| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 | /*							cbrtl.c * *	Cube root, long double precision * * * * SYNOPSIS: * * long double x, y, cbrtl(); * * y = cbrtl( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument.  A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%.  Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     .125,8        80000      7.0e-20     2.2e-20 *    IEEE    exp(+-707)    100000      7.0e-20     2.4e-20 * *//*Cephes Math Library Release 2.2: January, 1991Copyright 1984, 1991 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>static long double CBRT2  = 1.2599210498948731647672L;static long double CBRT4  = 1.5874010519681994747517L;static long double CBRT2I = 0.79370052598409973737585L;static long double CBRT4I = 0.62996052494743658238361L;#ifdef ANSIPROTextern long double frexpl ( long double, int * );extern long double ldexpl ( long double, int );extern int isnanl ( long double );#elselong double frexpl(), ldexpl();extern int isnanl();#endif#ifdef INFINITIESextern long double INFINITYL;#endiflong double cbrtl(x)long double x;{int e, rem, sign;long double z;#ifdef NANSif(isnanl(x))	return(x);#endif#ifdef INFINITIESif( x == INFINITYL)	return(x);if( x == -INFINITYL)	return(x);#endifif( x == 0 )	return( x );if( x > 0 )	sign = 1;else	{	sign = -1;	x = -x;	}z = x;/* extract power of 2, leaving * mantissa between 0.5 and 1 */x = frexpl( x, &e );/* Approximate cube root of number between .5 and 1, * peak relative error = 1.2e-6 */x = (((( 1.3584464340920900529734e-1L * x       - 6.3986917220457538402318e-1L) * x       + 1.2875551670318751538055e0L) * x       - 1.4897083391357284957891e0L) * x       + 1.3304961236013647092521e0L) * x       + 3.7568280825958912391243e-1L;/* exponent divided by 3 */if( e >= 0 )	{	rem = e;	e /= 3;	rem -= 3*e;	if( rem == 1 )		x *= CBRT2;	else if( rem == 2 )		x *= CBRT4;	}else	{ /* argument less than 1 */	e = -e;	rem = e;	e /= 3;	rem -= 3*e;	if( rem == 1 )		x *= CBRT2I;	else if( rem == 2 )		x *= CBRT4I;	e = -e;	}/* multiply by power of 2 */x = ldexpl( x, e );/* Newton iteration */x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;if( sign < 0 )	x = -x;return(x);}
 |