elfinterp.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. /*
  2. * Meta ELF shared library loader support.
  3. *
  4. * Program to load an elf binary on a linux system, and run it.
  5. * References to symbols in sharable libraries can be resolved
  6. * by either an ELF sharable library or a linux style of shared
  7. * library.
  8. *
  9. * Copyright (C) 2013, Imagination Technologies Ltd.
  10. *
  11. * Licensed under LGPL v2.1 or later, see the file COPYING.LIB in this tarball.
  12. */
  13. #include "ldso.h"
  14. /* Defined in resolve.S. */
  15. extern int _dl_linux_resolve(void);
  16. static inline unsigned long __get_unaligned_reloc(unsigned long *addr)
  17. {
  18. char *rel_addr = (char *)addr;
  19. unsigned long val;
  20. val = *rel_addr++ & 0xff;
  21. val |= (*rel_addr++ << 8) & 0x0000ff00;
  22. val |= (*rel_addr++ << 16) & 0x00ff0000;
  23. val |= (*rel_addr++ << 24) & 0xff000000;
  24. return val;
  25. }
  26. static inline void __put_unaligned_reloc(unsigned long *addr,
  27. unsigned long val)
  28. {
  29. char *rel_addr = (char *)addr;
  30. *rel_addr++ = (val & 0x000000ff);
  31. *rel_addr++ = ((val & 0x0000ff00) >> 8);
  32. *rel_addr++ = ((val & 0x00ff0000) >> 16);
  33. *rel_addr++ = ((val & 0xff000000) >> 24);
  34. }
  35. unsigned long
  36. _dl_linux_resolver(struct elf_resolve *tpnt, int reloc_entry)
  37. {
  38. int reloc_type;
  39. int symtab_index;
  40. char *strtab;
  41. char *symname;
  42. char *new_addr;
  43. char *rel_addr;
  44. char **got_addr;
  45. Elf32_Sym *symtab;
  46. ELF_RELOC *this_reloc;
  47. unsigned long instr_addr;
  48. rel_addr = (char *)tpnt->dynamic_info[DT_JMPREL];
  49. this_reloc = (ELF_RELOC *)(intptr_t)(rel_addr + reloc_entry);
  50. reloc_type = ELF32_R_TYPE(this_reloc->r_info);
  51. symtab_index = ELF32_R_SYM(this_reloc->r_info);
  52. symtab = (Elf32_Sym *)(intptr_t)tpnt->dynamic_info[DT_SYMTAB];
  53. strtab = (char *)tpnt->dynamic_info[DT_STRTAB];
  54. symname = strtab + symtab[symtab_index].st_name;
  55. if (unlikely(reloc_type != R_METAG_JMP_SLOT)) {
  56. _dl_dprintf(2, "%s: Incorrect relocation type in jump relocations\n",
  57. _dl_progname);
  58. _dl_exit(1);
  59. }
  60. /* Address of the jump instruction to fix up. */
  61. instr_addr = ((unsigned long)this_reloc->r_offset +
  62. (unsigned long)tpnt->loadaddr);
  63. got_addr = (char **)instr_addr;
  64. /* Get the address of the GOT entry. */
  65. new_addr = _dl_find_hash(symname, tpnt->symbol_scope, tpnt,
  66. ELF_RTYPE_CLASS_PLT, NULL);
  67. if (unlikely(!new_addr)) {
  68. _dl_dprintf(2, "%s: Can't resolve symbol '%s'\n", _dl_progname, symname);
  69. _dl_exit(1);
  70. }
  71. #if defined (__SUPPORT_LD_DEBUG__)
  72. if (_dl_debug_bindings) {
  73. _dl_dprintf(_dl_debug_file, "\nresolve function: %s", symname);
  74. if (_dl_debug_detail)
  75. _dl_dprintf(_dl_debug_file,
  76. "\n\tpatched: %x ==> %x @ %x\n",
  77. *got_addr, new_addr, got_addr);
  78. }
  79. if (!_dl_debug_nofixups) {
  80. *got_addr = new_addr;
  81. }
  82. #else
  83. *got_addr = new_addr;
  84. #endif
  85. return (unsigned long)new_addr;
  86. }
  87. static int
  88. _dl_parse(struct elf_resolve *tpnt, struct dyn_elf *scope,
  89. unsigned long rel_addr, unsigned long rel_size,
  90. int (*reloc_fnc)(struct elf_resolve *tpnt, struct dyn_elf *scope,
  91. ELF_RELOC *rpnt, Elf32_Sym *symtab, char *strtab))
  92. {
  93. int symtab_index;
  94. unsigned int i;
  95. char *strtab;
  96. Elf32_Sym *symtab;
  97. ELF_RELOC *rpnt;
  98. /* Parse the relocation information. */
  99. rpnt = (ELF_RELOC *)(intptr_t)rel_addr;
  100. rel_size /= sizeof(ELF_RELOC);
  101. symtab = (Elf32_Sym *)(intptr_t)tpnt->dynamic_info[DT_SYMTAB];
  102. strtab = (char *)tpnt->dynamic_info[DT_STRTAB];
  103. for (i = 0; i < rel_size; i++, rpnt++) {
  104. int res;
  105. symtab_index = ELF32_R_SYM(rpnt->r_info);
  106. debug_sym(symtab, strtab, symtab_index);
  107. debug_reloc(symtab, strtab, rpnt);
  108. /* Pass over to actual relocation function. */
  109. res = reloc_fnc(tpnt, scope, rpnt, symtab, strtab);
  110. if (res == 0)
  111. continue;
  112. _dl_dprintf(2, "\n%s: ", _dl_progname);
  113. if (symtab_index)
  114. _dl_dprintf(2, "symbol '%s': ",
  115. strtab + symtab[symtab_index].st_name);
  116. if (unlikely(res < 0)) {
  117. int reloc_type = ELF32_R_TYPE(rpnt->r_info);
  118. #if defined (__SUPPORT_LD_DEBUG__)
  119. _dl_dprintf(2, "can't handle reloc type %s\n",
  120. _dl_reltypes(reloc_type));
  121. #else
  122. _dl_dprintf(2, "can't handle reloc type %x\n",
  123. reloc_type);
  124. #endif
  125. _dl_exit(-res);
  126. } else if (unlikely(res > 0)) {
  127. _dl_dprintf(2, "can't resolve symbol\n");
  128. return res;
  129. }
  130. }
  131. return 0;
  132. }
  133. static int
  134. _dl_do_reloc(struct elf_resolve *tpnt, struct dyn_elf *scope,
  135. ELF_RELOC *rpnt, Elf32_Sym *symtab, char *strtab)
  136. {
  137. int reloc_type;
  138. int symtab_index;
  139. char *symname = NULL;
  140. unsigned long *reloc_addr;
  141. unsigned long symbol_addr;
  142. #if defined (__SUPPORT_LD_DEBUG__)
  143. unsigned long old_val;
  144. #endif
  145. reloc_addr = (unsigned long *)(intptr_t)(tpnt->loadaddr + (unsigned long)rpnt->r_offset);
  146. reloc_type = ELF32_R_TYPE(rpnt->r_info);
  147. symtab_index = ELF32_R_SYM(rpnt->r_info);
  148. symbol_addr = 0;
  149. symname = strtab + symtab[symtab_index].st_name;
  150. if (symtab_index) {
  151. if (symtab[symtab_index].st_shndx != SHN_UNDEF &&
  152. ELF32_ST_BIND(symtab[symtab_index].st_info) == STB_LOCAL) {
  153. symbol_addr = (unsigned long)tpnt->loadaddr;
  154. } else {
  155. symbol_addr = (unsigned long)_dl_find_hash(symname, scope, tpnt,
  156. elf_machine_type_class(reloc_type), NULL);
  157. }
  158. if (unlikely(!symbol_addr && ELF32_ST_BIND(symtab[symtab_index].st_info) != STB_WEAK)) {
  159. _dl_dprintf(2, "%s: can't resolve symbol '%s'\n", _dl_progname, symname);
  160. _dl_exit(1);
  161. };
  162. symbol_addr += rpnt->r_addend;
  163. }
  164. #if defined (__SUPPORT_LD_DEBUG__)
  165. if (reloc_type != R_METAG_NONE)
  166. old_val = __get_unaligned_reloc(reloc_addr);
  167. #endif
  168. switch (reloc_type) {
  169. case R_METAG_NONE:
  170. break;
  171. case R_METAG_GLOB_DAT:
  172. case R_METAG_JMP_SLOT:
  173. case R_METAG_ADDR32:
  174. __put_unaligned_reloc(reloc_addr, symbol_addr);
  175. break;
  176. case R_METAG_COPY:
  177. #if defined (__SUPPORT_LD_DEBUG__)
  178. if (_dl_debug_move)
  179. _dl_dprintf(_dl_debug_file,
  180. "\t%s move %d bytes from %x to %x\n",
  181. symname, symtab[symtab_index].st_size,
  182. symbol_addr, reloc_addr);
  183. #endif
  184. _dl_memcpy((char *)reloc_addr,
  185. (char *)symbol_addr,
  186. symtab[symtab_index].st_size);
  187. break;
  188. case R_METAG_RELATIVE:
  189. __put_unaligned_reloc(reloc_addr,
  190. (unsigned long)tpnt->loadaddr +
  191. rpnt->r_addend);
  192. break;
  193. default:
  194. return -1; /* Calls _dl_exit(1). */
  195. }
  196. #if defined (__SUPPORT_LD_DEBUG__)
  197. if (_dl_debug_reloc && _dl_debug_detail &&
  198. (reloc_type != R_METAG_NONE)) {
  199. unsigned long new_val = __get_unaligned_reloc(reloc_addr);
  200. _dl_dprintf(_dl_debug_file, "\tpatched: %x ==> %x @ %x\n",
  201. old_val, new_val, reloc_addr);
  202. }
  203. #endif
  204. return 0;
  205. }
  206. static int
  207. _dl_do_lazy_reloc(struct elf_resolve *tpnt, struct dyn_elf *scope,
  208. ELF_RELOC *rpnt, Elf32_Sym *symtab, char *strtab)
  209. {
  210. int reloc_type;
  211. unsigned long *reloc_addr;
  212. #if defined (__SUPPORT_LD_DEBUG__)
  213. unsigned long old_val;
  214. #endif
  215. reloc_addr = (unsigned long *)(intptr_t)(tpnt->loadaddr + (unsigned long)rpnt->r_offset);
  216. reloc_type = ELF32_R_TYPE(rpnt->r_info);
  217. #if defined (__SUPPORT_LD_DEBUG__)
  218. old_val = *reloc_addr;
  219. #endif
  220. switch (reloc_type) {
  221. case R_METAG_NONE:
  222. break;
  223. case R_METAG_JMP_SLOT:
  224. *reloc_addr += (unsigned long)tpnt->loadaddr;
  225. break;
  226. default:
  227. return -1; /* Calls _dl_exit(1). */
  228. }
  229. #if defined (__SUPPORT_LD_DEBUG__)
  230. if (_dl_debug_reloc && _dl_debug_detail)
  231. _dl_dprintf(_dl_debug_file, "\tpatched: %x ==> %x @ %x\n",
  232. old_val, *reloc_addr, reloc_addr);
  233. #endif
  234. return 0;
  235. }
  236. /* External interface to the generic part of the dynamic linker. */
  237. void
  238. _dl_parse_lazy_relocation_information(struct dyn_elf *rpnt,
  239. unsigned long rel_addr,
  240. unsigned long rel_size)
  241. {
  242. _dl_parse(rpnt->dyn, NULL, rel_addr, rel_size, _dl_do_lazy_reloc);
  243. }
  244. int
  245. _dl_parse_relocation_information(struct dyn_elf *rpnt,
  246. unsigned long rel_addr,
  247. unsigned long rel_size)
  248. {
  249. return _dl_parse(rpnt->dyn, rpnt->dyn->symbol_scope, rel_addr,
  250. rel_size, _dl_do_reloc);
  251. }