e_jn.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. /* @(#)e_jn.c 5.1 93/09/24 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #if defined(LIBM_SCCS) && !defined(lint)
  13. static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
  14. #endif
  15. /*
  16. * __ieee754_jn(n, x), __ieee754_yn(n, x)
  17. * floating point Bessel's function of the 1st and 2nd kind
  18. * of order n
  19. *
  20. * Special cases:
  21. * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
  22. * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
  23. * Note 2. About jn(n,x), yn(n,x)
  24. * For n=0, j0(x) is called,
  25. * for n=1, j1(x) is called,
  26. * for n<x, forward recursion us used starting
  27. * from values of j0(x) and j1(x).
  28. * for n>x, a continued fraction approximation to
  29. * j(n,x)/j(n-1,x) is evaluated and then backward
  30. * recursion is used starting from a supposed value
  31. * for j(n,x). The resulting value of j(0,x) is
  32. * compared with the actual value to correct the
  33. * supposed value of j(n,x).
  34. *
  35. * yn(n,x) is similar in all respects, except
  36. * that forward recursion is used for all
  37. * values of n>1.
  38. *
  39. */
  40. #include "math.h"
  41. #include "math_private.h"
  42. libm_hidden_proto(sin)
  43. libm_hidden_proto(cos)
  44. libm_hidden_proto(sqrt)
  45. libm_hidden_proto(fabs)
  46. #ifdef __STDC__
  47. static const double
  48. #else
  49. static double
  50. #endif
  51. invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
  52. two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
  53. one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
  54. #ifdef __STDC__
  55. static const double zero = 0.00000000000000000000e+00;
  56. #else
  57. static double zero = 0.00000000000000000000e+00;
  58. #endif
  59. #ifdef __STDC__
  60. double attribute_hidden __ieee754_jn(int n, double x)
  61. #else
  62. double attribute_hidden __ieee754_jn(n,x)
  63. int n; double x;
  64. #endif
  65. {
  66. int32_t i,hx,ix,lx, sgn;
  67. double a, b, temp=0, di;
  68. double z, w;
  69. /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
  70. * Thus, J(-n,x) = J(n,-x)
  71. */
  72. EXTRACT_WORDS(hx,lx,x);
  73. ix = 0x7fffffff&hx;
  74. /* if J(n,NaN) is NaN */
  75. if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
  76. if(n<0){
  77. n = -n;
  78. x = -x;
  79. hx ^= 0x80000000;
  80. }
  81. if(n==0) return(__ieee754_j0(x));
  82. if(n==1) return(__ieee754_j1(x));
  83. sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
  84. x = fabs(x);
  85. if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
  86. b = zero;
  87. else if((double)n<=x) {
  88. /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
  89. if(ix>=0x52D00000) { /* x > 2**302 */
  90. /* (x >> n**2)
  91. * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
  92. * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
  93. * Let s=sin(x), c=cos(x),
  94. * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
  95. *
  96. * n sin(xn)*sqt2 cos(xn)*sqt2
  97. * ----------------------------------
  98. * 0 s-c c+s
  99. * 1 -s-c -c+s
  100. * 2 -s+c -c-s
  101. * 3 s+c c-s
  102. */
  103. switch(n&3) {
  104. case 0: temp = cos(x)+sin(x); break;
  105. case 1: temp = -cos(x)+sin(x); break;
  106. case 2: temp = -cos(x)-sin(x); break;
  107. case 3: temp = cos(x)-sin(x); break;
  108. }
  109. b = invsqrtpi*temp/sqrt(x);
  110. } else {
  111. a = __ieee754_j0(x);
  112. b = __ieee754_j1(x);
  113. for(i=1;i<n;i++){
  114. temp = b;
  115. b = b*((double)(i+i)/x) - a; /* avoid underflow */
  116. a = temp;
  117. }
  118. }
  119. } else {
  120. if(ix<0x3e100000) { /* x < 2**-29 */
  121. /* x is tiny, return the first Taylor expansion of J(n,x)
  122. * J(n,x) = 1/n!*(x/2)^n - ...
  123. */
  124. if(n>33) /* underflow */
  125. b = zero;
  126. else {
  127. temp = x*0.5; b = temp;
  128. for (a=one,i=2;i<=n;i++) {
  129. a *= (double)i; /* a = n! */
  130. b *= temp; /* b = (x/2)^n */
  131. }
  132. b = b/a;
  133. }
  134. } else {
  135. /* use backward recurrence */
  136. /* x x^2 x^2
  137. * J(n,x)/J(n-1,x) = ---- ------ ------ .....
  138. * 2n - 2(n+1) - 2(n+2)
  139. *
  140. * 1 1 1
  141. * (for large x) = ---- ------ ------ .....
  142. * 2n 2(n+1) 2(n+2)
  143. * -- - ------ - ------ -
  144. * x x x
  145. *
  146. * Let w = 2n/x and h=2/x, then the above quotient
  147. * is equal to the continued fraction:
  148. * 1
  149. * = -----------------------
  150. * 1
  151. * w - -----------------
  152. * 1
  153. * w+h - ---------
  154. * w+2h - ...
  155. *
  156. * To determine how many terms needed, let
  157. * Q(0) = w, Q(1) = w(w+h) - 1,
  158. * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
  159. * When Q(k) > 1e4 good for single
  160. * When Q(k) > 1e9 good for double
  161. * When Q(k) > 1e17 good for quadruple
  162. */
  163. /* determine k */
  164. double t,v;
  165. double q0,q1,h,tmp; int32_t k,m;
  166. w = (n+n)/(double)x; h = 2.0/(double)x;
  167. q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
  168. while(q1<1.0e9) {
  169. k += 1; z += h;
  170. tmp = z*q1 - q0;
  171. q0 = q1;
  172. q1 = tmp;
  173. }
  174. m = n+n;
  175. for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
  176. a = t;
  177. b = one;
  178. /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
  179. * Hence, if n*(log(2n/x)) > ...
  180. * single 8.8722839355e+01
  181. * double 7.09782712893383973096e+02
  182. * long double 1.1356523406294143949491931077970765006170e+04
  183. * then recurrent value may overflow and the result is
  184. * likely underflow to zero
  185. */
  186. tmp = n;
  187. v = two/x;
  188. tmp = tmp*__ieee754_log(fabs(v*tmp));
  189. if(tmp<7.09782712893383973096e+02) {
  190. for(i=n-1,di=(double)(i+i);i>0;i--){
  191. temp = b;
  192. b *= di;
  193. b = b/x - a;
  194. a = temp;
  195. di -= two;
  196. }
  197. } else {
  198. for(i=n-1,di=(double)(i+i);i>0;i--){
  199. temp = b;
  200. b *= di;
  201. b = b/x - a;
  202. a = temp;
  203. di -= two;
  204. /* scale b to avoid spurious overflow */
  205. if(b>1e100) {
  206. a /= b;
  207. t /= b;
  208. b = one;
  209. }
  210. }
  211. }
  212. b = (t*__ieee754_j0(x)/b);
  213. }
  214. }
  215. if(sgn==1) return -b; else return b;
  216. }
  217. #ifdef __STDC__
  218. double attribute_hidden __ieee754_yn(int n, double x)
  219. #else
  220. double attribute_hidden __ieee754_yn(n,x)
  221. int n; double x;
  222. #endif
  223. {
  224. int32_t i,hx,ix,lx;
  225. int32_t sign;
  226. double a, b, temp=0;
  227. EXTRACT_WORDS(hx,lx,x);
  228. ix = 0x7fffffff&hx;
  229. /* if Y(n,NaN) is NaN */
  230. if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
  231. if((ix|lx)==0) return -one/zero;
  232. if(hx<0) return zero/zero;
  233. sign = 1;
  234. if(n<0){
  235. n = -n;
  236. sign = 1 - ((n&1)<<1);
  237. }
  238. if(n==0) return(__ieee754_y0(x));
  239. if(n==1) return(sign*__ieee754_y1(x));
  240. if(ix==0x7ff00000) return zero;
  241. if(ix>=0x52D00000) { /* x > 2**302 */
  242. /* (x >> n**2)
  243. * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
  244. * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
  245. * Let s=sin(x), c=cos(x),
  246. * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
  247. *
  248. * n sin(xn)*sqt2 cos(xn)*sqt2
  249. * ----------------------------------
  250. * 0 s-c c+s
  251. * 1 -s-c -c+s
  252. * 2 -s+c -c-s
  253. * 3 s+c c-s
  254. */
  255. switch(n&3) {
  256. case 0: temp = sin(x)-cos(x); break;
  257. case 1: temp = -sin(x)-cos(x); break;
  258. case 2: temp = -sin(x)+cos(x); break;
  259. case 3: temp = sin(x)+cos(x); break;
  260. }
  261. b = invsqrtpi*temp/sqrt(x);
  262. } else {
  263. u_int32_t high;
  264. a = __ieee754_y0(x);
  265. b = __ieee754_y1(x);
  266. /* quit if b is -inf */
  267. GET_HIGH_WORD(high,b);
  268. for(i=1;i<n&&high!=0xfff00000;i++){
  269. temp = b;
  270. b = ((double)(i+i)/x)*b - a;
  271. GET_HIGH_WORD(high,b);
  272. a = temp;
  273. }
  274. }
  275. if(sign>0) return b; else return -b;
  276. }