| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 | /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* __ieee754_j0(x), __ieee754_y0(x) * Bessel function of the first and second kinds of order zero. * Method -- j0(x): *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... *	2. Reduce x to |x| since j0(x)=j0(-x),  and *	   for x in (0,2) *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x; *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) *	   for x in (2,inf) * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) *	   as follow: *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) *			= 1/sqrt(2) * (cos(x) + sin(x)) *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) *			= 1/sqrt(2) * (sin(x) - cos(x)) * 	   (To avoid cancellation, use *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) * 	    to compute the worse one.) * *	3 Special cases *		j0(nan)= nan *		j0(0) = 1 *		j0(inf) = 0 * * Method -- y0(x): *	1. For x<2. *	   Since *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. *	   We use the following function to approximate y0, *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 *	   where *		U(z) = u00 + u01*z + ... + u06*z^6 *		V(z) = 1  + v01*z + ... + v04*z^4 *	   with absolute approximation error bounded by 2**-72. *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) *	2. For x>=2. * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) *	   by the method mentioned above. *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. */#include "math.h"#include "math_private.h"static double pzero(double), qzero(double);static const doublehuge 	= 1e300,one	= 1.0,invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ 		/* R0/S0 on [0, 2.00] */R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */R05  = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */S01  =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */S02  =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */S03  =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */S04  =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */static const double zero = 0.0;double attribute_hidden __ieee754_j0(double x){	double z, s,c,ss,cc,r,u,v;	int32_t hx,ix;	GET_HIGH_WORD(hx,x);	ix = hx&0x7fffffff;	if(ix>=0x7ff00000) return one/(x*x);	x = fabs(x);	if(ix >= 0x40000000) {	/* |x| >= 2.0 */		s = sin(x);		c = cos(x);		ss = s-c;		cc = s+c;		if(ix<0x7fe00000) {  /* make sure x+x not overflow */		    z = -cos(x+x);		    if ((s*c)<zero) cc = z/ss;		    else 	    ss = z/cc;		}	/*	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)	 */		if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);		else {		    u = pzero(x); v = qzero(x);		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);		}		return z;	}	if(ix<0x3f200000) {	/* |x| < 2**-13 */	    if(huge+x>one) {	/* raise inexact if x != 0 */	        if(ix<0x3e400000) return one;	/* |x|<2**-27 */	        else 	      return one - 0.25*x*x;	    }	}	z = x*x;	r =  z*(R02+z*(R03+z*(R04+z*R05)));	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));	if(ix < 0x3FF00000) {	/* |x| < 1.00 */	    return one + z*(-0.25+(r/s));	} else {	    u = 0.5*x;	    return((one+u)*(one-u)+z*(r/s));	}}/* * wrapper j0(double x) */#ifndef _IEEE_LIBMdouble j0(double x){	double z = __ieee754_j0(x);	if (_LIB_VERSION == _IEEE_ || isnan(x))		return z;	if (fabs(x) > X_TLOSS)		return __kernel_standard(x, x, 34); /* j0(|x|>X_TLOSS) */	return z;}#elsestrong_alias(__ieee754_j0, j0)#endifstatic const doubleu00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */double attribute_hidden __ieee754_y0(double x){	double z, s,c,ss,cc,u,v;	int32_t hx,ix,lx;	EXTRACT_WORDS(hx,lx,x);        ix = 0x7fffffff&hx;    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */	if(ix>=0x7ff00000) return  one/(x+x*x);        if((ix|lx)==0) return -one/zero;        if(hx<0) return zero/zero;        if(ix >= 0x40000000) {  /* |x| >= 2.0 */        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))         * where x0 = x-pi/4         *      Better formula:         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)         *                      =  1/sqrt(2) * (sin(x) + cos(x))         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)         *                      =  1/sqrt(2) * (sin(x) - cos(x))         * To avoid cancellation, use         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))         * to compute the worse one.         */                s = sin(x);                c = cos(x);                ss = s-c;                cc = s+c;	/*	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)	 */                if(ix<0x7fe00000) {  /* make sure x+x not overflow */                    z = -cos(x+x);                    if ((s*c)<zero) cc = z/ss;                    else            ss = z/cc;                }                if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);                else {                    u = pzero(x); v = qzero(x);                    z = invsqrtpi*(u*ss+v*cc)/sqrt(x);                }                return z;	}	if(ix<=0x3e400000) {	/* x < 2**-27 */	    return(u00 + tpi*__ieee754_log(x));	}	z = x*x;	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));	v = one+z*(v01+z*(v02+z*(v03+z*v04)));	return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));}/* * wrapper y0(double x) */#ifndef _IEEE_LIBMdouble y0(double x){	double z = __ieee754_y0(x);	if (_LIB_VERSION == _IEEE_ || isnan(x))		return z;	if (x <= 0.0) {		if (x == 0.0) /* d= -one/(x-x); */			return __kernel_standard(x, x, 8);		/* d = zero/(x-x); */		return __kernel_standard(x, x, 9);	}	if (x > X_TLOSS)		return __kernel_standard(x, x, 35); /* y0(x>X_TLOSS) */	return z;}#elsestrong_alias(__ieee754_y0, y0)#endif/* The asymptotic expansions of pzero is *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x. * For x >= 2, We approximate pzero by * 	pzero(x) = 1 + (R/S) * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 * 	  S = 1 + pS0*s^2 + ... + pS4*s^10 * and *	| pzero(x)-1-R/S | <= 2  ** ( -60.26) */static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */};static const double pS8[5] = {  1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */  3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */  4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */  1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */  4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */};static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */};static const double pS5[5] = {  6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */  1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */  5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */  9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */  2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */};static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */};static const double pS3[5] = {  3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */  3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */  1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */  1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */  1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */};static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */};static const double pS2[5] = {  2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */  1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */  2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */  1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */  1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */};static double pzero(double x){	const double *p = 0,*q = 0;	double z,r,s;	int32_t ix;	GET_HIGH_WORD(ix,x);	ix &= 0x7fffffff;	if(ix>=0x40200000)     {p = pR8; q= pS8;}	else if(ix>=0x40122E8B){p = pR5; q= pS5;}	else if(ix>=0x4006DB6D){p = pR3; q= pS3;}	else if(ix>=0x40000000){p = pR2; q= pS2;}	z = one/(x*x);	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));	return one+ r/s;}/* For x >= 8, the asymptotic expansions of qzero is *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x. * We approximate pzero by * 	qzero(x) = s*(-1.25 + (R/S)) * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 * 	  S = 1 + qS0*s^2 + ... + qS5*s^12 * and *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22) */static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */  7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */  1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */  5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */  8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */  3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */};static const double qS8[6] = {  1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */  8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */  1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */  8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */  8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */};static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */  1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */  7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */  5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */  1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */  1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */  1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */};static const double qS5[6] = {  8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */  2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */  1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */  5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */  3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */};static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */  4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */  7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */  3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */  4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */  1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */  1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */};static const double qS3[6] = {  4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */  7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */  3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */  6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */  2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */};static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */  1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */  7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */  1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */  1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */  3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */  1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */};static const double qS2[6] = {  3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */  2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */  8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */  8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */  2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */};static double qzero(double x){	const double *p=0,*q=0;	double s,r,z;	int32_t ix;	GET_HIGH_WORD(ix,x);	ix &= 0x7fffffff;	if(ix>=0x40200000)     {p = qR8; q= qS8;}	else if(ix>=0x40122E8B){p = qR5; q= qS5;}	else if(ix>=0x4006DB6D){p = qR3; q= qS3;}	else if(ix>=0x40000000){p = qR2; q= qS2;}	z = one/(x*x);	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));	return (-.125 + r/s)/x;}
 |