123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 |
- /* sin.c
- *
- * Circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, sin();
- *
- * y = sin( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 Q(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0, 10 150000 3.0e-17 7.8e-18
- * IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 1.073741824e9 0.0
- *
- * Partial loss of accuracy begins to occur at x = 2**30
- * = 1.074e9. The loss is not gradual, but jumps suddenly to
- * about 1 part in 10e7. Results may be meaningless for
- * x > 2**49 = 5.6e14. The routine as implemented flags a
- * TLOSS error for x > 2**30 and returns 0.0.
- */
- /* cos.c
- *
- * Circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, cos();
- *
- * y = cos( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 Q(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- * DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
- */
- /* sin.c */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1985, 1995, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static double sincof[] = {
- 1.58962301576546568060E-10,
- -2.50507477628578072866E-8,
- 2.75573136213857245213E-6,
- -1.98412698295895385996E-4,
- 8.33333333332211858878E-3,
- -1.66666666666666307295E-1,
- };
- static double coscof[6] = {
- -1.13585365213876817300E-11,
- 2.08757008419747316778E-9,
- -2.75573141792967388112E-7,
- 2.48015872888517045348E-5,
- -1.38888888888730564116E-3,
- 4.16666666666665929218E-2,
- };
- static double DP1 = 7.85398125648498535156E-1;
- static double DP2 = 3.77489470793079817668E-8;
- static double DP3 = 2.69515142907905952645E-15;
- /* static double lossth = 1.073741824e9; */
- #endif
- #ifdef DEC
- static unsigned short sincof[] = {
- 0030056,0143750,0177214,0163153,
- 0131727,0027455,0044510,0175352,
- 0033470,0167432,0131752,0042414,
- 0135120,0006400,0146776,0174027,
- 0036410,0104210,0104207,0137202,
- 0137452,0125252,0125252,0125103,
- };
- static unsigned short coscof[24] = {
- 0127107,0151115,0002060,0152325,
- 0031017,0072353,0155161,0174053,
- 0132623,0171173,0172542,0057056,
- 0034320,0006400,0147102,0023652,
- 0135666,0005540,0133012,0076213,
- 0037052,0125252,0125252,0125126,
- };
- /* 7.853981629014015197753906250000E-1 */
- static unsigned short P1[] = {0040111,0007732,0120000,0000000,};
- /* 4.960467869796758577649598009884E-10 */
- static unsigned short P2[] = {0030410,0055060,0100000,0000000,};
- /* 2.860594363054915898381331279295E-18 */
- static unsigned short P3[] = {0021523,0011431,0105056,0001560,};
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- #endif
- #ifdef IBMPC
- static unsigned short sincof[] = {
- 0x9ccd,0x1fd1,0xd8fd,0x3de5,
- 0x1f5d,0xa929,0xe5e5,0xbe5a,
- 0x48a1,0x567d,0x1de3,0x3ec7,
- 0xdf03,0x19bf,0x01a0,0xbf2a,
- 0xf7d0,0x1110,0x1111,0x3f81,
- 0x5548,0x5555,0x5555,0xbfc5,
- };
- static unsigned short coscof[24] = {
- 0x1a9b,0xa086,0xfa49,0xbda8,
- 0x3f05,0x7b4e,0xee9d,0x3e21,
- 0x4bc6,0x7eac,0x7e4f,0xbe92,
- 0x44f5,0x19c8,0x01a0,0x3efa,
- 0x4f91,0x16c1,0xc16c,0xbf56,
- 0x554b,0x5555,0x5555,0x3fa5,
- };
- /*
- 7.85398125648498535156E-1,
- 3.77489470793079817668E-8,
- 2.69515142907905952645E-15,
- */
- static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9};
- static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64};
- static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8};
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- #endif
- #ifdef MIEEE
- static unsigned short sincof[] = {
- 0x3de5,0xd8fd,0x1fd1,0x9ccd,
- 0xbe5a,0xe5e5,0xa929,0x1f5d,
- 0x3ec7,0x1de3,0x567d,0x48a1,
- 0xbf2a,0x01a0,0x19bf,0xdf03,
- 0x3f81,0x1111,0x1110,0xf7d0,
- 0xbfc5,0x5555,0x5555,0x5548,
- };
- static unsigned short coscof[24] = {
- 0xbda8,0xfa49,0xa086,0x1a9b,
- 0x3e21,0xee9d,0x7b4e,0x3f05,
- 0xbe92,0x7e4f,0x7eac,0x4bc6,
- 0x3efa,0x01a0,0x19c8,0x44f5,
- 0xbf56,0xc16c,0x16c1,0x4f91,
- 0x3fa5,0x5555,0x5555,0x554b,
- };
- static unsigned short P1[] = {0x3fe9,0x21fb,0x4000,0x0000};
- static unsigned short P2[] = {0x3e64,0x442d,0x0000,0x0000};
- static unsigned short P3[] = {0x3ce8,0x4698,0x98cc,0x5170};
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- #endif
- #ifdef ANSIPROT
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern double floor ( double );
- extern double ldexp ( double, int );
- extern int isnan ( double );
- extern int isfinite ( double );
- #else
- double polevl(), floor(), ldexp();
- int isnan(), isfinite();
- #endif
- extern double PIO4;
- static double lossth = 1.073741824e9;
- #ifdef NANS
- extern double NAN;
- #endif
- #ifdef INFINITIES
- extern double INFINITY;
- #endif
- double sin(x)
- double x;
- {
- double y, z, zz;
- int j, sign;
- #ifdef MINUSZERO
- if( x == 0.0 )
- return(x);
- #endif
- #ifdef NANS
- if( isnan(x) )
- return(x);
- if( !isfinite(x) )
- {
- mtherr( "sin", DOMAIN );
- return(NAN);
- }
- #endif
- /* make argument positive but save the sign */
- sign = 1;
- if( x < 0 )
- {
- x = -x;
- sign = -1;
- }
- if( x > lossth )
- {
- mtherr( "sin", TLOSS );
- return(0.0);
- }
- y = floor( x/PIO4 ); /* integer part of x/PIO4 */
- /* strip high bits of integer part to prevent integer overflow */
- z = ldexp( y, -4 );
- z = floor(z); /* integer part of y/8 */
- z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
- j = z; /* convert to integer for tests on the phase angle */
- /* map zeros to origin */
- if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
- j = j & 07; /* octant modulo 360 degrees */
- /* reflect in x axis */
- if( j > 3)
- {
- sign = -sign;
- j -= 4;
- }
- /* Extended precision modular arithmetic */
- z = ((x - y * DP1) - y * DP2) - y * DP3;
- zz = z * z;
- if( (j==1) || (j==2) )
- {
- y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
- }
- else
- {
- /* y = z + z * (zz * polevl( zz, sincof, 5 ));*/
- y = z + z * z * z * polevl( zz, sincof, 5 );
- }
- if(sign < 0)
- y = -y;
- return(y);
- }
- double cos(x)
- double x;
- {
- double y, z, zz;
- long i;
- int j, sign;
- #ifdef NANS
- if( isnan(x) )
- return(x);
- if( !isfinite(x) )
- {
- mtherr( "cos", DOMAIN );
- return(NAN);
- }
- #endif
- /* make argument positive */
- sign = 1;
- if( x < 0 )
- x = -x;
- if( x > lossth )
- {
- mtherr( "cos", TLOSS );
- return(0.0);
- }
- y = floor( x/PIO4 );
- z = ldexp( y, -4 );
- z = floor(z); /* integer part of y/8 */
- z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
- /* integer and fractional part modulo one octant */
- i = z;
- if( i & 1 ) /* map zeros to origin */
- {
- i += 1;
- y += 1.0;
- }
- j = i & 07;
- if( j > 3)
- {
- j -=4;
- sign = -sign;
- }
- if( j > 1 )
- sign = -sign;
- /* Extended precision modular arithmetic */
- z = ((x - y * DP1) - y * DP2) - y * DP3;
- zz = z * z;
- if( (j==1) || (j==2) )
- {
- /* y = z + z * (zz * polevl( zz, sincof, 5 ));*/
- y = z + z * z * z * polevl( zz, sincof, 5 );
- }
- else
- {
- y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
- }
- if(sign < 0)
- y = -y;
- return(y);
- }
- /* Degrees, minutes, seconds to radians: */
- /* 1 arc second, in radians = 4.8481368110953599358991410e-5 */
- #ifdef DEC
- static unsigned short P648[] = {034513,054170,0176773,0116043,};
- #define P64800 *(double *)P648
- #else
- static double P64800 = 4.8481368110953599358991410e-5;
- #endif
- double radian(d,m,s)
- double d,m,s;
- {
- return( ((d*60.0 + m)*60.0 + s)*P64800 );
- }
|