}								/* group_match_null_string_p */
 
+		case '|':
+			if (syntax & RE_NO_BK_VBAR)
+				goto handle_alt;
+			else
+				goto normal_char;
 
-/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
-   It expects P to be the first byte of a single alternative and END one
-   byte past the last. The alternative can contain groups.  */
 
-static boolean alt_match_null_string_p(p, end, reg_info)
-unsigned char *p, *end;
-register_info_type *reg_info;
-{
-	int mcnt;
-	unsigned char *p1 = p;
+		case '{':
+			if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+				goto handle_interval;
+			else
+				goto normal_char;
 
-	while (p1 < end) {
-		/* Skip over opcodes that can match nothing, and break when we get
-		   to one that can't.  */
 
-		switch ((re_opcode_t) * p1) {
-			/* It's a loop.  */
-		case on_failure_jump:
-			p1++;
-			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-			p1 += mcnt;
-			break;
+		case '\\':
+			if (p == pend)
+				FREE_STACK_RETURN(REG_EESCAPE);
 
-		default:
-			if (!common_op_match_null_string_p(&p1, end, reg_info))
-				return false;
-		}
-	}							/* while p1 < end */
+			/* Do not translate the character after the \, so that we can
+			   distinguish, e.g., \B from \b, even if we normally would
+			   translate, e.g., B to b.  */
+			PATFETCH_RAW(c);
 
-	return true;
-}								/* alt_match_null_string_p */
+			switch (c) {
+			case '(':
+				if (syntax & RE_NO_BK_PARENS)
+					goto normal_backslash;
 
+			  handle_open:
+				bufp->re_nsub++;
+				regnum++;
 
-/* Deals with the ops common to group_match_null_string_p and
-   alt_match_null_string_p.
+				if (COMPILE_STACK_FULL) {
+					RETALLOC(compile_stack.stack, compile_stack.size << 1,
+							 compile_stack_elt_t);
+					if (compile_stack.stack == NULL)
+						return REG_ESPACE;
 
-   Sets P to one after the op and its arguments, if any.  */
+					compile_stack.size <<= 1;
+				}
 
-static boolean common_op_match_null_string_p(p, end, reg_info)
-unsigned char **p, *end;
-register_info_type *reg_info;
-{
-	int mcnt;
-	boolean ret;
-	int reg_no;
-	unsigned char *p1 = *p;
+				/* These are the values to restore when we hit end of this
+				   group.  They are all relative offsets, so that if the
+				   whole pattern moves because of realloc, they will still
+				   be valid.  */
+				COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+				COMPILE_STACK_TOP.fixup_alt_jump
+					=
+					fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+				COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+				COMPILE_STACK_TOP.regnum = regnum;
 
-	switch ((re_opcode_t) * p1++) {
-	case no_op:
-	case begline:
-	case endline:
-	case begbuf:
-	case endbuf:
-	case wordbeg:
-	case wordend:
-	case wordbound:
-	case notwordbound:
-#ifdef emacs
-	case before_dot:
-	case at_dot:
-	case after_dot:
-#endif
-		break;
+				/* We will eventually replace the 0 with the number of
+				   groups inner to this one.  But do not push a
+				   start_memory for groups beyond the last one we can
+				   represent in the compiled pattern.  */
+				if (regnum <= MAX_REGNUM) {
+					COMPILE_STACK_TOP.inner_group_offset =
+						b - bufp->buffer + 2;
+					BUF_PUSH_3(start_memory, regnum, 0);
+				}
 
-	case start_memory:
-		reg_no = *p1;
-		assert(reg_no > 0 && reg_no <= MAX_REGNUM);
-		ret = group_match_null_string_p(&p1, end, reg_info);
+				compile_stack.avail++;
 
-		/* Have to set this here in case we're checking a group which
-		   contains a group and a back reference to it.  */
+				fixup_alt_jump = 0;
+				laststart = 0;
+				begalt = b;
+				/* If we've reached MAX_REGNUM groups, then this open
+				   won't actually generate any code, so we'll have to
+				   clear pending_exact explicitly.  */
+				pending_exact = 0;
+				break;
 
-		if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) ==
-			MATCH_NULL_UNSET_VALUE)
-				REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
 
-		if (!ret)
-			return false;
-		break;
+			case ')':
+				if (syntax & RE_NO_BK_PARENS)
+					goto normal_backslash;
 
-		/* If this is an optimized succeed_n for zero times, make the jump.  */
-	case jump:
-		EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-		if (mcnt >= 0)
-			p1 += mcnt;
-		else
-			return false;
-		break;
+				if (COMPILE_STACK_EMPTY) {
+					if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+						goto normal_backslash;
+					else
+						FREE_STACK_RETURN(REG_ERPAREN);
+				}
 
-	case succeed_n:
-		/* Get to the number of times to succeed.  */
-		p1 += 2;
-		EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+			  handle_close:
+				if (fixup_alt_jump) {	/* Push a dummy failure point at the end of the
+										   alternative for a possible future
+										   `pop_failure_jump' to pop.  See comments at
+										   `push_dummy_failure' in `re_match_2'.  */
+					BUF_PUSH(push_dummy_failure);
 
-		if (mcnt == 0) {
-			p1 -= 4;
-			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-			p1 += mcnt;
-		} else
-			return false;
-		break;
+					/* We allocated space for this jump when we assigned
+					   to `fixup_alt_jump', in the `handle_alt' case below.  */
+					STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
+				}
 
-	case duplicate:
-		if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
-			return false;
-		break;
+				/* See similar code for backslashed left paren above.  */
+				if (COMPILE_STACK_EMPTY) {
+					if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+						goto normal_char;
+					else
+						FREE_STACK_RETURN(REG_ERPAREN);
+				}
 
-	case set_number_at:
-		p1 += 4;
+				/* Since we just checked for an empty stack above, this
+				   ``can't happen''.  */
+				assert(compile_stack.avail != 0);
+				{
+					/* We don't just want to restore into `regnum', because
+					   later groups should continue to be numbered higher,
+					   as in `(ab)c(de)' -- the second group is #2.  */
+					regnum_t this_group_regnum;
 
-	default:
-		/* All other opcodes mean we cannot match the empty string.  */
-		return false;
-	}
+					compile_stack.avail--;
+					begalt =
+						bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+					fixup_alt_jump =
+						COMPILE_STACK_TOP.fixup_alt_jump ? bufp->buffer +
+						COMPILE_STACK_TOP.fixup_alt_jump - 1 : 0;
+					laststart =
+						bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+					this_group_regnum = COMPILE_STACK_TOP.regnum;
+					/* If we've reached MAX_REGNUM groups, then this open
+					   won't actually generate any code, so we'll have to
+					   clear pending_exact explicitly.  */
+					pending_exact = 0;
 
-	*p = p1;
-	return true;
-}								/* common_op_match_null_string_p */
+					/* We're at the end of the group, so now we know how many
+					   groups were inside this one.  */
+					if (this_group_regnum <= MAX_REGNUM) {
+						unsigned char *inner_group_loc
 
+							=
+							bufp->buffer +
+							COMPILE_STACK_TOP.inner_group_offset;
 
-/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
-   bytes; nonzero otherwise.  */
+						*inner_group_loc = regnum - this_group_regnum;
+						BUF_PUSH_3(stop_memory, this_group_regnum,
+								   regnum - this_group_regnum);
+					}
+				}
+				break;
 
-static int bcmp_translate(s1, s2, len, translate)
-const char *s1, *s2;
-register int len;
-RE_TRANSLATE_TYPE translate;
-{
-	register const unsigned char *p1 = (const unsigned char *) s1;
-	register const unsigned char *p2 = (const unsigned char *) s2;
 
-	while (len) {
-		if (translate[*p1++] != translate[*p2++])
-			return 1;
-		len--;
-	}
-	return 0;
-}
-
-/* Entry points for GNU code.  */
+			case '|':			/* `\|'.  */
+				if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+					goto normal_backslash;
+			  handle_alt:
+				if (syntax & RE_LIMITED_OPS)
+					goto normal_char;
 
-/* re_compile_pattern is the GNU regular expression compiler: it
-   compiles PATTERN (of length SIZE) and puts the result in BUFP.
-   Returns 0 if the pattern was valid, otherwise an error string.
+				/* Insert before the previous alternative a jump which
+				   jumps to this alternative if the former fails.  */
+				GET_BUFFER_SPACE(3);
+				INSERT_JUMP(on_failure_jump, begalt, b + 6);
+				pending_exact = 0;
+				b += 3;
 
-   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
-   are set in BUFP on entry.
+				/* The alternative before this one has a jump after it
+				   which gets executed if it gets matched.  Adjust that
+				   jump so it will jump to this alternative's analogous
+				   jump (put in below, which in turn will jump to the next
+				   (if any) alternative's such jump, etc.).  The last such
+				   jump jumps to the correct final destination.  A picture:
+				   _____ _____
+				   |   | |   |
+				   |   v |   v
+				   a | b   | c
 
-   We call regex_compile to do the actual compilation.  */
+				   If we are at `b', then fixup_alt_jump right now points to a
+				   three-byte space after `a'.  We'll put in the jump, set
+				   fixup_alt_jump to right after `b', and leave behind three
+				   bytes which we'll fill in when we get to after `c'.  */
 
-const char *re_compile_pattern(pattern, length, bufp)
-const char *pattern;
-size_t length;
-struct re_pattern_buffer *bufp;
-{
-	reg_errcode_t ret;
+				if (fixup_alt_jump)
+					STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
 
-	/* GNU code is written to assume at least RE_NREGS registers will be set
-	   (and at least one extra will be -1).  */
-	bufp->regs_allocated = REGS_UNALLOCATED;
+				/* Mark and leave space for a jump after this alternative,
+				   to be filled in later either by next alternative or
+				   when know we're at the end of a series of alternatives.  */
+				fixup_alt_jump = b;
+				GET_BUFFER_SPACE(3);
+				b += 3;
 
-	/* And GNU code determines whether or not to get register information
-	   by passing null for the REGS argument to re_match, etc., not by
-	   setting no_sub.  */
-	bufp->no_sub = 0;
+				laststart = 0;
+				begalt = b;
+				break;
 
-	/* Match anchors at newline.  */
-	bufp->newline_anchor = 1;
 
-	ret = regex_compile(pattern, length, re_syntax_options, bufp);
+			case '{':
+				/* If \{ is a literal.  */
+				if (!(syntax & RE_INTERVALS)
+					/* If we're at `\{' and it's not the open-interval
+					   operator.  */
+					|| ((syntax & RE_INTERVALS)
+						&& (syntax & RE_NO_BK_BRACES)) || (p - 2 == pattern
+														   && p == pend))
+					goto normal_backslash;
 
-	if (!ret)
-		return NULL;
-	return gettext(re_error_msgid + re_error_msgid_idx[(int) ret]);
-}
+			  handle_interval:
+				{
+					/* If got here, then the syntax allows intervals.  */
 
-#ifdef _LIBC
-weak_alias(__re_compile_pattern, re_compile_pattern)
-#endif
-/* Entry points compatible with 4.2 BSD regex library.  We don't define
-   them unless specifically requested.  */
-#if defined _REGEX_RE_COMP || defined _LIBC
-/* BSD has one and only one pattern buffer.  */
-static struct re_pattern_buffer re_comp_buf;
+					/* At least (most) this many matches must be made.  */
+					int lower_bound = -1, upper_bound = -1;
 
-char *
-#ifdef _LIBC
-/* Make these definitions weak in libc, so POSIX programs can redefine
-   these names if they don't use our functions, and still use
-   regcomp/regexec below without link errors.  */ weak_function
-#endif
-re_comp(s)
-const char *s;
-{
-	reg_errcode_t ret;
+					beg_interval = p - 1;
 
-	if (!s) {
-		if (!re_comp_buf.buffer)
-			return gettext("No previous regular expression");
-		return 0;
-	}
+					if (p == pend) {
+						if (!(syntax & RE_INTERVALS)
+							&& (syntax & RE_NO_BK_BRACES)) goto
+								unfetch_interval;
+						else
+							FREE_STACK_RETURN(REG_EBRACE);
+					}
 
-	if (!re_comp_buf.buffer) {
-		re_comp_buf.buffer = (unsigned char *) malloc(200);
-		if (re_comp_buf.buffer == NULL)
-			return (char *) gettext(re_error_msgid
-									+
-									re_error_msgid_idx[(int) REG_ESPACE]);
-		re_comp_buf.allocated = 200;
+					GET_UNSIGNED_NUMBER(lower_bound);
 
-		re_comp_buf.fastmap = (char *) malloc(1 << BYTEWIDTH);
-		if (re_comp_buf.fastmap == NULL)
-			return (char *) gettext(re_error_msgid
-									+
-									re_error_msgid_idx[(int) REG_ESPACE]);
-	}
+					if (c == ',') {
+						GET_UNSIGNED_NUMBER(upper_bound);
+						if ((!(syntax & RE_NO_BK_BRACES) && c != '\\')
+							|| ((syntax & RE_NO_BK_BRACES) && c != '}'))
+							FREE_STACK_RETURN(REG_BADBR);
 
-	/* Since `re_exec' always passes NULL for the `regs' argument, we
-	   don't need to initialize the pattern buffer fields which affect it.  */
+						if (upper_bound < 0)
+							upper_bound = RE_DUP_MAX;
+					} else
+						/* Interval such as `{1}' => match exactly once. */
+						upper_bound = lower_bound;
 
-	/* Match anchors at newlines.  */
-	re_comp_buf.newline_anchor = 1;
+					if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+						|| lower_bound > upper_bound) {
+						if (!(syntax & RE_INTERVALS)
+							&& (syntax & RE_NO_BK_BRACES)) goto
+								unfetch_interval;
+						else
+							FREE_STACK_RETURN(REG_BADBR);
+					}
 
-	ret = regex_compile(s, strlen(s), re_syntax_options, &re_comp_buf);
+					if (!(syntax & RE_NO_BK_BRACES)) {
+						if (c != '\\')
+							FREE_STACK_RETURN(REG_EBRACE);
 
-	if (!ret)
-		return NULL;
+						PATFETCH(c);
+					}
 
-	/* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
-	return (char *) gettext(re_error_msgid +
-							re_error_msgid_idx[(int) ret]);
-}
+					if (c != '}') {
+						if (!(syntax & RE_INTERVALS)
+							&& (syntax & RE_NO_BK_BRACES)) goto
+								unfetch_interval;
+						else
+							FREE_STACK_RETURN(REG_BADBR);
+					}
 
+					/* We just parsed a valid interval.  */
 
-int
-#ifdef _LIBC
- weak_function
-#endif
-re_exec(s)
-const char *s;
-{
-	const int len = strlen(s);
+					/* If it's invalid to have no preceding re.  */
+					if (!laststart) {
+						if (syntax & RE_CONTEXT_INVALID_OPS)
+							FREE_STACK_RETURN(REG_BADRPT);
+						else if (syntax & RE_CONTEXT_INDEP_OPS)
+							laststart = b;
+						else
+							goto unfetch_interval;
+					}
 
-	return
-		0 <= re_search(&re_comp_buf, s, len, 0, len,
-					   (struct re_registers *) 0);
-}
+					/* If the upper bound is zero, don't want to succeed at
+					   all; jump from `laststart' to `b + 3', which will be
+					   the end of the buffer after we insert the jump.  */
+					if (upper_bound == 0) {
+						GET_BUFFER_SPACE(3);
+						INSERT_JUMP(jump, laststart, b + 3);
+						b += 3;
+					}
 
-#endif							/* _REGEX_RE_COMP */
-
-/* POSIX.2 functions.  Don't define these for Emacs.  */
+					/* Otherwise, we have a nontrivial interval.  When
+					   we're all done, the pattern will look like:
+					   set_number_at <jump count> <upper bound>
+					   set_number_at <succeed_n count> <lower bound>
+					   succeed_n <after jump addr> <succeed_n count>
+					   <body of loop>
+					   jump_n <succeed_n addr> <jump count>
+					   (The upper bound and `jump_n' are omitted if
+					   `upper_bound' is 1, though.)  */
+					else {		/* If the upper bound is > 1, we need to insert
+								   more at the end of the loop.  */
+						unsigned nbytes = 10 + (upper_bound > 1) * 10;
 
-#ifndef emacs
+						GET_BUFFER_SPACE(nbytes);
 
-/* regcomp takes a regular expression as a string and compiles it.
+						/* Initialize lower bound of the `succeed_n', even
+						   though it will be set during matching by its
+						   attendant `set_number_at' (inserted next),
+						   because `re_compile_fastmap' needs to know.
+						   Jump to the `jump_n' we might insert below.  */
+						INSERT_JUMP2(succeed_n, laststart,
+									 b + 5 + (upper_bound > 1) * 5,
+									 lower_bound);
+						b += 5;
 
-   PREG is a regex_t *.  We do not expect any fields to be initialized,
-   since POSIX says we shouldn't.  Thus, we set
+						/* Code to initialize the lower bound.  Insert
+						   before the `succeed_n'.  The `5' is the last two
+						   bytes of this `set_number_at', plus 3 bytes of
+						   the following `succeed_n'.  */
+						insert_op2(set_number_at, laststart, 5,
+								   lower_bound, b);
+						b += 5;
 
-     `buffer' to the compiled pattern;
-     `used' to the length of the compiled pattern;
-     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
-       REG_EXTENDED bit in CFLAGS is set; otherwise, to
-       RE_SYNTAX_POSIX_BASIC;
-     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
-     `fastmap' to an allocated space for the fastmap;
-     `fastmap_accurate' to zero;
-     `re_nsub' to the number of subexpressions in PATTERN.
+						if (upper_bound > 1) {	/* More than one repetition is allowed, so
+												   append a backward jump to the `succeed_n'
+												   that starts this interval.
 
-   PATTERN is the address of the pattern string.
+												   When we've reached this during matching,
+												   we'll have matched the interval once, so
+												   jump back only `upper_bound - 1' times.  */
+							STORE_JUMP2(jump_n, b, laststart + 5,
+										upper_bound - 1);
+							b += 5;
 
-   CFLAGS is a series of bits which affect compilation.
+							/* The location we want to set is the second
+							   parameter of the `jump_n'; that is `b-2' as
+							   an absolute address.  `laststart' will be
+							   the `set_number_at' we're about to insert;
+							   `laststart+3' the number to set, the source
+							   for the relative address.  But we are
+							   inserting into the middle of the pattern --
+							   so everything is getting moved up by 5.
+							   Conclusion: (b - 2) - (laststart + 3) + 5,
+							   i.e., b - laststart.
 
-     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
-     use POSIX basic syntax.
+							   We insert this at the beginning of the loop
+							   so that if we fail during matching, we'll
+							   reinitialize the bounds.  */
+							insert_op2(set_number_at, laststart,
+									   b - laststart, upper_bound - 1, b);
+							b += 5;
+						}
+					}
+					pending_exact = 0;
+					beg_interval = NULL;
+				}
+				break;
 
-     If REG_NEWLINE is set, then . and [^...] don't match newline.
-     Also, regexec will try a match beginning after every newline.
+			  unfetch_interval:
+				/* If an invalid interval, match the characters as literals.  */
+				assert(beg_interval);
+				p = beg_interval;
+				beg_interval = NULL;
 
-     If REG_ICASE is set, then we considers upper- and lowercase
-     versions of letters to be equivalent when matching.
+				/* normal_char and normal_backslash need `c'.  */
+				PATFETCH(c);
 
-     If REG_NOSUB is set, then when PREG is passed to regexec, that
-     routine will report only success or failure, and nothing about the
-     registers.
+				if (!(syntax & RE_NO_BK_BRACES)) {
+					if (p > pattern && p[-1] == '\\')
+						goto normal_backslash;
+				}
+				goto normal_char;
 
-   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
-   the return codes and their meanings.)  */
+#ifdef emacs
+				/* There is no way to specify the before_dot and after_dot
+				   operators.  rms says this is ok.  --karl  */
+			case '=':
+				BUF_PUSH(at_dot);
+				break;
 
-int regcomp(preg, pattern, cflags)
-regex_t *preg;
-const char *pattern;
-int cflags;
-{
-	reg_errcode_t ret;
-	reg_syntax_t syntax
-		= (cflags & REG_EXTENDED) ?
+			case 's':
+				laststart = b;
+				PATFETCH(c);
+				BUF_PUSH_2(syntaxspec, syntax_spec_code[c]);
+				break;
 
-		RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+			case 'S':
+				laststart = b;
+				PATFETCH(c);
+				BUF_PUSH_2(notsyntaxspec, syntax_spec_code[c]);
+				break;
+#endif							/* emacs */
 
-	/* regex_compile will allocate the space for the compiled pattern.  */
-	preg->buffer = 0;
-	preg->allocated = 0;
-	preg->used = 0;
 
-	/* Try to allocate space for the fastmap.  */
-	preg->fastmap = (char *) malloc(1 << BYTEWIDTH);
+			case 'w':
+				if (syntax & RE_NO_GNU_OPS)
+					goto normal_char;
+				laststart = b;
+				BUF_PUSH(wordchar);
+				break;
 
-	if (cflags & REG_ICASE) {
-		unsigned i;
 
-		preg->translate
-			= (RE_TRANSLATE_TYPE) malloc(CHAR_SET_SIZE
-										 * sizeof(*(RE_TRANSLATE_TYPE) 0));
-		if (preg->translate == NULL)
-			return (int) REG_ESPACE;
+			case 'W':
+				if (syntax & RE_NO_GNU_OPS)
+					goto normal_char;
+				laststart = b;
+				BUF_PUSH(notwordchar);
+				break;
 
-		/* Map uppercase characters to corresponding lowercase ones.  */
-		for (i = 0; i < CHAR_SET_SIZE; i++)
-			preg->translate[i] = ISUPPER(i) ? TOLOWER(i) : i;
-	} else
-		preg->translate = NULL;
 
-	/* If REG_NEWLINE is set, newlines are treated differently.  */
-	if (cflags & REG_NEWLINE) {	/* REG_NEWLINE implies neither . nor [^...] match newline.  */
-		syntax &= ~RE_DOT_NEWLINE;
-		syntax |= RE_HAT_LISTS_NOT_NEWLINE;
-		/* It also changes the matching behavior.  */
-		preg->newline_anchor = 1;
-	} else
-		preg->newline_anchor = 0;
+			case '<':
+				if (syntax & RE_NO_GNU_OPS)
+					goto normal_char;
+				BUF_PUSH(wordbeg);
+				break;
 
-	preg->no_sub = !!(cflags & REG_NOSUB);
+			case '>':
+				if (syntax & RE_NO_GNU_OPS)
+					goto normal_char;
+				BUF_PUSH(wordend);
+				break;
 
-	/* POSIX says a null character in the pattern terminates it, so we
-	   can use strlen here in compiling the pattern.  */
-	ret = regex_compile(pattern, strlen(pattern), syntax, preg);
+			case 'b':
+				if (syntax & RE_NO_GNU_OPS)
+					goto normal_char;
+				BUF_PUSH(wordbound);
+				break;
 
-	/* POSIX doesn't distinguish between an unmatched open-group and an
-	   unmatched close-group: both are REG_EPAREN.  */
-	if (ret == REG_ERPAREN)
-		ret = REG_EPAREN;
+			case 'B':
+				if (syntax & RE_NO_GNU_OPS)
+					goto normal_char;
+				BUF_PUSH(notwordbound);
+				break;
 
-	if (ret == REG_NOERROR && preg->fastmap) {
-		/* Compute the fastmap now, since regexec cannot modify the pattern
-		   buffer.  */
-		if (re_compile_fastmap(preg) == -2) {
-			/* Some error occurred while computing the fastmap, just forget
-			   about it.  */
-			free(preg->fastmap);
-			preg->fastmap = NULL;
-		}
-	}
+			case '`':
+				if (syntax & RE_NO_GNU_OPS)
+					goto normal_char;
+				BUF_PUSH(begbuf);
+				break;
 
-	return (int) ret;
-}
+			case '\'':
+				if (syntax & RE_NO_GNU_OPS)
+					goto normal_char;
+				BUF_PUSH(endbuf);
+				break;
 
-#ifdef _LIBC
-weak_alias(__regcomp, regcomp)
-#endif
-/* regexec searches for a given pattern, specified by PREG, in the
-   string STRING.
+			case '1':
+			case '2':
+			case '3':
+			case '4':
+			case '5':
+			case '6':
+			case '7':
+			case '8':
+			case '9':
+				if (syntax & RE_NO_BK_REFS)
+					goto normal_char;
 
-   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
-   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
-   least NMATCH elements, and we set them to the offsets of the
-   corresponding matched substrings.
+				c1 = c - '0';
 
-   EFLAGS specifies `execution flags' which affect matching: if
-   REG_NOTBOL is set, then ^ does not match at the beginning of the
-   string; if REG_NOTEOL is set, then $ does not match at the end.
+				if (c1 > regnum)
+					FREE_STACK_RETURN(REG_ESUBREG);
 
-   We return 0 if we find a match and REG_NOMATCH if not.  */
-int regexec(preg, string, nmatch, pmatch, eflags)
-const regex_t *preg;
-const char *string;
-size_t nmatch;
-regmatch_t pmatch[];
-int eflags;
-{
-	int ret;
-	struct re_registers regs;
-	regex_t private_preg;
-	int len = strlen(string);
-	boolean want_reg_info = !preg->no_sub && nmatch > 0;
+				/* Can't back reference to a subexpression if inside of it.  */
+				if (group_in_compile_stack(compile_stack, (regnum_t) c1))
+					goto normal_char;
 
-	private_preg = *preg;
+				laststart = b;
+				BUF_PUSH_2(duplicate, c1);
+				break;
 
-	private_preg.not_bol = !!(eflags & REG_NOTBOL);
-	private_preg.not_eol = !!(eflags & REG_NOTEOL);
 
-	/* The user has told us exactly how many registers to return
-	   information about, via `nmatch'.  We have to pass that on to the
-	   matching routines.  */
-	private_preg.regs_allocated = REGS_FIXED;
+			case '+':
+			case '?':
+				if (syntax & RE_BK_PLUS_QM)
+					goto handle_plus;
+				else
+					goto normal_backslash;
 
-	if (want_reg_info) {
-		regs.num_regs = nmatch;
-		regs.start = TALLOC(nmatch * 2, regoff_t);
-		if (regs.start == NULL)
-			return (int) REG_NOMATCH;
-		regs.end = regs.start + nmatch;
-	}
+			default:
+			  normal_backslash:
+				/* You might think it would be useful for \ to mean
+				   not to translate; but if we don't translate it
+				   it will never match anything.  */
+				c = TRANSLATE(c);
+				goto normal_char;
+			}
+			break;
 
-	/* Perform the searching operation.  */
-	ret = re_search(&private_preg, string, len,
-					/* start: */ 0, /* range: */ len,
-					want_reg_info ? &regs : (struct re_registers *) 0);
 
-	/* Copy the register information to the POSIX structure.  */
-	if (want_reg_info) {
-		if (ret >= 0) {
-			unsigned r;
+		default:
+			/* Expects the character in `c'.  */
+		  normal_char:
+			/* If no exactn currently being built.  */
+			if (!pending_exact
+				/* If last exactn not at current position.  */
+				|| pending_exact + *pending_exact + 1 != b
+				/* We have only one byte following the exactn for the count.  */
+				|| *pending_exact == (1 << BYTEWIDTH) - 1
+				/* If followed by a repetition operator.  */
+				|| *p == '*' || *p == '^' || ((syntax & RE_BK_PLUS_QM)
+											  ? *p == '\\' && (p[1] == '+'
+															   || p[1] ==
+															   '?') : (*p
+																	   ==
+																	   '+'
+																	   ||
+																	   *p
+																	   ==
+																	   '?'))
+				|| ((syntax & RE_INTERVALS)
+					&& ((syntax & RE_NO_BK_BRACES)
+						? *p == '{' : (p[0] == '\\' && p[1] == '{')))) {
+				/* Start building a new exactn.  */
 
-			for (r = 0; r < nmatch; r++) {
-				pmatch[r].rm_so = regs.start[r];
-				pmatch[r].rm_eo = regs.end[r];
+				laststart = b;
+
+				BUF_PUSH_2(exactn, 0);
+				pending_exact = b - 1;
 			}
-		}
 
-		/* If we needed the temporary register info, free the space now.  */
-		free(regs.start);
-	}
+			BUF_PUSH(c);
+			(*pending_exact)++;
+			break;
+		}						/* switch (c) */
+	}							/* while p != pend */
 
-	/* We want zero return to mean success, unlike `re_search'.  */
-	return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
-}
 
-#ifdef _LIBC
-weak_alias(__regexec, regexec)
-#endif
-/* Returns a message corresponding to an error code, ERRCODE, returned
-   from either regcomp or regexec.   We don't use PREG here.  */
-	size_t regerror(errcode, preg, errbuf, errbuf_size)
-int errcode;
-const regex_t *preg;
-char *errbuf;
-size_t errbuf_size;
-{
-	const char *msg;
-	size_t msg_size;
+	/* Through the pattern now.  */
 
-	if (errcode < 0 || errcode >= (int) (sizeof(re_error_msgid_idx)
-										 / sizeof(re_error_msgid_idx[0])))
-		/* Only error codes returned by the rest of the code should be passed
-		   to this routine.  If we are given anything else, or if other regex
-		   code generates an invalid error code, then the program has a bug.
-		   Dump core so we can fix it.  */
-		abort();
+	if (fixup_alt_jump)
+		STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
 
-	msg = gettext(re_error_msgid + re_error_msgid_idx[errcode]);
+	if (!COMPILE_STACK_EMPTY)
+		FREE_STACK_RETURN(REG_EPAREN);
 
-	msg_size = strlen(msg) + 1;	/* Includes the null.  */
+	/* If we don't want backtracking, force success
+	   the first time we reach the end of the compiled pattern.  */
+	if (syntax & RE_NO_POSIX_BACKTRACKING)
+		BUF_PUSH(succeed);
 
-	if (errbuf_size != 0) {
-		if (msg_size > errbuf_size) {
-#if defined HAVE_MEMPCPY || defined _LIBC
-			*((char *) __mempcpy(errbuf, msg, errbuf_size - 1)) = '\0';
-#else
-			memcpy(errbuf, msg, errbuf_size - 1);
-			errbuf[errbuf_size - 1] = 0;
-#endif
-		} else
-			memcpy(errbuf, msg, msg_size);
-	}
+	free(compile_stack.stack);
 
-	return msg_size;
-}
+	/* We have succeeded; set the length of the buffer.  */
+	bufp->used = b - bufp->buffer;
 
-#ifdef _LIBC
-weak_alias(__regerror, regerror)
-#endif
-/* Free dynamically allocated space used by PREG.  */
-void regfree(preg)
-regex_t *preg;
-{
-	if (preg->buffer != NULL)
-		free(preg->buffer);
-	preg->buffer = NULL;
+#ifdef DEBUG
+	if (debug) {
+		DEBUG_PRINT1("\nCompiled pattern: \n");
+		print_compiled_pattern(bufp);
+	}
+#endif							/* DEBUG */
 
-	preg->allocated = 0;
-	preg->used = 0;
+#ifndef MATCH_MAY_ALLOCATE
+	/* Initialize the failure stack to the largest possible stack.  This
+	   isn't necessary unless we're trying to avoid calling alloca in
+	   the search and match routines.  */
+	{
+		int num_regs = bufp->re_nsub + 1;
 
-	if (preg->fastmap != NULL)
-		free(preg->fastmap);
-	preg->fastmap = NULL;
-	preg->fastmap_accurate = 0;
+		/* Since DOUBLE_FAIL_STACK refuses to double only if the current size
+		   is strictly greater than re_max_failures, the largest possible stack
+		   is 2 * re_max_failures failure points.  */
+		if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) {
+			fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
 
-	if (preg->translate != NULL)
-		free(preg->translate);
-	preg->translate = NULL;
-}
+# ifdef emacs
+			if (!fail_stack.stack)
+				fail_stack.stack
+					= (fail_stack_elt_t *) xmalloc(fail_stack.size
+												   *
+												   sizeof
+												   (fail_stack_elt_t));
+			else
+				fail_stack.stack =
+					(fail_stack_elt_t *) xrealloc(fail_stack.stack,
+												  (fail_stack.size *
+												   sizeof
+												   (fail_stack_elt_t)));
+# else							/* not emacs */
+			if (!fail_stack.stack)
+				fail_stack.stack
+					= (fail_stack_elt_t *) malloc(fail_stack.size
+												  *
+												  sizeof
+												  (fail_stack_elt_t));
+			else
+				fail_stack.stack =
+					(fail_stack_elt_t *) realloc(fail_stack.stack,
+												 (fail_stack.size *
+												  sizeof
+												  (fail_stack_elt_t)));
+# endif							/* not emacs */
+		}
 
-#ifdef _LIBC
-weak_alias(__regfree, regfree)
-#endif
-#endif							/* not emacs  */
+		regex_grow_registers(num_regs);
+	}
+#endif							/* not MATCH_MAY_ALLOCATE */
+
+	return REG_NOERROR;
+}								/* regex_compile */