memcmp.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. /* Copyright (C) 1991,1993,1995,1997,1998,2003,2004
  2. Free Software Foundation, Inc.
  3. This file is part of the GNU C Library.
  4. Contributed by Torbjorn Granlund (tege@sics.se).
  5. The GNU C Library is free software; you can redistribute it and/or
  6. modify it under the terms of the GNU Lesser General Public
  7. License as published by the Free Software Foundation; either
  8. version 2.1 of the License, or (at your option) any later version.
  9. The GNU C Library is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. Lesser General Public License for more details.
  13. You should have received a copy of the GNU Lesser General Public
  14. License along with the GNU C Library; if not, write to the Free
  15. Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  16. 02111-1307 USA. */
  17. #include <string.h>
  18. #include "memcopy.h"
  19. /* Experimentally off - libc_hidden_proto(memcmp) */
  20. #include <endian.h>
  21. #if __BYTE_ORDER == __BIG_ENDIAN
  22. # define WORDS_BIGENDIAN
  23. #endif
  24. #ifdef WORDS_BIGENDIAN
  25. # define CMP_LT_OR_GT(a, b) ((a) > (b) ? 1 : -1)
  26. #else
  27. # define CMP_LT_OR_GT(a, b) memcmp_bytes ((a), (b))
  28. #endif
  29. /* BE VERY CAREFUL IF YOU CHANGE THIS CODE! */
  30. /* The strategy of this memcmp is:
  31. 1. Compare bytes until one of the block pointers is aligned.
  32. 2. Compare using memcmp_common_alignment or
  33. memcmp_not_common_alignment, regarding the alignment of the other
  34. block after the initial byte operations. The maximum number of
  35. full words (of type op_t) are compared in this way.
  36. 3. Compare the few remaining bytes. */
  37. #ifndef WORDS_BIGENDIAN
  38. /* memcmp_bytes -- Compare A and B bytewise in the byte order of the machine.
  39. A and B are known to be different.
  40. This is needed only on little-endian machines. */
  41. static int memcmp_bytes __P((op_t, op_t));
  42. # ifdef __GNUC__
  43. __inline
  44. # endif
  45. static int
  46. memcmp_bytes (op_t a, op_t b)
  47. {
  48. long int srcp1 = (long int) &a;
  49. long int srcp2 = (long int) &b;
  50. op_t a0, b0;
  51. do
  52. {
  53. a0 = ((byte *) srcp1)[0];
  54. b0 = ((byte *) srcp2)[0];
  55. srcp1 += 1;
  56. srcp2 += 1;
  57. }
  58. while (a0 == b0);
  59. return a0 - b0;
  60. }
  61. #endif
  62. static int memcmp_common_alignment __P((long, long, size_t));
  63. /* memcmp_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN `op_t'
  64. objects (not LEN bytes!). Both SRCP1 and SRCP2 should be aligned for
  65. memory operations on `op_t's. */
  66. static int
  67. memcmp_common_alignment (long int srcp1, long int srcp2, size_t len)
  68. {
  69. op_t a0, a1;
  70. op_t b0, b1;
  71. switch (len % 4)
  72. {
  73. default: /* Avoid warning about uninitialized local variables. */
  74. case 2:
  75. a0 = ((op_t *) srcp1)[0];
  76. b0 = ((op_t *) srcp2)[0];
  77. srcp1 -= 2 * OPSIZ;
  78. srcp2 -= 2 * OPSIZ;
  79. len += 2;
  80. goto do1;
  81. case 3:
  82. a1 = ((op_t *) srcp1)[0];
  83. b1 = ((op_t *) srcp2)[0];
  84. srcp1 -= OPSIZ;
  85. srcp2 -= OPSIZ;
  86. len += 1;
  87. goto do2;
  88. case 0:
  89. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  90. return 0;
  91. a0 = ((op_t *) srcp1)[0];
  92. b0 = ((op_t *) srcp2)[0];
  93. goto do3;
  94. case 1:
  95. a1 = ((op_t *) srcp1)[0];
  96. b1 = ((op_t *) srcp2)[0];
  97. srcp1 += OPSIZ;
  98. srcp2 += OPSIZ;
  99. len -= 1;
  100. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  101. goto do0;
  102. /* Fall through. */
  103. }
  104. do
  105. {
  106. a0 = ((op_t *) srcp1)[0];
  107. b0 = ((op_t *) srcp2)[0];
  108. if (a1 != b1)
  109. return CMP_LT_OR_GT (a1, b1);
  110. do3:
  111. a1 = ((op_t *) srcp1)[1];
  112. b1 = ((op_t *) srcp2)[1];
  113. if (a0 != b0)
  114. return CMP_LT_OR_GT (a0, b0);
  115. do2:
  116. a0 = ((op_t *) srcp1)[2];
  117. b0 = ((op_t *) srcp2)[2];
  118. if (a1 != b1)
  119. return CMP_LT_OR_GT (a1, b1);
  120. do1:
  121. a1 = ((op_t *) srcp1)[3];
  122. b1 = ((op_t *) srcp2)[3];
  123. if (a0 != b0)
  124. return CMP_LT_OR_GT (a0, b0);
  125. srcp1 += 4 * OPSIZ;
  126. srcp2 += 4 * OPSIZ;
  127. len -= 4;
  128. }
  129. while (len != 0);
  130. /* This is the right position for do0. Please don't move
  131. it into the loop. */
  132. do0:
  133. if (a1 != b1)
  134. return CMP_LT_OR_GT (a1, b1);
  135. return 0;
  136. }
  137. static int memcmp_not_common_alignment __P((long, long, size_t));
  138. /* memcmp_not_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN
  139. `op_t' objects (not LEN bytes!). SRCP2 should be aligned for memory
  140. operations on `op_t', but SRCP1 *should be unaligned*. */
  141. static int
  142. memcmp_not_common_alignment (long int srcp1, long int srcp2, size_t len)
  143. {
  144. op_t a0, a1, a2, a3;
  145. op_t b0, b1, b2, b3;
  146. op_t x;
  147. int shl, shr;
  148. /* Calculate how to shift a word read at the memory operation
  149. aligned srcp1 to make it aligned for comparison. */
  150. shl = 8 * (srcp1 % OPSIZ);
  151. shr = 8 * OPSIZ - shl;
  152. /* Make SRCP1 aligned by rounding it down to the beginning of the `op_t'
  153. it points in the middle of. */
  154. srcp1 &= -OPSIZ;
  155. switch (len % 4)
  156. {
  157. default: /* Avoid warning about uninitialized local variables. */
  158. case 2:
  159. a1 = ((op_t *) srcp1)[0];
  160. a2 = ((op_t *) srcp1)[1];
  161. b2 = ((op_t *) srcp2)[0];
  162. srcp1 -= 1 * OPSIZ;
  163. srcp2 -= 2 * OPSIZ;
  164. len += 2;
  165. goto do1;
  166. case 3:
  167. a0 = ((op_t *) srcp1)[0];
  168. a1 = ((op_t *) srcp1)[1];
  169. b1 = ((op_t *) srcp2)[0];
  170. srcp2 -= 1 * OPSIZ;
  171. len += 1;
  172. goto do2;
  173. case 0:
  174. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  175. return 0;
  176. a3 = ((op_t *) srcp1)[0];
  177. a0 = ((op_t *) srcp1)[1];
  178. b0 = ((op_t *) srcp2)[0];
  179. srcp1 += 1 * OPSIZ;
  180. goto do3;
  181. case 1:
  182. a2 = ((op_t *) srcp1)[0];
  183. a3 = ((op_t *) srcp1)[1];
  184. b3 = ((op_t *) srcp2)[0];
  185. srcp1 += 2 * OPSIZ;
  186. srcp2 += 1 * OPSIZ;
  187. len -= 1;
  188. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  189. goto do0;
  190. /* Fall through. */
  191. }
  192. do
  193. {
  194. a0 = ((op_t *) srcp1)[0];
  195. b0 = ((op_t *) srcp2)[0];
  196. x = MERGE(a2, shl, a3, shr);
  197. if (x != b3)
  198. return CMP_LT_OR_GT (x, b3);
  199. do3:
  200. a1 = ((op_t *) srcp1)[1];
  201. b1 = ((op_t *) srcp2)[1];
  202. x = MERGE(a3, shl, a0, shr);
  203. if (x != b0)
  204. return CMP_LT_OR_GT (x, b0);
  205. do2:
  206. a2 = ((op_t *) srcp1)[2];
  207. b2 = ((op_t *) srcp2)[2];
  208. x = MERGE(a0, shl, a1, shr);
  209. if (x != b1)
  210. return CMP_LT_OR_GT (x, b1);
  211. do1:
  212. a3 = ((op_t *) srcp1)[3];
  213. b3 = ((op_t *) srcp2)[3];
  214. x = MERGE(a1, shl, a2, shr);
  215. if (x != b2)
  216. return CMP_LT_OR_GT (x, b2);
  217. srcp1 += 4 * OPSIZ;
  218. srcp2 += 4 * OPSIZ;
  219. len -= 4;
  220. }
  221. while (len != 0);
  222. /* This is the right position for do0. Please don't move
  223. it into the loop. */
  224. do0:
  225. x = MERGE(a2, shl, a3, shr);
  226. if (x != b3)
  227. return CMP_LT_OR_GT (x, b3);
  228. return 0;
  229. }
  230. int
  231. memcmp (const __ptr_t s1, const __ptr_t s2, size_t len)
  232. {
  233. op_t a0;
  234. op_t b0;
  235. long int srcp1 = (long int) s1;
  236. long int srcp2 = (long int) s2;
  237. op_t res;
  238. if (len >= OP_T_THRES)
  239. {
  240. /* There are at least some bytes to compare. No need to test
  241. for LEN == 0 in this alignment loop. */
  242. while (srcp2 % OPSIZ != 0)
  243. {
  244. a0 = ((byte *) srcp1)[0];
  245. b0 = ((byte *) srcp2)[0];
  246. srcp1 += 1;
  247. srcp2 += 1;
  248. res = a0 - b0;
  249. if (res != 0)
  250. return res;
  251. len -= 1;
  252. }
  253. /* SRCP2 is now aligned for memory operations on `op_t'.
  254. SRCP1 alignment determines if we can do a simple,
  255. aligned compare or need to shuffle bits. */
  256. if (srcp1 % OPSIZ == 0)
  257. res = memcmp_common_alignment (srcp1, srcp2, len / OPSIZ);
  258. else
  259. res = memcmp_not_common_alignment (srcp1, srcp2, len / OPSIZ);
  260. if (res != 0)
  261. return res;
  262. /* Number of bytes remaining in the interval [0..OPSIZ-1]. */
  263. srcp1 += len & -OPSIZ;
  264. srcp2 += len & -OPSIZ;
  265. len %= OPSIZ;
  266. }
  267. /* There are just a few bytes to compare. Use byte memory operations. */
  268. while (len != 0)
  269. {
  270. a0 = ((byte *) srcp1)[0];
  271. b0 = ((byte *) srcp2)[0];
  272. srcp1 += 1;
  273. srcp2 += 1;
  274. res = a0 - b0;
  275. if (res != 0)
  276. return res;
  277. len -= 1;
  278. }
  279. return 0;
  280. }
  281. libc_hidden_weak(memcmp)
  282. #ifdef __UCLIBC_SUSV3_LEGACY__
  283. strong_alias(memcmp,bcmp)
  284. #endif