123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705 |
- /* Software floating-point emulation.
- Basic two-word fraction declaration and manipulation.
- Copyright (C) 1997-2017 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Richard Henderson (rth@cygnus.com),
- Jakub Jelinek (jj@ultra.linux.cz),
- David S. Miller (davem@redhat.com) and
- Peter Maydell (pmaydell@chiark.greenend.org.uk).
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- In addition to the permissions in the GNU Lesser General Public
- License, the Free Software Foundation gives you unlimited
- permission to link the compiled version of this file into
- combinations with other programs, and to distribute those
- combinations without any restriction coming from the use of this
- file. (The Lesser General Public License restrictions do apply in
- other respects; for example, they cover modification of the file,
- and distribution when not linked into a combine executable.)
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
- #ifndef SOFT_FP_OP_2_H
- #define SOFT_FP_OP_2_H 1
- #define _FP_FRAC_DECL_2(X) \
- _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
- #define _FP_FRAC_COPY_2(D, S) (D##_f0 = S##_f0, D##_f1 = S##_f1)
- #define _FP_FRAC_SET_2(X, I) __FP_FRAC_SET_2 (X, I)
- #define _FP_FRAC_HIGH_2(X) (X##_f1)
- #define _FP_FRAC_LOW_2(X) (X##_f0)
- #define _FP_FRAC_WORD_2(X, w) (X##_f##w)
- #define _FP_FRAC_SLL_2(X, N) \
- (void) (((N) < _FP_W_TYPE_SIZE) \
- ? ({ \
- if (__builtin_constant_p (N) && (N) == 1) \
- { \
- X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE) (X##_f0)) < 0); \
- X##_f0 += X##_f0; \
- } \
- else \
- { \
- X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \
- X##_f0 <<= (N); \
- } \
- 0; \
- }) \
- : ({ \
- X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \
- X##_f0 = 0; \
- }))
- #define _FP_FRAC_SRL_2(X, N) \
- (void) (((N) < _FP_W_TYPE_SIZE) \
- ? ({ \
- X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \
- X##_f1 >>= (N); \
- }) \
- : ({ \
- X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \
- X##_f1 = 0; \
- }))
- /* Right shift with sticky-lsb. */
- #define _FP_FRAC_SRST_2(X, S, N, sz) \
- (void) (((N) < _FP_W_TYPE_SIZE) \
- ? ({ \
- S = (__builtin_constant_p (N) && (N) == 1 \
- ? X##_f0 & 1 \
- : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0); \
- X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N)); \
- X##_f1 >>= (N); \
- }) \
- : ({ \
- S = ((((N) == _FP_W_TYPE_SIZE \
- ? 0 \
- : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \
- | X##_f0) != 0); \
- X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE)); \
- X##_f1 = 0; \
- }))
- #define _FP_FRAC_SRS_2(X, N, sz) \
- (void) (((N) < _FP_W_TYPE_SIZE) \
- ? ({ \
- X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \
- | (__builtin_constant_p (N) && (N) == 1 \
- ? X##_f0 & 1 \
- : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
- X##_f1 >>= (N); \
- }) \
- : ({ \
- X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) \
- | ((((N) == _FP_W_TYPE_SIZE \
- ? 0 \
- : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \
- | X##_f0) != 0)); \
- X##_f1 = 0; \
- }))
- #define _FP_FRAC_ADDI_2(X, I) \
- __FP_FRAC_ADDI_2 (X##_f1, X##_f0, I)
- #define _FP_FRAC_ADD_2(R, X, Y) \
- __FP_FRAC_ADD_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
- #define _FP_FRAC_SUB_2(R, X, Y) \
- __FP_FRAC_SUB_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
- #define _FP_FRAC_DEC_2(X, Y) \
- __FP_FRAC_DEC_2 (X##_f1, X##_f0, Y##_f1, Y##_f0)
- #define _FP_FRAC_CLZ_2(R, X) \
- do \
- { \
- if (X##_f1) \
- __FP_CLZ ((R), X##_f1); \
- else \
- { \
- __FP_CLZ ((R), X##_f0); \
- (R) += _FP_W_TYPE_SIZE; \
- } \
- } \
- while (0)
- /* Predicates. */
- #define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE) X##_f1 < 0)
- #define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0)
- #define _FP_FRAC_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs)
- #define _FP_FRAC_CLEAR_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs)
- #define _FP_FRAC_HIGHBIT_DW_2(fs, X) \
- (_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs)
- #define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0)
- #define _FP_FRAC_GT_2(X, Y) \
- (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0))
- #define _FP_FRAC_GE_2(X, Y) \
- (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0))
- #define _FP_ZEROFRAC_2 0, 0
- #define _FP_MINFRAC_2 0, 1
- #define _FP_MAXFRAC_2 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0)
- /* Internals. */
- #define __FP_FRAC_SET_2(X, I1, I0) (X##_f0 = I0, X##_f1 = I1)
- #define __FP_CLZ_2(R, xh, xl) \
- do \
- { \
- if (xh) \
- __FP_CLZ ((R), xh); \
- else \
- { \
- __FP_CLZ ((R), xl); \
- (R) += _FP_W_TYPE_SIZE; \
- } \
- } \
- while (0)
- #if 0
- # ifndef __FP_FRAC_ADDI_2
- # define __FP_FRAC_ADDI_2(xh, xl, i) \
- (xh += ((xl += i) < i))
- # endif
- # ifndef __FP_FRAC_ADD_2
- # define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \
- (rh = xh + yh + ((rl = xl + yl) < xl))
- # endif
- # ifndef __FP_FRAC_SUB_2
- # define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \
- (rh = xh - yh - ((rl = xl - yl) > xl))
- # endif
- # ifndef __FP_FRAC_DEC_2
- # define __FP_FRAC_DEC_2(xh, xl, yh, yl) \
- do \
- { \
- UWtype __FP_FRAC_DEC_2_t = xl; \
- xh -= yh + ((xl -= yl) > __FP_FRAC_DEC_2_t); \
- } \
- while (0)
- # endif
- #else
- # undef __FP_FRAC_ADDI_2
- # define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa (xh, xl, xh, xl, 0, i)
- # undef __FP_FRAC_ADD_2
- # define __FP_FRAC_ADD_2 add_ssaaaa
- # undef __FP_FRAC_SUB_2
- # define __FP_FRAC_SUB_2 sub_ddmmss
- # undef __FP_FRAC_DEC_2
- # define __FP_FRAC_DEC_2(xh, xl, yh, yl) \
- sub_ddmmss (xh, xl, xh, xl, yh, yl)
- #endif
- /* Unpack the raw bits of a native fp value. Do not classify or
- normalize the data. */
- #define _FP_UNPACK_RAW_2(fs, X, val) \
- do \
- { \
- union _FP_UNION_##fs _FP_UNPACK_RAW_2_flo; \
- _FP_UNPACK_RAW_2_flo.flt = (val); \
- \
- X##_f0 = _FP_UNPACK_RAW_2_flo.bits.frac0; \
- X##_f1 = _FP_UNPACK_RAW_2_flo.bits.frac1; \
- X##_e = _FP_UNPACK_RAW_2_flo.bits.exp; \
- X##_s = _FP_UNPACK_RAW_2_flo.bits.sign; \
- } \
- while (0)
- #define _FP_UNPACK_RAW_2_P(fs, X, val) \
- do \
- { \
- union _FP_UNION_##fs *_FP_UNPACK_RAW_2_P_flo \
- = (union _FP_UNION_##fs *) (val); \
- \
- X##_f0 = _FP_UNPACK_RAW_2_P_flo->bits.frac0; \
- X##_f1 = _FP_UNPACK_RAW_2_P_flo->bits.frac1; \
- X##_e = _FP_UNPACK_RAW_2_P_flo->bits.exp; \
- X##_s = _FP_UNPACK_RAW_2_P_flo->bits.sign; \
- } \
- while (0)
- /* Repack the raw bits of a native fp value. */
- #define _FP_PACK_RAW_2(fs, val, X) \
- do \
- { \
- union _FP_UNION_##fs _FP_PACK_RAW_2_flo; \
- \
- _FP_PACK_RAW_2_flo.bits.frac0 = X##_f0; \
- _FP_PACK_RAW_2_flo.bits.frac1 = X##_f1; \
- _FP_PACK_RAW_2_flo.bits.exp = X##_e; \
- _FP_PACK_RAW_2_flo.bits.sign = X##_s; \
- \
- (val) = _FP_PACK_RAW_2_flo.flt; \
- } \
- while (0)
- #define _FP_PACK_RAW_2_P(fs, val, X) \
- do \
- { \
- union _FP_UNION_##fs *_FP_PACK_RAW_2_P_flo \
- = (union _FP_UNION_##fs *) (val); \
- \
- _FP_PACK_RAW_2_P_flo->bits.frac0 = X##_f0; \
- _FP_PACK_RAW_2_P_flo->bits.frac1 = X##_f1; \
- _FP_PACK_RAW_2_P_flo->bits.exp = X##_e; \
- _FP_PACK_RAW_2_P_flo->bits.sign = X##_s; \
- } \
- while (0)
- /* Multiplication algorithms: */
- /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
- #define _FP_MUL_MEAT_DW_2_wide(wfracbits, R, X, Y, doit) \
- do \
- { \
- _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_b); \
- _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_c); \
- \
- doit (_FP_FRAC_WORD_4 (R, 1), _FP_FRAC_WORD_4 (R, 0), \
- X##_f0, Y##_f0); \
- doit (_FP_MUL_MEAT_DW_2_wide_b_f1, _FP_MUL_MEAT_DW_2_wide_b_f0, \
- X##_f0, Y##_f1); \
- doit (_FP_MUL_MEAT_DW_2_wide_c_f1, _FP_MUL_MEAT_DW_2_wide_c_f0, \
- X##_f1, Y##_f0); \
- doit (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- X##_f1, Y##_f1); \
- \
- __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_FRAC_WORD_4 (R, 1), 0, \
- _FP_MUL_MEAT_DW_2_wide_b_f1, \
- _FP_MUL_MEAT_DW_2_wide_b_f0, \
- _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_FRAC_WORD_4 (R, 1)); \
- __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_FRAC_WORD_4 (R, 1), 0, \
- _FP_MUL_MEAT_DW_2_wide_c_f1, \
- _FP_MUL_MEAT_DW_2_wide_c_f0, \
- _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_FRAC_WORD_4 (R, 1)); \
- } \
- while (0)
- #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit) \
- do \
- { \
- _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_z); \
- \
- _FP_MUL_MEAT_DW_2_wide ((wfracbits), _FP_MUL_MEAT_2_wide_z, \
- X, Y, doit); \
- \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_z, (wfracbits)-1, \
- 2*(wfracbits)); \
- R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 0); \
- R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 1); \
- } \
- while (0)
- /* Given a 1W * 1W => 2W primitive, do the extended multiplication.
- Do only 3 multiplications instead of four. This one is for machines
- where multiplication is much more expensive than subtraction. */
- #define _FP_MUL_MEAT_DW_2_wide_3mul(wfracbits, R, X, Y, doit) \
- do \
- { \
- _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_b); \
- _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_c); \
- _FP_W_TYPE _FP_MUL_MEAT_DW_2_wide_3mul_d; \
- int _FP_MUL_MEAT_DW_2_wide_3mul_c1; \
- int _FP_MUL_MEAT_DW_2_wide_3mul_c2; \
- \
- _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 = X##_f0 + X##_f1; \
- _FP_MUL_MEAT_DW_2_wide_3mul_c1 \
- = _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 < X##_f0; \
- _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 = Y##_f0 + Y##_f1; \
- _FP_MUL_MEAT_DW_2_wide_3mul_c2 \
- = _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 < Y##_f0; \
- doit (_FP_MUL_MEAT_DW_2_wide_3mul_d, _FP_FRAC_WORD_4 (R, 0), \
- X##_f0, Y##_f0); \
- doit (_FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1), \
- _FP_MUL_MEAT_DW_2_wide_3mul_b_f0, \
- _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \
- doit (_FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \
- _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, X##_f1, Y##_f1); \
- \
- _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 \
- &= -_FP_MUL_MEAT_DW_2_wide_3mul_c2; \
- _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 \
- &= -_FP_MUL_MEAT_DW_2_wide_3mul_c1; \
- __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_FRAC_WORD_4 (R, 1), \
- (_FP_MUL_MEAT_DW_2_wide_3mul_c1 \
- & _FP_MUL_MEAT_DW_2_wide_3mul_c2), 0, \
- _FP_MUL_MEAT_DW_2_wide_3mul_d, \
- 0, _FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1)); \
- __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_MUL_MEAT_DW_2_wide_3mul_b_f0); \
- __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \
- __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_FRAC_WORD_4 (R, 1), \
- 0, _FP_MUL_MEAT_DW_2_wide_3mul_d, \
- _FP_FRAC_WORD_4 (R, 0)); \
- __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_FRAC_WORD_4 (R, 1), 0, \
- _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \
- _FP_MUL_MEAT_DW_2_wide_3mul_c_f0); \
- __FP_FRAC_ADD_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
- _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \
- _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, \
- _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2)); \
- } \
- while (0)
- #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit) \
- do \
- { \
- _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_3mul_z); \
- \
- _FP_MUL_MEAT_DW_2_wide_3mul ((wfracbits), \
- _FP_MUL_MEAT_2_wide_3mul_z, \
- X, Y, doit); \
- \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_3mul_z, \
- (wfracbits)-1, 2*(wfracbits)); \
- R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 0); \
- R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 1); \
- } \
- while (0)
- #define _FP_MUL_MEAT_DW_2_gmp(wfracbits, R, X, Y) \
- do \
- { \
- _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_x[2]; \
- _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_y[2]; \
- _FP_MUL_MEAT_DW_2_gmp_x[0] = X##_f0; \
- _FP_MUL_MEAT_DW_2_gmp_x[1] = X##_f1; \
- _FP_MUL_MEAT_DW_2_gmp_y[0] = Y##_f0; \
- _FP_MUL_MEAT_DW_2_gmp_y[1] = Y##_f1; \
- \
- mpn_mul_n (R##_f, _FP_MUL_MEAT_DW_2_gmp_x, \
- _FP_MUL_MEAT_DW_2_gmp_y, 2); \
- } \
- while (0)
- #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \
- do \
- { \
- _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_gmp_z); \
- \
- _FP_MUL_MEAT_DW_2_gmp ((wfracbits), _FP_MUL_MEAT_2_gmp_z, X, Y); \
- \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_gmp_z, (wfracbits)-1, \
- 2*(wfracbits)); \
- R##_f0 = _FP_MUL_MEAT_2_gmp_z_f[0]; \
- R##_f1 = _FP_MUL_MEAT_2_gmp_z_f[1]; \
- } \
- while (0)
- /* Do at most 120x120=240 bits multiplication using double floating
- point multiplication. This is useful if floating point
- multiplication has much bigger throughput than integer multiply.
- It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits
- between 106 and 120 only.
- Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set.
- SETFETZ is a macro which will disable all FPU exceptions and set rounding
- towards zero, RESETFE should optionally reset it back. */
- #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \
- do \
- { \
- static const double _const[] = \
- { \
- /* 2^-24 */ 5.9604644775390625e-08, \
- /* 2^-48 */ 3.5527136788005009e-15, \
- /* 2^-72 */ 2.1175823681357508e-22, \
- /* 2^-96 */ 1.2621774483536189e-29, \
- /* 2^28 */ 2.68435456e+08, \
- /* 2^4 */ 1.600000e+01, \
- /* 2^-20 */ 9.5367431640625e-07, \
- /* 2^-44 */ 5.6843418860808015e-14, \
- /* 2^-68 */ 3.3881317890172014e-21, \
- /* 2^-92 */ 2.0194839173657902e-28, \
- /* 2^-116 */ 1.2037062152420224e-35 \
- }; \
- double _a240, _b240, _c240, _d240, _e240, _f240, \
- _g240, _h240, _i240, _j240, _k240; \
- union { double d; UDItype i; } _l240, _m240, _n240, _o240, \
- _p240, _q240, _r240, _s240; \
- UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \
- \
- _FP_STATIC_ASSERT ((wfracbits) >= 106 && (wfracbits) <= 120, \
- "wfracbits out of range"); \
- \
- setfetz; \
- \
- _e240 = (double) (long) (X##_f0 & 0xffffff); \
- _j240 = (double) (long) (Y##_f0 & 0xffffff); \
- _d240 = (double) (long) ((X##_f0 >> 24) & 0xffffff); \
- _i240 = (double) (long) ((Y##_f0 >> 24) & 0xffffff); \
- _c240 = (double) (long) (((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \
- _h240 = (double) (long) (((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \
- _b240 = (double) (long) ((X##_f1 >> 8) & 0xffffff); \
- _g240 = (double) (long) ((Y##_f1 >> 8) & 0xffffff); \
- _a240 = (double) (long) (X##_f1 >> 32); \
- _f240 = (double) (long) (Y##_f1 >> 32); \
- _e240 *= _const[3]; \
- _j240 *= _const[3]; \
- _d240 *= _const[2]; \
- _i240 *= _const[2]; \
- _c240 *= _const[1]; \
- _h240 *= _const[1]; \
- _b240 *= _const[0]; \
- _g240 *= _const[0]; \
- _s240.d = _e240*_j240; \
- _r240.d = _d240*_j240 + _e240*_i240; \
- _q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240; \
- _p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240; \
- _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240; \
- _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \
- _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \
- _l240.d = _a240*_g240 + _b240*_f240; \
- _k240 = _a240*_f240; \
- _r240.d += _s240.d; \
- _q240.d += _r240.d; \
- _p240.d += _q240.d; \
- _o240.d += _p240.d; \
- _n240.d += _o240.d; \
- _m240.d += _n240.d; \
- _l240.d += _m240.d; \
- _k240 += _l240.d; \
- _s240.d -= ((_const[10]+_s240.d)-_const[10]); \
- _r240.d -= ((_const[9]+_r240.d)-_const[9]); \
- _q240.d -= ((_const[8]+_q240.d)-_const[8]); \
- _p240.d -= ((_const[7]+_p240.d)-_const[7]); \
- _o240.d += _const[7]; \
- _n240.d += _const[6]; \
- _m240.d += _const[5]; \
- _l240.d += _const[4]; \
- if (_s240.d != 0.0) \
- _y240 = 1; \
- if (_r240.d != 0.0) \
- _y240 = 1; \
- if (_q240.d != 0.0) \
- _y240 = 1; \
- if (_p240.d != 0.0) \
- _y240 = 1; \
- _t240 = (DItype) _k240; \
- _u240 = _l240.i; \
- _v240 = _m240.i; \
- _w240 = _n240.i; \
- _x240 = _o240.i; \
- R##_f1 = ((_t240 << (128 - (wfracbits - 1))) \
- | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104))); \
- R##_f0 = (((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \
- | ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \
- | ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \
- | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \
- | _y240); \
- resetfe; \
- } \
- while (0)
- /* Division algorithms: */
- #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \
- do \
- { \
- _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f2; \
- _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f1; \
- _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f0; \
- _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f1; \
- _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f0; \
- _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f1; \
- _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f0; \
- if (_FP_FRAC_GE_2 (X, Y)) \
- { \
- _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1 >> 1; \
- _FP_DIV_MEAT_2_udiv_n_f1 \
- = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \
- _FP_DIV_MEAT_2_udiv_n_f0 \
- = X##_f0 << (_FP_W_TYPE_SIZE - 1); \
- } \
- else \
- { \
- R##_e--; \
- _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1; \
- _FP_DIV_MEAT_2_udiv_n_f1 = X##_f0; \
- _FP_DIV_MEAT_2_udiv_n_f0 = 0; \
- } \
- \
- /* Normalize, i.e. make the most significant bit of the \
- denominator set. */ \
- _FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs); \
- \
- udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1, \
- _FP_DIV_MEAT_2_udiv_n_f2, _FP_DIV_MEAT_2_udiv_n_f1, \
- Y##_f1); \
- umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, _FP_DIV_MEAT_2_udiv_m_f0, \
- R##_f1, Y##_f0); \
- _FP_DIV_MEAT_2_udiv_r_f0 = _FP_DIV_MEAT_2_udiv_n_f0; \
- if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, _FP_DIV_MEAT_2_udiv_r)) \
- { \
- R##_f1--; \
- _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \
- _FP_DIV_MEAT_2_udiv_r); \
- if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \
- && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \
- _FP_DIV_MEAT_2_udiv_r)) \
- { \
- R##_f1--; \
- _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \
- _FP_DIV_MEAT_2_udiv_r); \
- } \
- } \
- _FP_FRAC_DEC_2 (_FP_DIV_MEAT_2_udiv_r, _FP_DIV_MEAT_2_udiv_m); \
- \
- if (_FP_DIV_MEAT_2_udiv_r_f1 == Y##_f1) \
- { \
- /* This is a special case, not an optimization \
- (_FP_DIV_MEAT_2_udiv_r/Y##_f1 would not fit into UWtype). \
- As _FP_DIV_MEAT_2_udiv_r is guaranteed to be < Y, \
- R##_f0 can be either (UWtype)-1 or (UWtype)-2. But as we \
- know what kind of bits it is (sticky, guard, round), \
- we don't care. We also don't care what the reminder is, \
- because the guard bit will be set anyway. -jj */ \
- R##_f0 = -1; \
- } \
- else \
- { \
- udiv_qrnnd (R##_f0, _FP_DIV_MEAT_2_udiv_r_f1, \
- _FP_DIV_MEAT_2_udiv_r_f1, \
- _FP_DIV_MEAT_2_udiv_r_f0, Y##_f1); \
- umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, \
- _FP_DIV_MEAT_2_udiv_m_f0, R##_f0, Y##_f0); \
- _FP_DIV_MEAT_2_udiv_r_f0 = 0; \
- if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \
- _FP_DIV_MEAT_2_udiv_r)) \
- { \
- R##_f0--; \
- _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \
- _FP_DIV_MEAT_2_udiv_r); \
- if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \
- && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \
- _FP_DIV_MEAT_2_udiv_r)) \
- { \
- R##_f0--; \
- _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \
- _FP_DIV_MEAT_2_udiv_r); \
- } \
- } \
- if (!_FP_FRAC_EQ_2 (_FP_DIV_MEAT_2_udiv_r, \
- _FP_DIV_MEAT_2_udiv_m)) \
- R##_f0 |= _FP_WORK_STICKY; \
- } \
- } \
- while (0)
- /* Square root algorithms:
- We have just one right now, maybe Newton approximation
- should be added for those machines where division is fast. */
- #define _FP_SQRT_MEAT_2(R, S, T, X, q) \
- do \
- { \
- while (q) \
- { \
- T##_f1 = S##_f1 + (q); \
- if (T##_f1 <= X##_f1) \
- { \
- S##_f1 = T##_f1 + (q); \
- X##_f1 -= T##_f1; \
- R##_f1 += (q); \
- } \
- _FP_FRAC_SLL_2 (X, 1); \
- (q) >>= 1; \
- } \
- (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
- while ((q) != _FP_WORK_ROUND) \
- { \
- T##_f0 = S##_f0 + (q); \
- T##_f1 = S##_f1; \
- if (T##_f1 < X##_f1 \
- || (T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \
- { \
- S##_f0 = T##_f0 + (q); \
- S##_f1 += (T##_f0 > S##_f0); \
- _FP_FRAC_DEC_2 (X, T); \
- R##_f0 += (q); \
- } \
- _FP_FRAC_SLL_2 (X, 1); \
- (q) >>= 1; \
- } \
- if (X##_f0 | X##_f1) \
- { \
- if (S##_f1 < X##_f1 \
- || (S##_f1 == X##_f1 && S##_f0 < X##_f0)) \
- R##_f0 |= _FP_WORK_ROUND; \
- R##_f0 |= _FP_WORK_STICKY; \
- } \
- } \
- while (0)
- /* Assembly/disassembly for converting to/from integral types.
- No shifting or overflow handled here. */
- #define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \
- (void) (((rsize) <= _FP_W_TYPE_SIZE) \
- ? ({ (r) = X##_f0; }) \
- : ({ \
- (r) = X##_f1; \
- (r) <<= _FP_W_TYPE_SIZE; \
- (r) += X##_f0; \
- }))
- #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \
- do \
- { \
- X##_f0 = (r); \
- X##_f1 = ((rsize) <= _FP_W_TYPE_SIZE \
- ? 0 \
- : (r) >> _FP_W_TYPE_SIZE); \
- } \
- while (0)
- /* Convert FP values between word sizes. */
- #define _FP_FRAC_COPY_1_2(D, S) (D##_f = S##_f0)
- #define _FP_FRAC_COPY_2_1(D, S) ((D##_f0 = S##_f), (D##_f1 = 0))
- #define _FP_FRAC_COPY_2_2(D, S) _FP_FRAC_COPY_2 (D, S)
- #endif /* !SOFT_FP_OP_2_H */
|