123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- /* __ieee754_hypot(x,y)
- *
- * Method :
- * If (assume round-to-nearest) z=x*x+y*y
- * has error less than sqrt(2)/2 ulp, than
- * sqrt(z) has error less than 1 ulp (exercise).
- *
- * So, compute sqrt(x*x+y*y) with some care as
- * follows to get the error below 1 ulp:
- *
- * Assume x>y>0;
- * (if possible, set rounding to round-to-nearest)
- * 1. if x > 2y use
- * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
- * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
- * 2. if x <= 2y use
- * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
- * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
- * y1= y with lower 32 bits chopped, y2 = y-y1.
- *
- * NOTE: scaling may be necessary if some argument is too
- * large or too tiny
- *
- * Special cases:
- * hypot(x,y) is INF if x or y is +INF or -INF; else
- * hypot(x,y) is NAN if x or y is NAN.
- *
- * Accuracy:
- * hypot(x,y) returns sqrt(x^2+y^2) with error less
- * than 1 ulps (units in the last place)
- */
- #include "math.h"
- #include "math_private.h"
- double attribute_hidden __ieee754_hypot(double x, double y)
- {
- double a=x,b=y,t1,t2,y1,y2,w;
- int32_t j,k,ha,hb;
- GET_HIGH_WORD(ha,x);
- ha &= 0x7fffffff;
- GET_HIGH_WORD(hb,y);
- hb &= 0x7fffffff;
- if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
- SET_HIGH_WORD(a,ha); /* a <- |a| */
- SET_HIGH_WORD(b,hb); /* b <- |b| */
- if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
- k=0;
- if(ha > 0x5f300000) { /* a>2**500 */
- if(ha >= 0x7ff00000) { /* Inf or NaN */
- u_int32_t low;
- w = a+b; /* for sNaN */
- GET_LOW_WORD(low,a);
- if(((ha&0xfffff)|low)==0) w = a;
- GET_LOW_WORD(low,b);
- if(((hb^0x7ff00000)|low)==0) w = b;
- return w;
- }
- /* scale a and b by 2**-600 */
- ha -= 0x25800000; hb -= 0x25800000; k += 600;
- SET_HIGH_WORD(a,ha);
- SET_HIGH_WORD(b,hb);
- }
- if(hb < 0x20b00000) { /* b < 2**-500 */
- if(hb <= 0x000fffff) { /* subnormal b or 0 */
- u_int32_t low;
- GET_LOW_WORD(low,b);
- if((hb|low)==0) return a;
- t1=0;
- SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
- b *= t1;
- a *= t1;
- k -= 1022;
- } else { /* scale a and b by 2^600 */
- ha += 0x25800000; /* a *= 2^600 */
- hb += 0x25800000; /* b *= 2^600 */
- k -= 600;
- SET_HIGH_WORD(a,ha);
- SET_HIGH_WORD(b,hb);
- }
- }
- /* medium size a and b */
- w = a-b;
- if (w>b) {
- t1 = 0;
- SET_HIGH_WORD(t1,ha);
- t2 = a-t1;
- w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
- } else {
- a = a+a;
- y1 = 0;
- SET_HIGH_WORD(y1,hb);
- y2 = b - y1;
- t1 = 0;
- SET_HIGH_WORD(t1,ha+0x00100000);
- t2 = a - t1;
- w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
- }
- if(k!=0) {
- u_int32_t high;
- t1 = 1.0;
- GET_HIGH_WORD(high,t1);
- SET_HIGH_WORD(t1,high+(k<<20));
- return t1*w;
- } else return w;
- }
- /*
- * wrapper hypot(x,y)
- */
- #ifndef _IEEE_LIBM
- double hypot(double x, double y)
- {
- double z = __ieee754_hypot(x, y);
- if (_LIB_VERSION == _IEEE_)
- return z;
- if ((!isfinite(z)) && isfinite(x) && isfinite(y))
- return __kernel_standard(x, y, 4); /* hypot overflow */
- return z;
- }
- #else
- strong_alias(__ieee754_hypot, hypot)
- #endif
- libm_hidden_def(hypot)
|