| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 | 
/*							btdtrl.c * *	Beta distribution * * * * SYNOPSIS: * * long double a, b, x, y, btdtrl(); * * y = btdtrl( a, b, x ); * * * * DESCRIPTION: * * Returns the area from zero to x under the beta density * function: * * *                          x *            -             - *           | (a+b)       | |  a-1      b-1 * P(x)  =  ----------     |   t    (1-t)    dt *           -     -     | | *          | (a) | (b)   - *                         0 * * * The mean value of this distribution is a/(a+b).  The variance * is ab/[(a+b)^2 (a+b+1)]. * * This function is identical to the incomplete beta integral * function, incbetl(a, b, x). * * The complemented function is * * 1 - P(1-x)  =  incbetl( b, a, x ); * * * ACCURACY: * * See incbetl.c. * *//*								btdtrl() *//*Cephes Math Library Release 2.0:  April, 1987Copyright 1984, 1995 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>#ifdef ANSIPROTextern long double incbetl ( long double, long double, long double );#elselong double incbetl();#endiflong double btdtrl( a, b, x )long double a, b, x;{return( incbetl( a, b, x ) );}
 |