123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- /* k1f.c
- *
- * Modified Bessel function, third kind, order one
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k1f();
- *
- * y = k1f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the modified Bessel function of the third kind
- * of order one of the argument.
- *
- * The range is partitioned into the two intervals [0,2] and
- * (2, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * k1 domain x <= 0 MAXNUM
- *
- */
- /* k1ef.c
- *
- * Modified Bessel function, third kind, order one,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k1ef();
- *
- * y = k1ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of the third kind of order one of the argument:
- *
- * k1e(x) = exp(x) * k1(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 4.9e-7 6.7e-8
- * See k1().
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1984, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- /* Chebyshev coefficients for x(K1(x) - log(x/2) I1(x))
- * in the interval [0,2].
- *
- * lim(x->0){ x(K1(x) - log(x/2) I1(x)) } = 1.
- */
- #define MINNUMF 6.0e-39
- static float A[] =
- {
- -2.21338763073472585583E-8f,
- -2.43340614156596823496E-6f,
- -1.73028895751305206302E-4f,
- -6.97572385963986435018E-3f,
- -1.22611180822657148235E-1f,
- -3.53155960776544875667E-1f,
- 1.52530022733894777053E0f
- };
- /* Chebyshev coefficients for exp(x) sqrt(x) K1(x)
- * in the interval [2,infinity].
- *
- * lim(x->inf){ exp(x) sqrt(x) K1(x) } = sqrt(pi/2).
- */
- static float B[] =
- {
- 2.01504975519703286596E-9f,
- -1.03457624656780970260E-8f,
- 5.74108412545004946722E-8f,
- -3.50196060308781257119E-7f,
- 2.40648494783721712015E-6f,
- -1.93619797416608296024E-5f,
- 1.95215518471351631108E-4f,
- -2.85781685962277938680E-3f,
- 1.03923736576817238437E-1f,
- 2.72062619048444266945E0f
- };
-
- extern float MAXNUMF;
- #ifdef ANSIC
- float chbevlf(float, float *, int);
- float expf(float), i1f(float), logf(float), sqrtf(float);
- #else
- float chbevlf(), expf(), i1f(), logf(), sqrtf();
- #endif
- float k1f(float xx)
- {
- float x, y;
- x = xx;
- if( x <= MINNUMF )
- {
- mtherr( "k1f", DOMAIN );
- return( MAXNUMF );
- }
- if( x <= 2.0f )
- {
- y = x * x - 2.0f;
- y = logf( 0.5f * x ) * i1f(x) + chbevlf( y, A, 7 ) / x;
- return( y );
- }
- return( expf(-x) * chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x) );
- }
- float k1ef( float xx )
- {
- float x, y;
- x = xx;
- if( x <= 0.0f )
- {
- mtherr( "k1ef", DOMAIN );
- return( MAXNUMF );
- }
- if( x <= 2.0f )
- {
- y = x * x - 2.0f;
- y = logf( 0.5f * x ) * i1f(x) + chbevlf( y, A, 7 ) / x;
- return( y * expf(x) );
- }
- return( chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x) );
- }
|