e_pow.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. /* @(#)e_pow.c 5.1 93/09/24 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #if defined(LIBM_SCCS) && !defined(lint)
  13. static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
  14. #endif
  15. /* __ieee754_pow(x,y) return x**y
  16. *
  17. * n
  18. * Method: Let x = 2 * (1+f)
  19. * 1. Compute and return log2(x) in two pieces:
  20. * log2(x) = w1 + w2,
  21. * where w1 has 53-24 = 29 bit trailing zeros.
  22. * 2. Perform y*log2(x) = n+y' by simulating muti-precision
  23. * arithmetic, where |y'|<=0.5.
  24. * 3. Return x**y = 2**n*exp(y'*log2)
  25. *
  26. * Special cases:
  27. * 1. (anything) ** 0 is 1
  28. * 2. (anything) ** 1 is itself
  29. * 3. (anything) ** NAN is NAN
  30. * 4. NAN ** (anything except 0) is NAN
  31. * 5. +-(|x| > 1) ** +INF is +INF
  32. * 6. +-(|x| > 1) ** -INF is +0
  33. * 7. +-(|x| < 1) ** +INF is +0
  34. * 8. +-(|x| < 1) ** -INF is +INF
  35. * 9. +-1 ** +-INF is NAN
  36. * 10. +0 ** (+anything except 0, NAN) is +0
  37. * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
  38. * 12. +0 ** (-anything except 0, NAN) is +INF
  39. * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
  40. * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  41. * 15. +INF ** (+anything except 0,NAN) is +INF
  42. * 16. +INF ** (-anything except 0,NAN) is +0
  43. * 17. -INF ** (anything) = -0 ** (-anything)
  44. * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  45. * 19. (-anything except 0 and inf) ** (non-integer) is NAN
  46. *
  47. * Accuracy:
  48. * pow(x,y) returns x**y nearly rounded. In particular
  49. * pow(integer,integer)
  50. * always returns the correct integer provided it is
  51. * representable.
  52. *
  53. * Constants :
  54. * The hexadecimal values are the intended ones for the following
  55. * constants. The decimal values may be used, provided that the
  56. * compiler will convert from decimal to binary accurately enough
  57. * to produce the hexadecimal values shown.
  58. */
  59. #include "math.h"
  60. #include "math_private.h"
  61. libm_hidden_proto(scalbn)
  62. libm_hidden_proto(fabs)
  63. #ifdef __STDC__
  64. static const double
  65. #else
  66. static double
  67. #endif
  68. bp[] = {1.0, 1.5,},
  69. dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
  70. dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
  71. zero = 0.0,
  72. one = 1.0,
  73. two = 2.0,
  74. two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
  75. huge = 1.0e300,
  76. tiny = 1.0e-300,
  77. /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  78. L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
  79. L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
  80. L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
  81. L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
  82. L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
  83. L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
  84. P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  85. P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  86. P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  87. P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  88. P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
  89. lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
  90. lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
  91. lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
  92. ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
  93. cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
  94. cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
  95. cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
  96. ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
  97. ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
  98. ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
  99. #ifdef __STDC__
  100. double attribute_hidden __ieee754_pow(double x, double y)
  101. #else
  102. double attribute_hidden __ieee754_pow(x,y)
  103. double x, y;
  104. #endif
  105. {
  106. double z,ax,z_h,z_l,p_h,p_l;
  107. double y1,t1,t2,r,s,t,u,v,w;
  108. int32_t i,j,k,yisint,n;
  109. int32_t hx,hy,ix,iy;
  110. u_int32_t lx,ly;
  111. EXTRACT_WORDS(hx,lx,x);
  112. EXTRACT_WORDS(hy,ly,y);
  113. ix = hx&0x7fffffff; iy = hy&0x7fffffff;
  114. /* y==zero: x**0 = 1 */
  115. if((iy|ly)==0) return one;
  116. /* +-NaN return x+y */
  117. if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
  118. iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
  119. return x+y;
  120. /* determine if y is an odd int when x < 0
  121. * yisint = 0 ... y is not an integer
  122. * yisint = 1 ... y is an odd int
  123. * yisint = 2 ... y is an even int
  124. */
  125. yisint = 0;
  126. if(hx<0) {
  127. if(iy>=0x43400000) yisint = 2; /* even integer y */
  128. else if(iy>=0x3ff00000) {
  129. k = (iy>>20)-0x3ff; /* exponent */
  130. if(k>20) {
  131. j = ly>>(52-k);
  132. if((j<<(52-k))==ly) yisint = 2-(j&1);
  133. } else if(ly==0) {
  134. j = iy>>(20-k);
  135. if((j<<(20-k))==iy) yisint = 2-(j&1);
  136. }
  137. }
  138. }
  139. /* special value of y */
  140. if(ly==0) {
  141. if (iy==0x7ff00000) { /* y is +-inf */
  142. if(((ix-0x3ff00000)|lx)==0)
  143. return y - y; /* inf**+-1 is NaN */
  144. else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
  145. return (hy>=0)? y: zero;
  146. else /* (|x|<1)**-,+inf = inf,0 */
  147. return (hy<0)?-y: zero;
  148. }
  149. if(iy==0x3ff00000) { /* y is +-1 */
  150. if(hy<0) return one/x; else return x;
  151. }
  152. if(hy==0x40000000) return x*x; /* y is 2 */
  153. if(hy==0x3fe00000) { /* y is 0.5 */
  154. if(hx>=0) /* x >= +0 */
  155. return __ieee754_sqrt(x);
  156. }
  157. }
  158. ax = fabs(x);
  159. /* special value of x */
  160. if(lx==0) {
  161. if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
  162. z = ax; /*x is +-0,+-inf,+-1*/
  163. if(hy<0) z = one/z; /* z = (1/|x|) */
  164. if(hx<0) {
  165. if(((ix-0x3ff00000)|yisint)==0) {
  166. z = (z-z)/(z-z); /* (-1)**non-int is NaN */
  167. } else if(yisint==1)
  168. z = -z; /* (x<0)**odd = -(|x|**odd) */
  169. }
  170. return z;
  171. }
  172. }
  173. /* (x<0)**(non-int) is NaN */
  174. if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
  175. /* |y| is huge */
  176. if(iy>0x41e00000) { /* if |y| > 2**31 */
  177. if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
  178. if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
  179. if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
  180. }
  181. /* over/underflow if x is not close to one */
  182. if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
  183. if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
  184. /* now |1-x| is tiny <= 2**-20, suffice to compute
  185. log(x) by x-x^2/2+x^3/3-x^4/4 */
  186. t = x-1; /* t has 20 trailing zeros */
  187. w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
  188. u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
  189. v = t*ivln2_l-w*ivln2;
  190. t1 = u+v;
  191. SET_LOW_WORD(t1,0);
  192. t2 = v-(t1-u);
  193. } else {
  194. double s2,s_h,s_l,t_h,t_l;
  195. n = 0;
  196. /* take care subnormal number */
  197. if(ix<0x00100000)
  198. {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
  199. n += ((ix)>>20)-0x3ff;
  200. j = ix&0x000fffff;
  201. /* determine interval */
  202. ix = j|0x3ff00000; /* normalize ix */
  203. if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
  204. else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
  205. else {k=0;n+=1;ix -= 0x00100000;}
  206. SET_HIGH_WORD(ax,ix);
  207. /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
  208. u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
  209. v = one/(ax+bp[k]);
  210. s = u*v;
  211. s_h = s;
  212. SET_LOW_WORD(s_h,0);
  213. /* t_h=ax+bp[k] High */
  214. t_h = zero;
  215. SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
  216. t_l = ax - (t_h-bp[k]);
  217. s_l = v*((u-s_h*t_h)-s_h*t_l);
  218. /* compute log(ax) */
  219. s2 = s*s;
  220. r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
  221. r += s_l*(s_h+s);
  222. s2 = s_h*s_h;
  223. t_h = 3.0+s2+r;
  224. SET_LOW_WORD(t_h,0);
  225. t_l = r-((t_h-3.0)-s2);
  226. /* u+v = s*(1+...) */
  227. u = s_h*t_h;
  228. v = s_l*t_h+t_l*s;
  229. /* 2/(3log2)*(s+...) */
  230. p_h = u+v;
  231. SET_LOW_WORD(p_h,0);
  232. p_l = v-(p_h-u);
  233. z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
  234. z_l = cp_l*p_h+p_l*cp+dp_l[k];
  235. /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
  236. t = (double)n;
  237. t1 = (((z_h+z_l)+dp_h[k])+t);
  238. SET_LOW_WORD(t1,0);
  239. t2 = z_l-(((t1-t)-dp_h[k])-z_h);
  240. }
  241. s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
  242. if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
  243. s = -one;/* (-ve)**(odd int) */
  244. /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
  245. y1 = y;
  246. SET_LOW_WORD(y1,0);
  247. p_l = (y-y1)*t1+y*t2;
  248. p_h = y1*t1;
  249. z = p_l+p_h;
  250. EXTRACT_WORDS(j,i,z);
  251. if (j>=0x40900000) { /* z >= 1024 */
  252. if(((j-0x40900000)|i)!=0) /* if z > 1024 */
  253. return s*huge*huge; /* overflow */
  254. else {
  255. if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
  256. }
  257. } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
  258. if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
  259. return s*tiny*tiny; /* underflow */
  260. else {
  261. if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
  262. }
  263. }
  264. /*
  265. * compute 2**(p_h+p_l)
  266. */
  267. i = j&0x7fffffff;
  268. k = (i>>20)-0x3ff;
  269. n = 0;
  270. if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
  271. n = j+(0x00100000>>(k+1));
  272. k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
  273. t = zero;
  274. SET_HIGH_WORD(t,n&~(0x000fffff>>k));
  275. n = ((n&0x000fffff)|0x00100000)>>(20-k);
  276. if(j<0) n = -n;
  277. p_h -= t;
  278. }
  279. t = p_l+p_h;
  280. SET_LOW_WORD(t,0);
  281. u = t*lg2_h;
  282. v = (p_l-(t-p_h))*lg2+t*lg2_l;
  283. z = u+v;
  284. w = v-(z-u);
  285. t = z*z;
  286. t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  287. r = (z*t1)/(t1-two)-(w+z*w);
  288. z = one-(r-z);
  289. GET_HIGH_WORD(j,z);
  290. j += (n<<20);
  291. if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
  292. else SET_HIGH_WORD(z,j);
  293. return s*z;
  294. }