| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 | /* @(#)e_asin.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";#endif/* __ieee754_asin(x) * Method : *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... *	we approximate asin(x) on [0,0.5] by *		asin(x) = x + x*x^2*R(x^2) *	where *		R(x^2) is a rational approximation of (asin(x)-x)/x^3 *	and its remez error is bounded by *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * *	For x in [0.5,1] *		asin(x) = pi/2-2*asin(sqrt((1-x)/2)) *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; *	then for x>0.98 *		asin(x) = pi/2 - 2*(s+s*z*R(z)) *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) *	For x<=0.98, let pio4_hi = pio2_hi/2, then *		f = hi part of s; *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z) *	and *		asin(x) = pi/2 - 2*(s+s*z*R(z)) *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: *	if x is NaN, return x itself; *	if |x|>1, return NaN with invalid signal. * */#include "math.h"#include "math_private.h"#ifdef __STDC__static const double#elsestatic double#endifone =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */huge =  1.000e+300,pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */	/* coefficient for R(x^2) */pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */#ifdef __STDC__	double attribute_hidden __ieee754_asin(double x)#else	double attribute_hidden __ieee754_asin(x)	double x;#endif{	double t=0.0,w,p,q,c,r,s;	int32_t hx,ix;	GET_HIGH_WORD(hx,x);	ix = hx&0x7fffffff;	if(ix>= 0x3ff00000) {		/* |x|>= 1 */	    u_int32_t lx;	    GET_LOW_WORD(lx,x);	    if(((ix-0x3ff00000)|lx)==0)		    /* asin(1)=+-pi/2 with inexact */		return x*pio2_hi+x*pio2_lo;	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */	} else if (ix<0x3fe00000) {	/* |x|<0.5 */	    if(ix<0x3e400000) {		/* if |x| < 2**-27 */		if(huge+x>one) return x;/* return x with inexact if x!=0*/	    } else {		t = x*x;		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));		w = p/q;		return x+x*w;	    }	}	/* 1> |x|>= 0.5 */	w = one-fabs(x);	t = w*0.5;	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));	s = __ieee754_sqrt(t);	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */	    w = p/q;	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);	} else {	    w  = s;	    SET_LOW_WORD(w,0);	    c  = (t-w*w)/(s+w);	    r  = p/q;	    p  = 2.0*s*r-(pio2_lo-2.0*c);	    q  = pio4_hi-2.0*w;	    t  = pio4_hi-(p-q);	}	if(hx>0) return t; else return -t;}
 |