123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- /* rgamma.c
- *
- * Reciprocal gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, rgamma();
- *
- * y = rgamma( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns one divided by the gamma function of the argument.
- *
- * The function is approximated by a Chebyshev expansion in
- * the interval [0,1]. Range reduction is by recurrence
- * for arguments between -34.034 and +34.84425627277176174.
- * 1/MAXNUM is returned for positive arguments outside this
- * range. For arguments less than -34.034 the cosecant
- * reflection formula is applied; lograrithms are employed
- * to avoid unnecessary overflow.
- *
- * The reciprocal gamma function has no singularities,
- * but overflow and underflow may occur for large arguments.
- * These conditions return either MAXNUM or 1/MAXNUM with
- * appropriate sign.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC -30,+30 4000 1.2e-16 1.8e-17
- * IEEE -30,+30 30000 1.1e-15 2.0e-16
- * For arguments less than -34.034 the peak error is on the
- * order of 5e-15 (DEC), excepting overflow or underflow.
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1985, 1987, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- /* Chebyshev coefficients for reciprocal gamma function
- * in interval 0 to 1. Function is 1/(x gamma(x)) - 1
- */
- #ifdef UNK
- static double R[] = {
- 3.13173458231230000000E-17,
- -6.70718606477908000000E-16,
- 2.20039078172259550000E-15,
- 2.47691630348254132600E-13,
- -6.60074100411295197440E-12,
- 5.13850186324226978840E-11,
- 1.08965386454418662084E-9,
- -3.33964630686836942556E-8,
- 2.68975996440595483619E-7,
- 2.96001177518801696639E-6,
- -8.04814124978471142852E-5,
- 4.16609138709688864714E-4,
- 5.06579864028608725080E-3,
- -6.41925436109158228810E-2,
- -4.98558728684003594785E-3,
- 1.27546015610523951063E-1
- };
- #endif
- #ifdef DEC
- static unsigned short R[] = {
- 0022420,0066376,0176751,0071636,
- 0123501,0051114,0042104,0131153,
- 0024036,0107013,0126504,0033361,
- 0025613,0070040,0035174,0162316,
- 0126750,0037060,0077775,0122202,
- 0027541,0177143,0037675,0105150,
- 0030625,0141311,0075005,0115436,
- 0132017,0067714,0125033,0014721,
- 0032620,0063707,0105256,0152643,
- 0033506,0122235,0072757,0170053,
- 0134650,0144041,0015617,0016143,
- 0035332,0066125,0000776,0006215,
- 0036245,0177377,0137173,0131432,
- 0137203,0073541,0055645,0141150,
- 0136243,0057043,0026226,0017362,
- 0037402,0115554,0033441,0012310
- };
- #endif
- #ifdef IBMPC
- static unsigned short R[] = {
- 0x2e74,0xdfbd,0x0d9f,0x3c82,
- 0x964d,0x8888,0x2a49,0xbcc8,
- 0x86de,0x75a8,0xd1c1,0x3ce3,
- 0x9c9a,0x074f,0x6e04,0x3d51,
- 0xb490,0x0fff,0x07c6,0xbd9d,
- 0xb14d,0x67f7,0x3fcc,0x3dcc,
- 0xb364,0x2f40,0xb859,0x3e12,
- 0x633a,0x9543,0xedf9,0xbe61,
- 0xdab4,0xf155,0x0cf8,0x3e92,
- 0xfe05,0xaebd,0xd493,0x3ec8,
- 0xe38c,0x2371,0x1904,0xbf15,
- 0xc192,0xa03f,0x4d8a,0x3f3b,
- 0x7663,0xf7cf,0xbfdf,0x3f74,
- 0xb84d,0x2b74,0x6eec,0xbfb0,
- 0xc3de,0x6592,0x6bc4,0xbf74,
- 0x2299,0x86e4,0x536d,0x3fc0
- };
- #endif
- #ifdef MIEEE
- static unsigned short R[] = {
- 0x3c82,0x0d9f,0xdfbd,0x2e74,
- 0xbcc8,0x2a49,0x8888,0x964d,
- 0x3ce3,0xd1c1,0x75a8,0x86de,
- 0x3d51,0x6e04,0x074f,0x9c9a,
- 0xbd9d,0x07c6,0x0fff,0xb490,
- 0x3dcc,0x3fcc,0x67f7,0xb14d,
- 0x3e12,0xb859,0x2f40,0xb364,
- 0xbe61,0xedf9,0x9543,0x633a,
- 0x3e92,0x0cf8,0xf155,0xdab4,
- 0x3ec8,0xd493,0xaebd,0xfe05,
- 0xbf15,0x1904,0x2371,0xe38c,
- 0x3f3b,0x4d8a,0xa03f,0xc192,
- 0x3f74,0xbfdf,0xf7cf,0x7663,
- 0xbfb0,0x6eec,0x2b74,0xb84d,
- 0xbf74,0x6bc4,0x6592,0xc3de,
- 0x3fc0,0x536d,0x86e4,0x2299
- };
- #endif
- static char name[] = "rgamma";
- #ifdef ANSIPROT
- extern double chbevl ( double, void *, int );
- extern double exp ( double );
- extern double log ( double );
- extern double sin ( double );
- extern double lgam ( double );
- #else
- double chbevl(), exp(), log(), sin(), lgam();
- #endif
- extern double PI, MAXLOG, MAXNUM;
- double rgamma(x)
- double x;
- {
- double w, y, z;
- int sign;
- if( x > 34.84425627277176174)
- {
- mtherr( name, UNDERFLOW );
- return(1.0/MAXNUM);
- }
- if( x < -34.034 )
- {
- w = -x;
- z = sin( PI*w );
- if( z == 0.0 )
- return(0.0);
- if( z < 0.0 )
- {
- sign = 1;
- z = -z;
- }
- else
- sign = -1;
- y = log( w * z ) - log(PI) + lgam(w);
- if( y < -MAXLOG )
- {
- mtherr( name, UNDERFLOW );
- return( sign * 1.0 / MAXNUM );
- }
- if( y > MAXLOG )
- {
- mtherr( name, OVERFLOW );
- return( sign * MAXNUM );
- }
- return( sign * exp(y));
- }
- z = 1.0;
- w = x;
- while( w > 1.0 ) /* Downward recurrence */
- {
- w -= 1.0;
- z *= w;
- }
- while( w < 0.0 ) /* Upward recurrence */
- {
- z /= w;
- w += 1.0;
- }
- if( w == 0.0 ) /* Nonpositive integer */
- return(0.0);
- if( w == 1.0 ) /* Other integer */
- return( 1.0/z );
- y = w * ( 1.0 + chbevl( 4.0*w-2.0, R, 16 ) ) / z;
- return(y);
- }
|