123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- /* tanf.c
- *
- * Circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, tanf();
- *
- * y = tanf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular tangent of the radian argument x.
- *
- * Range reduction is modulo pi/4. A polynomial approximation
- * is employed in the basic interval [0, pi/4].
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-4096 100000 3.3e-7 4.5e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * tanf total loss x > 2^24 0.0
- *
- */
- /* cotf.c
- *
- * Circular cotangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cotf();
- *
- * y = cotf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular cotangent of the radian argument x.
- * A common routine computes either the tangent or cotangent.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-4096 100000 3.0e-7 4.5e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * cot total loss x > 2^24 0.0
- * cot singularity x = 0 MAXNUMF
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1984, 1987, 1989 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- /* Single precision circular tangent
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 8.7e-8
- * rms relative error: 2.8e-8
- */
- #include <math.h>
- extern float MAXNUMF;
- static float DP1 = 0.78515625;
- static float DP2 = 2.4187564849853515625e-4;
- static float DP3 = 3.77489497744594108e-8;
- float FOPI = 1.27323954473516; /* 4/pi */
- static float lossth = 8192.;
- /*static float T24M1 = 16777215.;*/
- static float tancotf( float xx, int cotflg )
- {
- float x, y, z, zz;
- long j;
- int sign;
- /* make argument positive but save the sign */
- if( xx < 0.0 )
- {
- x = -xx;
- sign = -1;
- }
- else
- {
- x = xx;
- sign = 1;
- }
- if( x > lossth )
- {
- if( cotflg )
- mtherr( "cotf", TLOSS );
- else
- mtherr( "tanf", TLOSS );
- return(0.0);
- }
- /* compute x mod PIO4 */
- j = FOPI * x; /* integer part of x/(PI/4) */
- y = j;
- /* map zeros and singularities to origin */
- if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
- z = ((x - y * DP1) - y * DP2) - y * DP3;
- zz = z * z;
- if( x > 1.0e-4 )
- {
- /* 1.7e-8 relative error in [-pi/4, +pi/4] */
- y =
- ((((( 9.38540185543E-3 * zz
- + 3.11992232697E-3) * zz
- + 2.44301354525E-2) * zz
- + 5.34112807005E-2) * zz
- + 1.33387994085E-1) * zz
- + 3.33331568548E-1) * zz * z
- + z;
- }
- else
- {
- y = z;
- }
- if( j & 2 )
- {
- if( cotflg )
- y = -y;
- else
- y = -1.0/y;
- }
- else
- {
- if( cotflg )
- y = 1.0/y;
- }
- if( sign < 0 )
- y = -y;
- return( y );
- }
- float tanf( float x )
- {
- return( tancotf(x,0) );
- }
- float cotf( float x )
- {
- if( x == 0.0 )
- {
- mtherr( "cotf", SING );
- return( MAXNUMF );
- }
- return( tancotf(x,1) );
- }
|