123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /* ellie.c
- *
- * Incomplete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * double phi, m, y, ellie();
- *
- * y = ellie( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * phi
- * -
- * | |
- * | 2
- * E(phi_\m) = | sqrt( 1 - m sin t ) dt
- * |
- * | |
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random arguments with phi in [-10, 10] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,2 2000 1.9e-16 3.4e-17
- * IEEE -10,10 150000 3.3e-15 1.4e-16
- *
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier
- */
- /* Incomplete elliptic integral of second kind */
- #include <math.h>
- extern double PI, PIO2, MACHEP;
- #ifdef ANSIPROT
- extern double sqrt ( double );
- extern double fabs ( double );
- extern double log ( double );
- extern double sin ( double x );
- extern double tan ( double x );
- extern double atan ( double );
- extern double floor ( double );
- extern double ellpe ( double );
- extern double ellpk ( double );
- double ellie ( double, double );
- #else
- double sqrt(), fabs(), log(), sin(), tan(), atan(), floor();
- double ellpe(), ellpk(), ellie();
- #endif
- double ellie( phi, m )
- double phi, m;
- {
- double a, b, c, e, temp;
- double lphi, t, E;
- int d, mod, npio2, sign;
- if( m == 0.0 )
- return( phi );
- lphi = phi;
- npio2 = floor( lphi/PIO2 );
- if( npio2 & 1 )
- npio2 += 1;
- lphi = lphi - npio2 * PIO2;
- if( lphi < 0.0 )
- {
- lphi = -lphi;
- sign = -1;
- }
- else
- {
- sign = 1;
- }
- a = 1.0 - m;
- E = ellpe( a );
- if( a == 0.0 )
- {
- temp = sin( lphi );
- goto done;
- }
- t = tan( lphi );
- b = sqrt(a);
- /* Thanks to Brian Fitzgerald <fitzgb@mml0.meche.rpi.edu>
- for pointing out an instability near odd multiples of pi/2. */
- if( fabs(t) > 10.0 )
- {
- /* Transform the amplitude */
- e = 1.0/(b*t);
- /* ... but avoid multiple recursions. */
- if( fabs(e) < 10.0 )
- {
- e = atan(e);
- temp = E + m * sin( lphi ) * sin( e ) - ellie( e, m );
- goto done;
- }
- }
- c = sqrt(m);
- a = 1.0;
- d = 1;
- e = 0.0;
- mod = 0;
- while( fabs(c/a) > MACHEP )
- {
- temp = b/a;
- lphi = lphi + atan(t*temp) + mod * PI;
- mod = (lphi + PIO2)/PI;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = ( a - b )/2.0;
- temp = sqrt( a * b );
- a = ( a + b )/2.0;
- b = temp;
- d += d;
- e += c * sin(lphi);
- }
- temp = E / ellpk( 1.0 - m );
- temp *= (atan(t) + mod * PI)/(d * a);
- temp += e;
- done:
- if( sign < 0 )
- temp = -temp;
- temp += npio2 * E;
- return( temp );
- }
|