123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- /* @(#)s_erf.c 5.1 93/09/24 */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- #if defined(LIBM_SCCS) && !defined(lint)
- static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
- #endif
- /* double erf(double x)
- * double erfc(double x)
- * x
- * 2 |\
- * erf(x) = --------- | exp(-t*t)dt
- * sqrt(pi) \|
- * 0
- *
- * erfc(x) = 1-erf(x)
- * Note that
- * erf(-x) = -erf(x)
- * erfc(-x) = 2 - erfc(x)
- *
- * Method:
- * 1. For |x| in [0, 0.84375]
- * erf(x) = x + x*R(x^2)
- * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
- * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
- * where R = P/Q where P is an odd poly of degree 8 and
- * Q is an odd poly of degree 10.
- * -57.90
- * | R - (erf(x)-x)/x | <= 2
- *
- *
- * Remark. The formula is derived by noting
- * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
- * and that
- * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
- * is close to one. The interval is chosen because the fix
- * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
- * near 0.6174), and by some experiment, 0.84375 is chosen to
- * guarantee the error is less than one ulp for erf.
- *
- * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
- * c = 0.84506291151 rounded to single (24 bits)
- * erf(x) = sign(x) * (c + P1(s)/Q1(s))
- * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
- * 1+(c+P1(s)/Q1(s)) if x < 0
- * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
- * Remark: here we use the taylor series expansion at x=1.
- * erf(1+s) = erf(1) + s*Poly(s)
- * = 0.845.. + P1(s)/Q1(s)
- * That is, we use rational approximation to approximate
- * erf(1+s) - (c = (single)0.84506291151)
- * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
- * where
- * P1(s) = degree 6 poly in s
- * Q1(s) = degree 6 poly in s
- *
- * 3. For x in [1.25,1/0.35(~2.857143)],
- * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
- * erf(x) = 1 - erfc(x)
- * where
- * R1(z) = degree 7 poly in z, (z=1/x^2)
- * S1(z) = degree 8 poly in z
- *
- * 4. For x in [1/0.35,28]
- * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
- * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
- * = 2.0 - tiny (if x <= -6)
- * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
- * erf(x) = sign(x)*(1.0 - tiny)
- * where
- * R2(z) = degree 6 poly in z, (z=1/x^2)
- * S2(z) = degree 7 poly in z
- *
- * Note1:
- * To compute exp(-x*x-0.5625+R/S), let s be a single
- * precision number and s := x; then
- * -x*x = -s*s + (s-x)*(s+x)
- * exp(-x*x-0.5626+R/S) =
- * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
- * Note2:
- * Here 4 and 5 make use of the asymptotic series
- * exp(-x*x)
- * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
- * x*sqrt(pi)
- * We use rational approximation to approximate
- * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
- * Here is the error bound for R1/S1 and R2/S2
- * |R1/S1 - f(x)| < 2**(-62.57)
- * |R2/S2 - f(x)| < 2**(-61.52)
- *
- * 5. For inf > x >= 28
- * erf(x) = sign(x) *(1 - tiny) (raise inexact)
- * erfc(x) = tiny*tiny (raise underflow) if x > 0
- * = 2 - tiny if x<0
- *
- * 7. Special case:
- * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
- * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
- * erfc/erf(NaN) is NaN
- */
- #include "math.h"
- #include "math_private.h"
- libm_hidden_proto(fabs)
- #ifdef __STDC__
- static const double
- #else
- static double
- #endif
- tiny = 1e-300,
- half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
- one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
- two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
- /* c = (float)0.84506291151 */
- erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
- /*
- * Coefficients for approximation to erf on [0,0.84375]
- */
- efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
- efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
- pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
- pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
- pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
- pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
- pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
- qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
- qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
- qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
- qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
- qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
- /*
- * Coefficients for approximation to erf in [0.84375,1.25]
- */
- pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
- pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
- pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
- pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
- pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
- pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
- pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
- qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
- qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
- qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
- qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
- qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
- qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
- /*
- * Coefficients for approximation to erfc in [1.25,1/0.35]
- */
- ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
- ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
- ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
- ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
- ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
- ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
- ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
- ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
- sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
- sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
- sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
- sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
- sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
- sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
- sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
- sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
- /*
- * Coefficients for approximation to erfc in [1/.35,28]
- */
- rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
- rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
- rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
- rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
- rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
- rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
- rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
- sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
- sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
- sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
- sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
- sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
- sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
- sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
- libm_hidden_proto(erf)
- #ifdef __STDC__
- double erf(double x)
- #else
- double erf(x)
- double x;
- #endif
- {
- int32_t hx,ix,i;
- double R,S,P,Q,s,y,z,r;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x7ff00000) { /* erf(nan)=nan */
- i = ((u_int32_t)hx>>31)<<1;
- return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
- }
- if(ix < 0x3feb0000) { /* |x|<0.84375 */
- if(ix < 0x3e300000) { /* |x|<2**-28 */
- if (ix < 0x00800000)
- return 0.125*(8.0*x+efx8*x); /*avoid underflow */
- return x + efx*x;
- }
- z = x*x;
- r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
- s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
- y = r/s;
- return x + x*y;
- }
- if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
- s = fabs(x)-one;
- P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
- Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
- if(hx>=0) return erx + P/Q; else return -erx - P/Q;
- }
- if (ix >= 0x40180000) { /* inf>|x|>=6 */
- if(hx>=0) return one-tiny; else return tiny-one;
- }
- x = fabs(x);
- s = one/(x*x);
- if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
- R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
- ra5+s*(ra6+s*ra7))))));
- S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
- sa5+s*(sa6+s*(sa7+s*sa8)))))));
- } else { /* |x| >= 1/0.35 */
- R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
- rb5+s*rb6)))));
- S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
- sb5+s*(sb6+s*sb7))))));
- }
- z = x;
- SET_LOW_WORD(z,0);
- r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
- if(hx>=0) return one-r/x; else return r/x-one;
- }
- libm_hidden_def(erf)
- libm_hidden_proto(erfc)
- #ifdef __STDC__
- double erfc(double x)
- #else
- double erfc(x)
- double x;
- #endif
- {
- int32_t hx,ix;
- double R,S,P,Q,s,y,z,r;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x7ff00000) { /* erfc(nan)=nan */
- /* erfc(+-inf)=0,2 */
- return (double)(((u_int32_t)hx>>31)<<1)+one/x;
- }
- if(ix < 0x3feb0000) { /* |x|<0.84375 */
- if(ix < 0x3c700000) /* |x|<2**-56 */
- return one-x;
- z = x*x;
- r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
- s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
- y = r/s;
- if(hx < 0x3fd00000) { /* x<1/4 */
- return one-(x+x*y);
- } else {
- r = x*y;
- r += (x-half);
- return half - r ;
- }
- }
- if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
- s = fabs(x)-one;
- P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
- Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
- if(hx>=0) {
- z = one-erx; return z - P/Q;
- } else {
- z = erx+P/Q; return one+z;
- }
- }
- if (ix < 0x403c0000) { /* |x|<28 */
- x = fabs(x);
- s = one/(x*x);
- if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
- R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
- ra5+s*(ra6+s*ra7))))));
- S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
- sa5+s*(sa6+s*(sa7+s*sa8)))))));
- } else { /* |x| >= 1/.35 ~ 2.857143 */
- if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
- R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
- rb5+s*rb6)))));
- S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
- sb5+s*(sb6+s*sb7))))));
- }
- z = x;
- SET_LOW_WORD(z,0);
- r = __ieee754_exp(-z*z-0.5625)*
- __ieee754_exp((z-x)*(z+x)+R/S);
- if(hx>0) return r/x; else return two-r/x;
- } else {
- if(hx>0) return tiny*tiny; else return two-tiny;
- }
- }
- libm_hidden_def(erfc)
|