| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518 | /* * FreeSec: libcrypt for NetBSD * * Copyright (c) 1994 David Burren * All rights reserved. * * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet *	this file should now *only* export crypt(), in order to make *	binaries of libcrypt exportable from the USA * * Adapted for FreeBSD-4.0 by Mark R V Murray *	this file should now *only* export crypt_des(), in order to make *	a module that can be optionally included in libcrypt. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of other contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This is an original implementation of the DES and the crypt(3) interfaces * by David Burren <davidb@werj.com.au>. * * An excellent reference on the underlying algorithm (and related * algorithms) is: * *	B. Schneier, Applied Cryptography: protocols, algorithms, *	and source code in C, John Wiley & Sons, 1994. * * Note that in that book's description of DES the lookups for the initial, * pbox, and final permutations are inverted (this has been brought to the * attention of the author).  A list of errata for this book has been * posted to the sci.crypt newsgroup by the author and is available for FTP. * * ARCHITECTURE ASSUMPTIONS: *	It is assumed that the 8-byte arrays passed by reference can be *	addressed as arrays of u_int32_t's (ie. the CPU is not picky about *	alignment). */#include <sys/cdefs.h>#include <sys/types.h>#include <sys/param.h>#include <netinet/in.h>#include <pwd.h>#include <string.h>#include <crypt.h>#include "libcrypt.h"#include "des_tables.c"/* Re-entrantify me -- all this junk needs to be in * struct crypt_data to make this really reentrant... */static u_int32_t en_keysl[16], en_keysr[16];static u_int32_t de_keysl[16], de_keysr[16];static u_int32_t saltbits;static u_int32_t old_salt;static u_int32_t old_rawkey0, old_rawkey1;/* A pile of data */static const u_char	ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";static const u_char	key_shifts[16] = {	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};static const u_int32_t bits32[32] ={	0x80000000, 0x40000000, 0x20000000, 0x10000000,	0x08000000, 0x04000000, 0x02000000, 0x01000000,	0x00800000, 0x00400000, 0x00200000, 0x00100000,	0x00080000, 0x00040000, 0x00020000, 0x00010000,	0x00008000, 0x00004000, 0x00002000, 0x00001000,	0x00000800, 0x00000400, 0x00000200, 0x00000100,	0x00000080, 0x00000040, 0x00000020, 0x00000010,	0x00000008, 0x00000004, 0x00000002, 0x00000001};static const u_char	bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };static intascii_to_bin(char ch){	if (ch > 'z')		return(0);	if (ch >= 'a')		return(ch - 'a' + 38);	if (ch > 'Z')		return(0);	if (ch >= 'A')		return(ch - 'A' + 12);	if (ch > '9')		return(0);	if (ch >= '.')		return(ch - '.');	return(0);}static voiddes_init(void){	static int des_initialised = 0;	if (des_initialised==1)		return;	old_rawkey0 = old_rawkey1 = 0L;	saltbits = 0L;	old_salt = 0L;	des_initialised = 1;}static voidsetup_salt(u_int32_t salt){	u_int32_t	obit, saltbit;	int	i;	if (salt == old_salt)		return;	old_salt = salt;	saltbits = 0L;	saltbit = 1;	obit = 0x800000;	for (i = 0; i < 24; i++) {		if (salt & saltbit)			saltbits |= obit;		saltbit <<= 1;		obit >>= 1;	}}static voiddes_setkey(const char *key){	u_int32_t	k0, k1, rawkey0, rawkey1;	int		shifts, round;	des_init();	rawkey0 = ntohl(*(const u_int32_t *) key);	rawkey1 = ntohl(*(const u_int32_t *) (key + 4));	if ((rawkey0 | rawkey1)	    && rawkey0 == old_rawkey0	    && rawkey1 == old_rawkey1) {		/*		 * Already setup for this key.		 * This optimisation fails on a zero key (which is weak and		 * has bad parity anyway) in order to simplify the starting		 * conditions.		 */		return;	}	old_rawkey0 = rawkey0;	old_rawkey1 = rawkey1;	/*	 *	Do key permutation and split into two 28-bit subkeys.	 */	k0 = key_perm_maskl[0][rawkey0 >> 25]	   | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]	   | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]	   | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]	   | key_perm_maskl[4][rawkey1 >> 25]	   | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]	   | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]	   | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];	k1 = key_perm_maskr[0][rawkey0 >> 25]	   | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]	   | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]	   | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]	   | key_perm_maskr[4][rawkey1 >> 25]	   | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]	   | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]	   | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];	/*	 *	Rotate subkeys and do compression permutation.	 */	shifts = 0;	for (round = 0; round < 16; round++) {		u_int32_t	t0, t1;		shifts += key_shifts[round];		t0 = (k0 << shifts) | (k0 >> (28 - shifts));		t1 = (k1 << shifts) | (k1 >> (28 - shifts));		de_keysl[15 - round] =		en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]				| comp_maskl[1][(t0 >> 14) & 0x7f]				| comp_maskl[2][(t0 >> 7) & 0x7f]				| comp_maskl[3][t0 & 0x7f]				| comp_maskl[4][(t1 >> 21) & 0x7f]				| comp_maskl[5][(t1 >> 14) & 0x7f]				| comp_maskl[6][(t1 >> 7) & 0x7f]				| comp_maskl[7][t1 & 0x7f];		de_keysr[15 - round] =		en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]				| comp_maskr[1][(t0 >> 14) & 0x7f]				| comp_maskr[2][(t0 >> 7) & 0x7f]				| comp_maskr[3][t0 & 0x7f]				| comp_maskr[4][(t1 >> 21) & 0x7f]				| comp_maskr[5][(t1 >> 14) & 0x7f]				| comp_maskr[6][(t1 >> 7) & 0x7f]				| comp_maskr[7][t1 & 0x7f];	}}static intdo_des(	u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count){	/* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */	u_int32_t	l, r, *kl, *kr, *kl1, *kr1;	u_int32_t	f, r48l, r48r;	int		round;	if (count == 0) {		return 1;	}	if (count > 0) {		/* Encrypting */		kl1 = en_keysl;		kr1 = en_keysr;	} else {		/* Decrypting */		count = -count;		kl1 = de_keysl;		kr1 = de_keysr;	}	/* Do initial permutation (IP). */	l = ip_maskl[0][l_in >> 24]	  | ip_maskl[1][(l_in >> 16) & 0xff]	  | ip_maskl[2][(l_in >> 8) & 0xff]	  | ip_maskl[3][l_in & 0xff]	  | ip_maskl[4][r_in >> 24]	  | ip_maskl[5][(r_in >> 16) & 0xff]	  | ip_maskl[6][(r_in >> 8) & 0xff]	  | ip_maskl[7][r_in & 0xff];	r = ip_maskr[0][l_in >> 24]	  | ip_maskr[1][(l_in >> 16) & 0xff]	  | ip_maskr[2][(l_in >> 8) & 0xff]	  | ip_maskr[3][l_in & 0xff]	  | ip_maskr[4][r_in >> 24]	  | ip_maskr[5][(r_in >> 16) & 0xff]	  | ip_maskr[6][(r_in >> 8) & 0xff]	  | ip_maskr[7][r_in & 0xff];	while (count--) {		/* Do each round. */		kl = kl1;		kr = kr1;		round = 16;		do {			/* Expand R to 48 bits (simulate the E-box). */			r48l	= ((r & 0x00000001) << 23)				| ((r & 0xf8000000) >> 9)				| ((r & 0x1f800000) >> 11)				| ((r & 0x01f80000) >> 13)				| ((r & 0x001f8000) >> 15);			r48r	= ((r & 0x0001f800) << 7)				| ((r & 0x00001f80) << 5)				| ((r & 0x000001f8) << 3)				| ((r & 0x0000001f) << 1)				| ((r & 0x80000000) >> 31);			/*			 * Do salting for crypt() and friends, and			 * XOR with the permuted key.			 */			f = (r48l ^ r48r) & saltbits;			r48l ^= f ^ *kl++;			r48r ^= f ^ *kr++;			/*			 * Do sbox lookups (which shrink it back to 32 bits)			 * and do the pbox permutation at the same time.			 */			f = psbox[0][m_sbox[0][r48l >> 12]]			  | psbox[1][m_sbox[1][r48l & 0xfff]]			  | psbox[2][m_sbox[2][r48r >> 12]]			  | psbox[3][m_sbox[3][r48r & 0xfff]];			/* Now that we've permuted things, complete f(). */			f ^= l;			l = r;			r = f;		} while (--round);		r = l;		l = f;	}	/* Do final permutation (inverse of IP). */	*l_out	= fp_maskl[0][l >> 24]		| fp_maskl[1][(l >> 16) & 0xff]		| fp_maskl[2][(l >> 8) & 0xff]		| fp_maskl[3][l & 0xff]		| fp_maskl[4][r >> 24]		| fp_maskl[5][(r >> 16) & 0xff]		| fp_maskl[6][(r >> 8) & 0xff]		| fp_maskl[7][r & 0xff];	*r_out	= fp_maskr[0][l >> 24]		| fp_maskr[1][(l >> 16) & 0xff]		| fp_maskr[2][(l >> 8) & 0xff]		| fp_maskr[3][l & 0xff]		| fp_maskr[4][r >> 24]		| fp_maskr[5][(r >> 16) & 0xff]		| fp_maskr[6][(r >> 8) & 0xff]		| fp_maskr[7][r & 0xff];	return(0);}#if 0static intdes_cipher(const char *in, char *out, u_int32_t salt, int count){	u_int32_t	l_out, r_out, rawl, rawr;	int		retval;	union {		u_int32_t	*ui32;		const char	*c;	} trans;	des_init();	setup_salt(salt);	trans.c = in;	rawl = ntohl(*trans.ui32++);	rawr = ntohl(*trans.ui32);	retval = do_des(rawl, rawr, &l_out, &r_out, count);	trans.c = out;	*trans.ui32++ = htonl(l_out);	*trans.ui32 = htonl(r_out);	return(retval);}#endifvoidsetkey(const char *key){	int	i, j;	u_int32_t	packed_keys[2];	u_char	*p;	p = (u_char *) packed_keys;	for (i = 0; i < 8; i++) {		p[i] = 0;		for (j = 0; j < 8; j++)			if (*key++ & 1)				p[i] |= bits8[j];	}	des_setkey((char *)p);}voidencrypt(char *block, int flag){	u_int32_t	io[2];	u_char	*p;	int	i, j;	des_init();	setup_salt(0L);	p = (u_char*)block;	for (i = 0; i < 2; i++) {		io[i] = 0L;		for (j = 0; j < 32; j++)			if (*p++ & 1)				io[i] |= bits32[j];	}	do_des(io[0], io[1], io, io + 1, flag ? -1 : 1);	for (i = 0; i < 2; i++)		for (j = 0; j < 32; j++)			block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;}char *__des_crypt(const unsigned char *key, const unsigned char *setting){	u_int32_t	count, salt, l, r0, r1, keybuf[2];	u_char		*p, *q;	static char	output[21];	des_init();	/*	 * Copy the key, shifting each character up by one bit	 * and padding with zeros.	 */	q = (u_char *)keybuf;	while (q - (u_char *)keybuf - 8) {		*q++ = *key << 1;		if (*(q - 1))			key++;	}	des_setkey((char *)keybuf);#if 0	if (*setting == _PASSWORD_EFMT1) {		int		i;		/*		 * "new"-style:		 *	setting - underscore, 4 bytes of count, 4 bytes of salt		 *	key - unlimited characters		 */		for (i = 1, count = 0L; i < 5; i++)			count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);		for (i = 5, salt = 0L; i < 9; i++)			salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);		while (*key) {			/*			 * Encrypt the key with itself.			 */			if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))				return(NULL);			/*			 * And XOR with the next 8 characters of the key.			 */			q = (u_char *)keybuf;			while (q - (u_char *)keybuf - 8 && *key)				*q++ ^= *key++ << 1;			des_setkey((char *)keybuf);		}		strncpy(output, setting, 9);		/*		 * Double check that we weren't given a short setting.		 * If we were, the above code will probably have created		 * wierd values for count and salt, but we don't really care.		 * Just make sure the output string doesn't have an extra		 * NUL in it.		 */		output[9] = '\0';		p = (u_char *)output + strlen(output);	} else#endif	{		/*		 * "old"-style:		 *	setting - 2 bytes of salt		 *	key - up to 8 characters		 */		count = 25;		salt = (ascii_to_bin(setting[1]) << 6)		     |  ascii_to_bin(setting[0]);		output[0] = setting[0];		/*		 * If the encrypted password that the salt was extracted from		 * is only 1 character long, the salt will be corrupted.  We		 * need to ensure that the output string doesn't have an extra		 * NUL in it!		 */		output[1] = setting[1] ? setting[1] : output[0];		p = (u_char *)output + 2;	}	setup_salt(salt);	/*	 * Do it.	 */	if (do_des(0L, 0L, &r0, &r1, (int)count))		return(NULL);	/*	 * Now encode the result...	 */	l = (r0 >> 8);	*p++ = ascii64[(l >> 18) & 0x3f];	*p++ = ascii64[(l >> 12) & 0x3f];	*p++ = ascii64[(l >> 6) & 0x3f];	*p++ = ascii64[l & 0x3f];	l = (r0 << 16) | ((r1 >> 16) & 0xffff);	*p++ = ascii64[(l >> 18) & 0x3f];	*p++ = ascii64[(l >> 12) & 0x3f];	*p++ = ascii64[(l >> 6) & 0x3f];	*p++ = ascii64[l & 0x3f];	l = r1 << 2;	*p++ = ascii64[(l >> 12) & 0x3f];	*p++ = ascii64[(l >> 6) & 0x3f];	*p++ = ascii64[l & 0x3f];	*p = 0;	return(output);}
 |