ndtri.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. /* ndtri.c
  2. *
  3. * Inverse of Normal distribution function
  4. *
  5. *
  6. *
  7. * SYNOPSIS:
  8. *
  9. * double x, y, ndtri();
  10. *
  11. * x = ndtri( y );
  12. *
  13. *
  14. *
  15. * DESCRIPTION:
  16. *
  17. * Returns the argument, x, for which the area under the
  18. * Gaussian probability density function (integrated from
  19. * minus infinity to x) is equal to y.
  20. *
  21. *
  22. * For small arguments 0 < y < exp(-2), the program computes
  23. * z = sqrt( -2.0 * log(y) ); then the approximation is
  24. * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
  25. * There are two rational functions P/Q, one for 0 < y < exp(-32)
  26. * and the other for y up to exp(-2). For larger arguments,
  27. * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
  28. *
  29. *
  30. * ACCURACY:
  31. *
  32. * Relative error:
  33. * arithmetic domain # trials peak rms
  34. * DEC 0.125, 1 5500 9.5e-17 2.1e-17
  35. * DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17
  36. * IEEE 0.125, 1 20000 7.2e-16 1.3e-16
  37. * IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
  38. *
  39. *
  40. * ERROR MESSAGES:
  41. *
  42. * message condition value returned
  43. * ndtri domain x <= 0 -MAXNUM
  44. * ndtri domain x >= 1 MAXNUM
  45. *
  46. */
  47. /*
  48. Cephes Math Library Release 2.8: June, 2000
  49. Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
  50. */
  51. #include <math.h>
  52. extern double MAXNUM;
  53. #ifdef UNK
  54. /* sqrt(2pi) */
  55. static double s2pi = 2.50662827463100050242E0;
  56. #endif
  57. #ifdef DEC
  58. static unsigned short s2p[] = {0040440,0066230,0177661,0034055};
  59. #define s2pi *(double *)s2p
  60. #endif
  61. #ifdef IBMPC
  62. static unsigned short s2p[] = {0x2706,0x1ff6,0x0d93,0x4004};
  63. #define s2pi *(double *)s2p
  64. #endif
  65. #ifdef MIEEE
  66. static unsigned short s2p[] = {
  67. 0x4004,0x0d93,0x1ff6,0x2706
  68. };
  69. #define s2pi *(double *)s2p
  70. #endif
  71. /* approximation for 0 <= |y - 0.5| <= 3/8 */
  72. #ifdef UNK
  73. static double P0[5] = {
  74. -5.99633501014107895267E1,
  75. 9.80010754185999661536E1,
  76. -5.66762857469070293439E1,
  77. 1.39312609387279679503E1,
  78. -1.23916583867381258016E0,
  79. };
  80. static double Q0[8] = {
  81. /* 1.00000000000000000000E0,*/
  82. 1.95448858338141759834E0,
  83. 4.67627912898881538453E0,
  84. 8.63602421390890590575E1,
  85. -2.25462687854119370527E2,
  86. 2.00260212380060660359E2,
  87. -8.20372256168333339912E1,
  88. 1.59056225126211695515E1,
  89. -1.18331621121330003142E0,
  90. };
  91. #endif
  92. #ifdef DEC
  93. static unsigned short P0[20] = {
  94. 0141557,0155170,0071360,0120550,
  95. 0041704,0000214,0172417,0067307,
  96. 0141542,0132204,0040066,0156723,
  97. 0041136,0163161,0157276,0007747,
  98. 0140236,0116374,0073666,0051764,
  99. };
  100. static unsigned short Q0[32] = {
  101. /*0040200,0000000,0000000,0000000,*/
  102. 0040372,0026256,0110403,0123707,
  103. 0040625,0122024,0020277,0026661,
  104. 0041654,0134161,0124134,0007244,
  105. 0142141,0073162,0133021,0131371,
  106. 0042110,0041235,0043516,0057767,
  107. 0141644,0011417,0036155,0137305,
  108. 0041176,0076556,0004043,0125430,
  109. 0140227,0073347,0152776,0067251,
  110. };
  111. #endif
  112. #ifdef IBMPC
  113. static unsigned short P0[20] = {
  114. 0x142d,0x0e5e,0xfb4f,0xc04d,
  115. 0xedd9,0x9ea1,0x8011,0x4058,
  116. 0xdbba,0x8806,0x5690,0xc04c,
  117. 0xc1fd,0x3bd7,0xdcce,0x402b,
  118. 0xca7e,0x8ef6,0xd39f,0xbff3,
  119. };
  120. static unsigned short Q0[36] = {
  121. /*0x0000,0x0000,0x0000,0x3ff0,*/
  122. 0x74f9,0xd220,0x4595,0x3fff,
  123. 0xe5b6,0x8417,0xb482,0x4012,
  124. 0x81d4,0x350b,0x970e,0x4055,
  125. 0x365f,0x56c2,0x2ece,0xc06c,
  126. 0xcbff,0xa8e9,0x0853,0x4069,
  127. 0xb7d9,0xe78d,0x8261,0xc054,
  128. 0x7563,0xc104,0xcfad,0x402f,
  129. 0xcdd5,0xfabf,0xeedc,0xbff2,
  130. };
  131. #endif
  132. #ifdef MIEEE
  133. static unsigned short P0[20] = {
  134. 0xc04d,0xfb4f,0x0e5e,0x142d,
  135. 0x4058,0x8011,0x9ea1,0xedd9,
  136. 0xc04c,0x5690,0x8806,0xdbba,
  137. 0x402b,0xdcce,0x3bd7,0xc1fd,
  138. 0xbff3,0xd39f,0x8ef6,0xca7e,
  139. };
  140. static unsigned short Q0[32] = {
  141. /*0x3ff0,0x0000,0x0000,0x0000,*/
  142. 0x3fff,0x4595,0xd220,0x74f9,
  143. 0x4012,0xb482,0x8417,0xe5b6,
  144. 0x4055,0x970e,0x350b,0x81d4,
  145. 0xc06c,0x2ece,0x56c2,0x365f,
  146. 0x4069,0x0853,0xa8e9,0xcbff,
  147. 0xc054,0x8261,0xe78d,0xb7d9,
  148. 0x402f,0xcfad,0xc104,0x7563,
  149. 0xbff2,0xeedc,0xfabf,0xcdd5,
  150. };
  151. #endif
  152. /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
  153. * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
  154. */
  155. #ifdef UNK
  156. static double P1[9] = {
  157. 4.05544892305962419923E0,
  158. 3.15251094599893866154E1,
  159. 5.71628192246421288162E1,
  160. 4.40805073893200834700E1,
  161. 1.46849561928858024014E1,
  162. 2.18663306850790267539E0,
  163. -1.40256079171354495875E-1,
  164. -3.50424626827848203418E-2,
  165. -8.57456785154685413611E-4,
  166. };
  167. static double Q1[8] = {
  168. /* 1.00000000000000000000E0,*/
  169. 1.57799883256466749731E1,
  170. 4.53907635128879210584E1,
  171. 4.13172038254672030440E1,
  172. 1.50425385692907503408E1,
  173. 2.50464946208309415979E0,
  174. -1.42182922854787788574E-1,
  175. -3.80806407691578277194E-2,
  176. -9.33259480895457427372E-4,
  177. };
  178. #endif
  179. #ifdef DEC
  180. static unsigned short P1[36] = {
  181. 0040601,0143074,0150744,0073326,
  182. 0041374,0031554,0113253,0146016,
  183. 0041544,0123272,0012463,0176771,
  184. 0041460,0051160,0103560,0156511,
  185. 0041152,0172624,0117772,0030755,
  186. 0040413,0170713,0151545,0176413,
  187. 0137417,0117512,0022154,0131671,
  188. 0137017,0104257,0071432,0007072,
  189. 0135540,0143363,0063137,0036166,
  190. };
  191. static unsigned short Q1[32] = {
  192. /*0040200,0000000,0000000,0000000,*/
  193. 0041174,0075325,0004736,0120326,
  194. 0041465,0110044,0047561,0045567,
  195. 0041445,0042321,0012142,0030340,
  196. 0041160,0127074,0166076,0141051,
  197. 0040440,0046055,0040745,0150400,
  198. 0137421,0114146,0067330,0010621,
  199. 0137033,0175162,0025555,0114351,
  200. 0135564,0122773,0145750,0030357,
  201. };
  202. #endif
  203. #ifdef IBMPC
  204. static unsigned short P1[36] = {
  205. 0x8edb,0x9a3c,0x38c7,0x4010,
  206. 0x7982,0x92d5,0x866d,0x403f,
  207. 0x7fbf,0x42a6,0x94d7,0x404c,
  208. 0x1ba9,0x10ee,0x0a4e,0x4046,
  209. 0x463e,0x93ff,0x5eb2,0x402d,
  210. 0xbfa1,0x7a6c,0x7e39,0x4001,
  211. 0x9677,0x448d,0xf3e9,0xbfc1,
  212. 0x41c7,0xee63,0xf115,0xbfa1,
  213. 0xe78f,0x6ccb,0x18de,0xbf4c,
  214. };
  215. static unsigned short Q1[32] = {
  216. /*0x0000,0x0000,0x0000,0x3ff0,*/
  217. 0xd41b,0xa13b,0x8f5a,0x402f,
  218. 0x296f,0x89ee,0xb204,0x4046,
  219. 0x461c,0x228c,0xa89a,0x4044,
  220. 0xd845,0x9d87,0x15c7,0x402e,
  221. 0xba20,0xa83c,0x0985,0x4004,
  222. 0x0232,0xcddb,0x330c,0xbfc2,
  223. 0xb31d,0x456d,0x7f4e,0xbfa3,
  224. 0x061e,0x797d,0x94bf,0xbf4e,
  225. };
  226. #endif
  227. #ifdef MIEEE
  228. static unsigned short P1[36] = {
  229. 0x4010,0x38c7,0x9a3c,0x8edb,
  230. 0x403f,0x866d,0x92d5,0x7982,
  231. 0x404c,0x94d7,0x42a6,0x7fbf,
  232. 0x4046,0x0a4e,0x10ee,0x1ba9,
  233. 0x402d,0x5eb2,0x93ff,0x463e,
  234. 0x4001,0x7e39,0x7a6c,0xbfa1,
  235. 0xbfc1,0xf3e9,0x448d,0x9677,
  236. 0xbfa1,0xf115,0xee63,0x41c7,
  237. 0xbf4c,0x18de,0x6ccb,0xe78f,
  238. };
  239. static unsigned short Q1[32] = {
  240. /*0x3ff0,0x0000,0x0000,0x0000,*/
  241. 0x402f,0x8f5a,0xa13b,0xd41b,
  242. 0x4046,0xb204,0x89ee,0x296f,
  243. 0x4044,0xa89a,0x228c,0x461c,
  244. 0x402e,0x15c7,0x9d87,0xd845,
  245. 0x4004,0x0985,0xa83c,0xba20,
  246. 0xbfc2,0x330c,0xcddb,0x0232,
  247. 0xbfa3,0x7f4e,0x456d,0xb31d,
  248. 0xbf4e,0x94bf,0x797d,0x061e,
  249. };
  250. #endif
  251. /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64
  252. * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
  253. */
  254. #ifdef UNK
  255. static double P2[9] = {
  256. 3.23774891776946035970E0,
  257. 6.91522889068984211695E0,
  258. 3.93881025292474443415E0,
  259. 1.33303460815807542389E0,
  260. 2.01485389549179081538E-1,
  261. 1.23716634817820021358E-2,
  262. 3.01581553508235416007E-4,
  263. 2.65806974686737550832E-6,
  264. 6.23974539184983293730E-9,
  265. };
  266. static double Q2[8] = {
  267. /* 1.00000000000000000000E0,*/
  268. 6.02427039364742014255E0,
  269. 3.67983563856160859403E0,
  270. 1.37702099489081330271E0,
  271. 2.16236993594496635890E-1,
  272. 1.34204006088543189037E-2,
  273. 3.28014464682127739104E-4,
  274. 2.89247864745380683936E-6,
  275. 6.79019408009981274425E-9,
  276. };
  277. #endif
  278. #ifdef DEC
  279. static unsigned short P2[36] = {
  280. 0040517,0033507,0036236,0125641,
  281. 0040735,0044616,0014473,0140133,
  282. 0040574,0012567,0114535,0102541,
  283. 0040252,0120340,0143474,0150135,
  284. 0037516,0051057,0115361,0031211,
  285. 0036512,0131204,0101511,0125144,
  286. 0035236,0016627,0043160,0140216,
  287. 0033462,0060512,0060141,0010641,
  288. 0031326,0062541,0101304,0077706,
  289. };
  290. static unsigned short Q2[32] = {
  291. /*0040200,0000000,0000000,0000000,*/
  292. 0040700,0143322,0132137,0040501,
  293. 0040553,0101155,0053221,0140257,
  294. 0040260,0041071,0052573,0010004,
  295. 0037535,0066472,0177261,0162330,
  296. 0036533,0160475,0066666,0036132,
  297. 0035253,0174533,0027771,0044027,
  298. 0033502,0016147,0117666,0063671,
  299. 0031351,0047455,0141663,0054751,
  300. };
  301. #endif
  302. #ifdef IBMPC
  303. static unsigned short P2[36] = {
  304. 0xd574,0xe793,0xe6e8,0x4009,
  305. 0x780b,0xc327,0xa931,0x401b,
  306. 0xb0ac,0xf32b,0x82ae,0x400f,
  307. 0x9a0c,0x18e7,0x541c,0x3ff5,
  308. 0x2651,0xf35e,0xca45,0x3fc9,
  309. 0x354d,0x9069,0x5650,0x3f89,
  310. 0x1812,0xe8ce,0xc3b2,0x3f33,
  311. 0x2234,0x4c0c,0x4c29,0x3ec6,
  312. 0x8ff9,0x3058,0xccac,0x3e3a,
  313. };
  314. static unsigned short Q2[32] = {
  315. /*0x0000,0x0000,0x0000,0x3ff0,*/
  316. 0xe828,0x568b,0x18da,0x4018,
  317. 0x3816,0xaad2,0x704d,0x400d,
  318. 0x6200,0x2aaf,0x0847,0x3ff6,
  319. 0x3c9b,0x5fd6,0xada7,0x3fcb,
  320. 0xc78b,0xadb6,0x7c27,0x3f8b,
  321. 0x2903,0x65ff,0x7f2b,0x3f35,
  322. 0xccf7,0xf3f6,0x438c,0x3ec8,
  323. 0x6b3d,0xb876,0x29e5,0x3e3d,
  324. };
  325. #endif
  326. #ifdef MIEEE
  327. static unsigned short P2[36] = {
  328. 0x4009,0xe6e8,0xe793,0xd574,
  329. 0x401b,0xa931,0xc327,0x780b,
  330. 0x400f,0x82ae,0xf32b,0xb0ac,
  331. 0x3ff5,0x541c,0x18e7,0x9a0c,
  332. 0x3fc9,0xca45,0xf35e,0x2651,
  333. 0x3f89,0x5650,0x9069,0x354d,
  334. 0x3f33,0xc3b2,0xe8ce,0x1812,
  335. 0x3ec6,0x4c29,0x4c0c,0x2234,
  336. 0x3e3a,0xccac,0x3058,0x8ff9,
  337. };
  338. static unsigned short Q2[32] = {
  339. /*0x3ff0,0x0000,0x0000,0x0000,*/
  340. 0x4018,0x18da,0x568b,0xe828,
  341. 0x400d,0x704d,0xaad2,0x3816,
  342. 0x3ff6,0x0847,0x2aaf,0x6200,
  343. 0x3fcb,0xada7,0x5fd6,0x3c9b,
  344. 0x3f8b,0x7c27,0xadb6,0xc78b,
  345. 0x3f35,0x7f2b,0x65ff,0x2903,
  346. 0x3ec8,0x438c,0xf3f6,0xccf7,
  347. 0x3e3d,0x29e5,0xb876,0x6b3d,
  348. };
  349. #endif
  350. #ifdef ANSIPROT
  351. extern double polevl ( double, void *, int );
  352. extern double p1evl ( double, void *, int );
  353. extern double log ( double );
  354. extern double sqrt ( double );
  355. #else
  356. double polevl(), p1evl(), log(), sqrt();
  357. #endif
  358. double ndtri(y0)
  359. double y0;
  360. {
  361. double x, y, z, y2, x0, x1;
  362. int code;
  363. if( y0 <= 0.0 )
  364. {
  365. mtherr( "ndtri", DOMAIN );
  366. return( -MAXNUM );
  367. }
  368. if( y0 >= 1.0 )
  369. {
  370. mtherr( "ndtri", DOMAIN );
  371. return( MAXNUM );
  372. }
  373. code = 1;
  374. y = y0;
  375. if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */
  376. {
  377. y = 1.0 - y;
  378. code = 0;
  379. }
  380. if( y > 0.13533528323661269189 )
  381. {
  382. y = y - 0.5;
  383. y2 = y * y;
  384. x = y + y * (y2 * polevl( y2, P0, 4)/p1evl( y2, Q0, 8 ));
  385. x = x * s2pi;
  386. return(x);
  387. }
  388. x = sqrt( -2.0 * log(y) );
  389. x0 = x - log(x)/x;
  390. z = 1.0/x;
  391. if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */
  392. x1 = z * polevl( z, P1, 8 )/p1evl( z, Q1, 8 );
  393. else
  394. x1 = z * polevl( z, P2, 8 )/p1evl( z, Q2, 8 );
  395. x = x0 - x1;
  396. if( code != 0 )
  397. x = -x;
  398. return( x );
  399. }