| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 | /*							expl.c * *	Exponential function, long double precision * * * * SYNOPSIS: * * long double x, y, expl(); * * y = expl( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * *     x    k  f *    e  = 2  e. * * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      +-10000     50000       1.12e-19    2.81e-20 * * * Error amplification in the exponential function can be * a serious matter.  The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a long double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * *   message         condition      value returned * exp underflow    x < MINLOG         0.0 * exp overflow     x > MAXLOG         MAXNUM * *//*Cephes Math Library Release 2.7:  May, 1998Copyright 1984, 1990, 1998 by Stephen L. Moshier*//*	Exponential function	*/#include <math.h>#ifdef UNKstatic long double P[3] = { 1.2617719307481059087798E-4L, 3.0299440770744196129956E-2L, 9.9999999999999999991025E-1L,};static long double Q[4] = { 3.0019850513866445504159E-6L, 2.5244834034968410419224E-3L, 2.2726554820815502876593E-1L, 2.0000000000000000000897E0L,};static long double C1 = 6.9314575195312500000000E-1L;static long double C2 = 1.4286068203094172321215E-6L;#endif#ifdef DECnot supported in long double precision#endif#ifdef IBMPCstatic short P[] = {0x424e,0x225f,0x6eaf,0x844e,0x3ff2, XPD0xf39e,0x5163,0x8866,0xf836,0x3ff9, XPD0xfffe,0xffff,0xffff,0xffff,0x3ffe, XPD};static short Q[] = {0xff1e,0xb2fc,0xb5e1,0xc975,0x3fec, XPD0xff3e,0x45b5,0xcda8,0xa571,0x3ff6, XPD0x9ee1,0x3f03,0x4cc4,0xe8b8,0x3ffc, XPD0x0000,0x0000,0x0000,0x8000,0x4000, XPD};static short sc1[] = {0x0000,0x0000,0x0000,0xb172,0x3ffe, XPD};#define C1 (*(long double *)sc1)static short sc2[] = {0x4f1e,0xcd5e,0x8e7b,0xbfbe,0x3feb, XPD};#define C2 (*(long double *)sc2)#endif#ifdef MIEEEstatic long P[9] = {0x3ff20000,0x844e6eaf,0x225f424e,0x3ff90000,0xf8368866,0x5163f39e,0x3ffe0000,0xffffffff,0xfffffffe,};static long Q[12] = {0x3fec0000,0xc975b5e1,0xb2fcff1e,0x3ff60000,0xa571cda8,0x45b5ff3e,0x3ffc0000,0xe8b84cc4,0x3f039ee1,0x40000000,0x80000000,0x00000000,};static long sc1[] = {0x3ffe0000,0xb1720000,0x00000000};#define C1 (*(long double *)sc1)static long sc2[] = {0x3feb0000,0xbfbe8e7b,0xcd5e4f1e};#define C2 (*(long double *)sc2)#endifextern long double LOG2EL, MAXLOGL, MINLOGL, MAXNUML;#ifdef ANSIPROTextern long double polevll ( long double, void *, int );extern long double floorl ( long double );extern long double ldexpl ( long double, int );extern int isnanl ( long double );#elselong double polevll(), floorl(), ldexpl(), isnanl();#endif#ifdef INFINITIESextern long double INFINITYL;#endiflong double expl(x)long double x;{long double px, xx;int n;#ifdef NANSif( isnanl(x) )	return(x);#endifif( x > MAXLOGL)	{#ifdef INFINITIES	return( INFINITYL );#else	mtherr( "expl", OVERFLOW );	return( MAXNUML );#endif	}if( x < MINLOGL )	{#ifndef INFINITIES	mtherr( "expl", UNDERFLOW );#endif	return(0.0L);	}/* Express e**x = e**g 2**n *   = e**g e**( n loge(2) ) *   = e**( g + n loge(2) ) */px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */n = px;x -= px * C1;x -= px * C2;/* rational approximation for exponential * of the fractional part: * e**x =  1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) */xx = x * x;px = x * polevll( xx, P, 2 );x =  px/( polevll( xx, Q, 3 ) - px );x = 1.0L + ldexpl( x, 1 );x = ldexpl( x, n );return(x);}
 |