| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 | /* @(#)e_jn.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";#endif/* * __ieee754_jn(n, x), __ieee754_yn(n, x) * floating point Bessel's function of the 1st and 2nd kind * of order n *           * Special cases: *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. * Note 2. About jn(n,x), yn(n,x) *	For n=0, j0(x) is called, *	for n=1, j1(x) is called, *	for n<x, forward recursion us used starting *	from values of j0(x) and j1(x). *	for n>x, a continued fraction approximation to *	j(n,x)/j(n-1,x) is evaluated and then backward *	recursion is used starting from a supposed value *	for j(n,x). The resulting value of j(0,x) is *	compared with the actual value to correct the *	supposed value of j(n,x). * *	yn(n,x) is similar in all respects, except *	that forward recursion is used for all *	values of n>1. *	 */#include "math.h"#include "math_private.h"#ifdef __STDC__static const double#elsestatic double#endifinvsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */#ifdef __STDC__static const double zero  =  0.00000000000000000000e+00;#elsestatic double zero  =  0.00000000000000000000e+00;#endif#ifdef __STDC__	double __ieee754_jn(int n, double x)#else	double __ieee754_jn(n,x)	int n; double x;#endif{	int32_t i,hx,ix,lx, sgn;	double a, b, temp, di;	double z, w;    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)     * Thus, J(-n,x) = J(n,-x)     */	EXTRACT_WORDS(hx,lx,x);	ix = 0x7fffffff&hx;    /* if J(n,NaN) is NaN */	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;	if(n<0){				n = -n;		x = -x;		hx ^= 0x80000000;	}	if(n==0) return(__ieee754_j0(x));	if(n==1) return(__ieee754_j1(x));	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */	x = fabs(x);	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */	    b = zero;	else if((double)n<=x) {   		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */	    if(ix>=0x52D00000) { /* x > 2**302 */    /* (x >> n**2)      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *	    Let s=sin(x), c=cos(x),      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then     *     *		   n	sin(xn)*sqt2	cos(xn)*sqt2     *		----------------------------------     *		   0	 s-c		 c+s     *		   1	-s-c 		-c+s     *		   2	-s+c		-c-s     *		   3	 s+c		 c-s     */		switch(n&3) {		    case 0: temp =  cos(x)+sin(x); break;		    case 1: temp = -cos(x)+sin(x); break;		    case 2: temp = -cos(x)-sin(x); break;		    case 3: temp =  cos(x)-sin(x); break;		}		b = invsqrtpi*temp/sqrt(x);	    } else {		        a = __ieee754_j0(x);	        b = __ieee754_j1(x);	        for(i=1;i<n;i++){		    temp = b;		    b = b*((double)(i+i)/x) - a; /* avoid underflow */		    a = temp;	        }	    }	} else {	    if(ix<0x3e100000) {	/* x < 2**-29 */    /* x is tiny, return the first Taylor expansion of J(n,x)      * J(n,x) = 1/n!*(x/2)^n  - ...     */		if(n>33)	/* underflow */		    b = zero;		else {		    temp = x*0.5; b = temp;		    for (a=one,i=2;i<=n;i++) {			a *= (double)i;		/* a = n! */			b *= temp;		/* b = (x/2)^n */		    }		    b = b/a;		}	    } else {		/* use backward recurrence */		/* 			x      x^2      x^2       		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....		 *			2n  - 2(n+1) - 2(n+2)		 *		 * 			1      1        1       		 *  (for large x)   =  ----  ------   ------   .....		 *			2n   2(n+1)   2(n+2)		 *			-- - ------ - ------ - 		 *			 x     x         x		 *		 * Let w = 2n/x and h=2/x, then the above quotient		 * is equal to the continued fraction:		 *		    1		 *	= -----------------------		 *		       1		 *	   w - -----------------		 *			  1		 * 	        w+h - ---------		 *		       w+2h - ...		 *		 * To determine how many terms needed, let		 * Q(0) = w, Q(1) = w(w+h) - 1,		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),		 * When Q(k) > 1e4	good for single 		 * When Q(k) > 1e9	good for double 		 * When Q(k) > 1e17	good for quadruple 		 */	    /* determine k */		double t,v;		double q0,q1,h,tmp; int32_t k,m;		w  = (n+n)/(double)x; h = 2.0/(double)x;		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;		while(q1<1.0e9) {			k += 1; z += h;			tmp = z*q1 - q0;			q0 = q1;			q1 = tmp;		}		m = n+n;		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);		a = t;		b = one;		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)		 *  Hence, if n*(log(2n/x)) > ...		 *  single 8.8722839355e+01		 *  double 7.09782712893383973096e+02		 *  long double 1.1356523406294143949491931077970765006170e+04		 *  then recurrent value may overflow and the result is 		 *  likely underflow to zero		 */		tmp = n;		v = two/x;		tmp = tmp*__ieee754_log(fabs(v*tmp));		if(tmp<7.09782712893383973096e+02) {	    	    for(i=n-1,di=(double)(i+i);i>0;i--){		        temp = b;			b *= di;			b  = b/x - a;		        a = temp;			di -= two;	     	    }		} else {	    	    for(i=n-1,di=(double)(i+i);i>0;i--){		        temp = b;			b *= di;			b  = b/x - a;		        a = temp;			di -= two;		    /* scale b to avoid spurious overflow */			if(b>1e100) {			    a /= b;			    t /= b;			    b  = one;			}	     	    }		}	    	b = (t*__ieee754_j0(x)/b);	    }	}	if(sgn==1) return -b; else return b;}#ifdef __STDC__	double __ieee754_yn(int n, double x) #else	double __ieee754_yn(n,x) 	int n; double x;#endif{	int32_t i,hx,ix,lx;	int32_t sign;	double a, b, temp;	EXTRACT_WORDS(hx,lx,x);	ix = 0x7fffffff&hx;    /* if Y(n,NaN) is NaN */	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;	if((ix|lx)==0) return -one/zero;	if(hx<0) return zero/zero;	sign = 1;	if(n<0){		n = -n;		sign = 1 - ((n&1)<<1);	}	if(n==0) return(__ieee754_y0(x));	if(n==1) return(sign*__ieee754_y1(x));	if(ix==0x7ff00000) return zero;	if(ix>=0x52D00000) { /* x > 2**302 */    /* (x >> n**2)      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *	    Let s=sin(x), c=cos(x),      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then     *     *		   n	sin(xn)*sqt2	cos(xn)*sqt2     *		----------------------------------     *		   0	 s-c		 c+s     *		   1	-s-c 		-c+s     *		   2	-s+c		-c-s     *		   3	 s+c		 c-s     */		switch(n&3) {		    case 0: temp =  sin(x)-cos(x); break;		    case 1: temp = -sin(x)-cos(x); break;		    case 2: temp = -sin(x)+cos(x); break;		    case 3: temp =  sin(x)+cos(x); break;		}		b = invsqrtpi*temp/sqrt(x);	} else {	    u_int32_t high;	    a = __ieee754_y0(x);	    b = __ieee754_y1(x);	/* quit if b is -inf */	    GET_HIGH_WORD(high,b);	    for(i=1;i<n&&high!=0xfff00000;i++){ 		temp = b;		b = ((double)(i+i)/x)*b - a;		GET_HIGH_WORD(high,b);		a = temp;	    }	}	if(sign>0) return b; else return -b;}
 |