123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- /* unity.c
- *
- * Relative error approximations for function arguments near
- * unity.
- *
- * log1p(x) = log(1+x)
- * expm1(x) = exp(x) - 1
- * cosm1(x) = cos(x) - 1
- *
- */
- #include <math.h>
- #ifdef ANSIPROT
- extern int isnan (double);
- extern int isfinite (double);
- extern double log ( double );
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern double exp ( double );
- extern double cos ( double );
- #else
- double log(), polevl(), p1evl(), exp(), cos();
- int isnan(), isfinite();
- #endif
- extern double INFINITY;
- /* log1p(x) = log(1 + x) */
- /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 2.32e-20
- */
- static double LP[] = {
- 4.5270000862445199635215E-5,
- 4.9854102823193375972212E-1,
- 6.5787325942061044846969E0,
- 2.9911919328553073277375E1,
- 6.0949667980987787057556E1,
- 5.7112963590585538103336E1,
- 2.0039553499201281259648E1,
- };
- static double LQ[] = {
- /* 1.0000000000000000000000E0,*/
- 1.5062909083469192043167E1,
- 8.3047565967967209469434E1,
- 2.2176239823732856465394E2,
- 3.0909872225312059774938E2,
- 2.1642788614495947685003E2,
- 6.0118660497603843919306E1,
- };
- #define SQRTH 0.70710678118654752440
- #define SQRT2 1.41421356237309504880
- double log1p(x)
- double x;
- {
- double z;
- z = 1.0 + x;
- if( (z < SQRTH) || (z > SQRT2) )
- return( log(z) );
- z = x*x;
- z = -0.5 * z + x * ( z * polevl( x, LP, 6 ) / p1evl( x, LQ, 6 ) );
- return (x + z);
- }
- /* expm1(x) = exp(x) - 1 */
- /* e^x = 1 + 2x P(x^2)/( Q(x^2) - P(x^2) )
- * -0.5 <= x <= 0.5
- */
- static double EP[3] = {
- 1.2617719307481059087798E-4,
- 3.0299440770744196129956E-2,
- 9.9999999999999999991025E-1,
- };
- static double EQ[4] = {
- 3.0019850513866445504159E-6,
- 2.5244834034968410419224E-3,
- 2.2726554820815502876593E-1,
- 2.0000000000000000000897E0,
- };
- double expm1(x)
- double x;
- {
- double r, xx;
- #ifdef NANS
- if( isnan(x) )
- return(x);
- #endif
- #ifdef INFINITIES
- if( x == INFINITY )
- return(INFINITY);
- if( x == -INFINITY )
- return(-1.0);
- #endif
- if( (x < -0.5) || (x > 0.5) )
- return( exp(x) - 1.0 );
- xx = x * x;
- r = x * polevl( xx, EP, 2 );
- r = r/( polevl( xx, EQ, 3 ) - r );
- return (r + r);
- }
- /* cosm1(x) = cos(x) - 1 */
- static double coscof[7] = {
- 4.7377507964246204691685E-14,
- -1.1470284843425359765671E-11,
- 2.0876754287081521758361E-9,
- -2.7557319214999787979814E-7,
- 2.4801587301570552304991E-5,
- -1.3888888888888872993737E-3,
- 4.1666666666666666609054E-2,
- };
- extern double PIO4;
- double cosm1(x)
- double x;
- {
- double xx;
- if( (x < -PIO4) || (x > PIO4) )
- return( cos(x) - 1.0 );
- xx = x * x;
- xx = -0.5*xx + xx * xx * polevl( xx, coscof, 6 );
- return xx;
- }
|