| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 | /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* __ieee754_j1(x), __ieee754_y1(x) * Bessel function of the first and second kinds of order zero. * Method -- j1(x): *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... *	2. Reduce x to |x| since j1(x)=-j1(-x),  and *	   for x in (0,2) *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x; *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 ) *	   for x in (2,inf) * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) *	   as follow: *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4) *			=  1/sqrt(2) * (sin(x) - cos(x)) *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4) *			= -1/sqrt(2) * (sin(x) + cos(x)) * 	   (To avoid cancellation, use *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) * 	    to compute the worse one.) * *	3 Special cases *		j1(nan)= nan *		j1(0) = 0 *		j1(inf) = 0 * * Method -- y1(x): *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN *	2. For x<2. *	   Since *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. *	   We use the following function to approximate y1, *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 *	   where for x in [0,2] (abs err less than 2**-65.89) *		U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4 *		V(z) = 1  + v0[0]*z + ... + v0[4]*z^5 *	   Note: For tiny x, 1/x dominate y1 and hence *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) *	3. For x>=2. * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) *	   by method mentioned above. */#include "math.h"#include "math_private.h"static double pone(double), qone(double);static const doublehuge    = 1e300,one	= 1.0,invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */	/* R0/S0 on [0,2] */r00  = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */r01  =  1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */r02  = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */r03  =  4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */s01  =  1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */s02  =  1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */s03  =  1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */s04  =  5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */s05  =  1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */static const double zero    = 0.0;double __ieee754_j1(double x){	double z, s,c,ss,cc,r,u,v,y;	int32_t hx,ix;	GET_HIGH_WORD(hx,x);	ix = hx&0x7fffffff;	if(ix>=0x7ff00000) return one/x;	y = fabs(x);	if(ix >= 0x40000000) {	/* |x| >= 2.0 */		s = sin(y);		c = cos(y);		ss = -s-c;		cc = s-c;		if(ix<0x7fe00000) {  /* make sure y+y not overflow */		    z = cos(y+y);		    if ((s*c)>zero) cc = z/ss;		    else 	    ss = z/cc;		}	/*	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)	 */		if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y);		else {		    u = pone(y); v = qone(y);		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);		}		if(hx<0) return -z;		else  	 return  z;	}	if(ix<0x3e400000) {	/* |x|<2**-27 */	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */	}	z = x*x;	r =  z*(r00+z*(r01+z*(r02+z*r03)));	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));	r *= x;	return(x*0.5+r/s);}/* * wrapper of j1 */#ifndef _IEEE_LIBMdouble j1(double x){	double z = __ieee754_j1(x);	if (_LIB_VERSION == _IEEE_ || isnan(x))		return z;	if (fabs(x) > X_TLOSS)		return __kernel_standard(x, x, 36); /* j1(|x|>X_TLOSS) */	return z;}#elsestrong_alias(__ieee754_j1, j1)#endifstatic const double U0[5] = { -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */  5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */  2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */};static const double V0[5] = {  1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */  2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */  1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */  6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */  1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */};double __ieee754_y1(double x){	double z, s,c,ss,cc,u,v;	int32_t hx,ix,lx;	EXTRACT_WORDS(hx,lx,x);        ix = 0x7fffffff&hx;    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */	if(ix>=0x7ff00000) return  one/(x+x*x);        if((ix|lx)==0) return -one/zero;        if(hx<0) return zero/zero;        if(ix >= 0x40000000) {  /* |x| >= 2.0 */                s = sin(x);                c = cos(x);                ss = -s-c;                cc = s-c;                if(ix<0x7fe00000) {  /* make sure x+x not overflow */                    z = cos(x+x);                    if ((s*c)>zero) cc = z/ss;                    else            ss = z/cc;                }        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))         * where x0 = x-3pi/4         *      Better formula:         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)         *                      =  1/sqrt(2) * (sin(x) - cos(x))         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)         *                      = -1/sqrt(2) * (cos(x) + sin(x))         * To avoid cancellation, use         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))         * to compute the worse one.         */                if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);                else {                    u = pone(x); v = qone(x);                    z = invsqrtpi*(u*ss+v*cc)/sqrt(x);                }                return z;        }        if(ix<=0x3c900000) {    /* x < 2**-54 */            return(-tpi/x);        }        z = x*x;        u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));        v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));        return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));}/* * wrapper of y1 */#ifndef _IEEE_LIBMdouble y1(double x){	double z = __ieee754_y1(x);	if (_LIB_VERSION == _IEEE_ || isnan(x))		return z;	if (x <= 0.0) {		if (x == 0.0) /* d = -one/(x-x); */			return __kernel_standard(x, x, 10);		/* d = zero/(x-x); */		return __kernel_standard(x, x, 11);	}	if (x > X_TLOSS)		return __kernel_standard(x, x, 37); /* y1(x>X_TLOSS) */	return z;}#elsestrong_alias(__ieee754_y1, y1)#endif/* For x >= 8, the asymptotic expansions of pone is *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x. * We approximate pone by * 	pone(x) = 1 + (R/S) * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 * 	  S = 1 + ps0*s^2 + ... + ps4*s^10 * and *	| pone(x)-1-R/S | <= 2  ** ( -60.06) */static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */  1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */  1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */  4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */  3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */  7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */};static const double ps8[5] = {  1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */  3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */  3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */  9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */  3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */};static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */  1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */  1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */  6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */  1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */  5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */  5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */};static const double ps5[5] = {  5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */  9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */  5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */  7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */  1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */};static const double pr3[6] = {  3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */  1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */  3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */  3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */  9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */  4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */};static const double ps3[5] = {  3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */  3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */  1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */  8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */  1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */};static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */  1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */  1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */  2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */  1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */  1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */  5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */};static const double ps2[5] = {  2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */  1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */  2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */  1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */  8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */};static double pone(double x){	const double *p=0,*q=0;	double z,r,s;        int32_t ix;	GET_HIGH_WORD(ix,x);	ix &= 0x7fffffff;        if(ix>=0x40200000)     {p = pr8; q= ps8;}        else if(ix>=0x40122E8B){p = pr5; q= ps5;}        else if(ix>=0x4006DB6D){p = pr3; q= ps3;}        else if(ix>=0x40000000){p = pr2; q= ps2;}        z = one/(x*x);        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));        return one+ r/s;}/* For x >= 8, the asymptotic expansions of qone is *	3/8 s - 105/1024 s^3 - ..., where s = 1/x. * We approximate pone by * 	qone(x) = s*(0.375 + (R/S)) * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 * 	  S = 1 + qs1*s^2 + ... + qs6*s^12 * and *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13) */static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */};static const double qs8[6] = {  1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */  7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */  1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */  7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */  6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */};static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */};static const double qs5[6] = {  8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */  1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */  1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */  4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */  2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */};static const double qr3[6] = { -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */};static const double qs3[6] = {  4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */  6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */  3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */  5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */  1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */};static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */};static const double qs2[6] = {  2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */  2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */  7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */  7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */  1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */};static double qone(double x){	const double *p=0,*q=0;	double  s,r,z;	int32_t ix;	GET_HIGH_WORD(ix,x);	ix &= 0x7fffffff;	if(ix>=0x40200000)     {p = qr8; q= qs8;}	else if(ix>=0x40122E8B){p = qr5; q= qs5;}	else if(ix>=0x4006DB6D){p = qr3; q= qs3;}	else if(ix>=0x40000000){p = qr2; q= qs2;}	z = one/(x*x);	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));	return (.375 + r/s)/x;}
 |