| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336 | # Begin of automatic generation# acosTest "acos (2e-17) == 1.57079632679489659923132169163975144":ildouble: 1ldouble: 1# asinTest "asin (0.75) == 0.848062078981481008052944338998418080":ildouble: 2ldouble: 2# atan2Test "atan2 (-0.00756827042671106339, -.001792735857538728036) == -1.80338464113663849327153994379639112":ildouble: 1ldouble: 1Test "atan2 (-0.75, -1.0) == -2.49809154479650885165983415456218025":float: 1ifloat: 1Test "atan2 (0.75, -1.0) == 2.49809154479650885165983415456218025":float: 1ifloat: 1Test "atan2 (1.390625, 0.9296875) == 0.981498387184244311516296577615519772":float: 1ifloat: 1ildouble: 1ldouble: 1# atanhTest "atanh (0.75) == 0.972955074527656652552676371721589865":float: 1ifloat: 1# cabsTest "cabs (0.75 + 1.25 i) == 1.45773797371132511771853821938639577":ildouble: 1ldouble: 1# cacoshTest "Real part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":double: 1float: 7idouble: 1ifloat: 7Test "Imaginary part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":double: 1float: 3idouble: 1ifloat: 3# casinTest "Real part of: casin (-2 - 3 i) == -0.57065278432109940071028387968566963 - 1.9833870299165354323470769028940395 i":ildouble: 1ldouble: 1Test "Real part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":double: 1float: 1idouble: 1ifloat: 1# casinhTest "Real part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":double: 5float: 1idouble: 5ifloat: 1ildouble: 4ldouble: 4Test "Imaginary part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":double: 3float: 6idouble: 3ifloat: 6ildouble: 1ldouble: 1Test "Real part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":float: 1ifloat: 1Test "Imaginary part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":double: 1float: 1idouble: 1ifloat: 1# catanTest "Real part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":float: 3ifloat: 3ildouble: 1ldouble: 1Test "Imaginary part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":double: 1float: 1idouble: 1ifloat: 1Test "Real part of: catan (0.75 + 1.25 i) == 1.10714871779409050301706546017853704 + 0.549306144334054845697622618461262852 i":float: 4ifloat: 4# catanhTest "Real part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":double: 4idouble: 4Test "Imaginary part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":float: 4ifloat: 4Test "Real part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":double: 1idouble: 1Test "Imaginary part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":float: 6ifloat: 6# cbrtTest "cbrt (-27.0) == -3.0":double: 1idouble: 1Test "cbrt (0.9921875) == 0.997389022060725270579075195353955217":double: 1idouble: 1# ccosTest "Imaginary part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":float: 1ifloat: 1Test "Real part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":double: 1float: 1idouble: 1ifloat: 1Test "Imaginary part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":float: 1ifloat: 1# ccoshTest "Real part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":float: 1ifloat: 1Test "Imaginary part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":float: 1ifloat: 1Test "Real part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":float: 1ifloat: 1ildouble: 2ldouble: 2# cexpTest "Imaginary part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":float: 1ifloat: 1Test "Real part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":float: 1ifloat: 1ildouble: 2ldouble: 2Test "Imaginary part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":ildouble: 1ldouble: 1# clogTest "Imaginary part of: clog (-2 - 3 i) == 1.2824746787307683680267437207826593 - 2.1587989303424641704769327722648368 i":float: 3ifloat: 3ildouble: 1ldouble: 1Test "Real part of: clog (0.75 + 1.25 i) == 0.376885901188190075998919126749298416 + 1.03037682652431246378774332703115153 i":float: 1ifloat: 1ildouble: 2ldouble: 2Test "Imaginary part of: clog (0.75 + 1.25 i) == 0.376885901188190075998919126749298416 + 1.03037682652431246378774332703115153 i":ildouble: 1ldouble: 1# clog10Test "Imaginary part of: clog10 (-0 + inf i) == inf + pi/2*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (-0 - inf i) == inf - pi/2*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (-2 - 3 i) == 0.556971676153418384603252578971164214 - 0.937554462986374708541507952140189646 i":double: 1float: 5idouble: 1ifloat: 5ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (-3 + inf i) == inf + pi/2*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (-3 - inf i) == inf - pi/2*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (-inf + 0 i) == inf + pi*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (-inf + 1 i) == inf + pi*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (-inf + inf i) == inf + 3/4 pi*log10(e) i":double: 1idouble: 1Test "Imaginary part of: clog10 (-inf - 0 i) == inf - pi*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (-inf - 1 i) == inf - pi*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (0 + inf i) == inf + pi/2*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (0 - inf i) == inf - pi/2*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Real part of: clog10 (0.75 + 1.25 i) == 0.163679467193165171449476605077428975 + 0.447486970040493067069984724340855636 i":float: 1ifloat: 1ildouble: 3ldouble: 3Test "Imaginary part of: clog10 (3 + inf i) == inf + pi/2*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (3 - inf i) == inf - pi/2*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (inf + inf i) == inf + pi/4*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: clog10 (inf - inf i) == inf - pi/4*log10(e) i":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1# cosTest "cos (M_PI_6l * 2.0) == 0.5":double: 1float: 1idouble: 1ifloat: 1Test "cos (M_PI_6l * 4.0) == -0.5":double: 2float: 1idouble: 2ifloat: 1Test "cos (pi/2) == 0":double: 1float: 1idouble: 1ifloat: 1Test "cos (16.0) == -0.9576594803233846418996372326511034717803"ildouble: 2ldouble: 2# cpowTest "Real part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":float: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":float: 1ifloat: 1ildouble: 1ldouble: 1Test "Real part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":double: 1float: 4idouble: 1ifloat: 4Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":ildouble: 2ldouble: 2Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 1.0 i) == 0.0846958290317209430433805274189191353 + 0.513285749182902449043287190519090481 i":double: 2float: 3idouble: 2ifloat: 3Test "Real part of: cpow (2 + 0 i, 10 + 0 i) == 1024.0 + 0.0 i":ildouble: 1ldouble: 1Test "Real part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":double: 1float: 5idouble: 1ifloat: 5Test "Imaginary part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":float: 2ifloat: 2ildouble: 2ldouble: 2Test "Imaginary part of: cpow (e + 0 i, 0 + 2 * M_PIl i) == 1.0 + 0.0 i":double: 2float: 2idouble: 2ifloat: 2ildouble: 2ldouble: 2# csinhTest "Imaginary part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":double: 1idouble: 1ildouble: 1ldouble: 1Test "Real part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":float: 1ifloat: 1ildouble: 1ldouble: 1Test "Imaginary part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":float: 1ifloat: 1ildouble: 1ldouble: 1# csqrtTest "Real part of: csqrt (-2 + 3 i) == 0.89597747612983812471573375529004348 + 1.6741492280355400404480393008490519 i":float: 1ifloat: 1Test "Real part of: csqrt (-2 - 3 i) == 0.89597747612983812471573375529004348 - 1.6741492280355400404480393008490519 i":float: 1ifloat: 1# ctanTest "Real part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":double: 1idouble: 1Test "Imaginary part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":ildouble: 1ldouble: 1Test "Imaginary part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":double: 1idouble: 1# ctanhTest "Real part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":double: 1float: 2idouble: 1ifloat: 2Test "Imaginary part of: ctanh (0 + pi/4 i) == 0.0 + 1.0 i":float: 1ifloat: 1Test "Real part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":double: 1idouble: 1ildouble: 1ldouble: 1# erfTest "erf (1.25) == 0.922900128256458230136523481197281140":double: 1idouble: 1# erfcTest "erfc (0.75) == 0.288844366346484868401062165408589223":float: 1ifloat: 1Test "erfc (2.0) == 0.00467773498104726583793074363274707139":double: 1idouble: 1Test "erfc (4.125) == 0.542340079956506600531223408575531062e-8":double: 1idouble: 1# expTest "exp (0.75) == 2.11700001661267466854536981983709561":ildouble: 1ldouble: 1Test "exp (50.0) == 5184705528587072464087.45332293348538":ildouble: 1ldouble: 1# exp10Test "exp10 (-1) == 0.1":double: 2float: 1idouble: 2ifloat: 1ildouble: 1ldouble: 1Test "exp10 (0.75) == 5.62341325190349080394951039776481231":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "exp10 (3) == 1000":double: 6float: 2idouble: 6ifloat: 2ildouble: 8ldouble: 8# exp2Test "exp2 (10) == 1024":ildouble: 2ldouble: 2# expm1Test "expm1 (0.75) == 1.11700001661267466854536981983709561":double: 1idouble: 1Test "expm1 (1) == M_El - 1.0":double: 1float: 1idouble: 1ifloat: 1# hypotTest "hypot (-0.7, -12.4) == 12.419742348374220601176836866763271":float: 1ifloat: 1Test "hypot (-0.7, 12.4) == 12.419742348374220601176836866763271":float: 1ifloat: 1Test "hypot (-12.4, -0.7) == 12.419742348374220601176836866763271":float: 1ifloat: 1Test "hypot (-12.4, 0.7) == 12.419742348374220601176836866763271":float: 1ifloat: 1Test "hypot (0.7, -12.4) == 12.419742348374220601176836866763271":float: 1ifloat: 1Test "hypot (0.7, 12.4) == 12.419742348374220601176836866763271":float: 1ifloat: 1Test "hypot (0.75, 1.25) == 1.45773797371132511771853821938639577":ildouble: 1ldouble: 1Test "hypot (12.4, -0.7) == 12.419742348374220601176836866763271":float: 1ifloat: 1Test "hypot (12.4, 0.7) == 12.419742348374220601176836866763271":float: 1ifloat: 1# j0Test "j0 (-4.0) == -3.9714980986384737228659076845169804197562E-1":double: 1float: 2idouble: 1ifloat: 2ildouble: 1ldouble: 1Test "j0 (10.0) == -0.245935764451348335197760862485328754":double: 3float: 1idouble: 3ifloat: 1ildouble: 1ldouble: 1Test "j0 (2.0) == 0.223890779141235668051827454649948626":float: 2ifloat: 2Test "j0 (4.0) == -3.9714980986384737228659076845169804197562E-1":double: 1float: 2idouble: 1ifloat: 2ildouble: 1ldouble: 1Test "j0 (8.0) == 0.171650807137553906090869407851972001":float: 1ifloat: 1ildouble: 1ldouble: 1# j1Test "j1 (10.0) == 0.0434727461688614366697487680258592883":float: 2ifloat: 2ildouble: 1ldouble: 1Test "j1 (2.0) == 0.576724807756873387202448242269137087":double: 1idouble: 1Test "j1 (8.0) == 0.234636346853914624381276651590454612":double: 1idouble: 1ildouble: 1ldouble: 1# jnTest "jn (0, -4.0) == -3.9714980986384737228659076845169804197562E-1":double: 1float: 2idouble: 1ifloat: 2ildouble: 1ldouble: 1Test "jn (0, 10.0) == -0.245935764451348335197760862485328754":double: 3float: 1idouble: 3ifloat: 1ildouble: 1ldouble: 1Test "jn (0, 2.0) == 0.223890779141235668051827454649948626":float: 2ifloat: 2Test "jn (0, 4.0) == -3.9714980986384737228659076845169804197562E-1":double: 1float: 2idouble: 1ifloat: 2ildouble: 1ldouble: 1Test "jn (0, 8.0) == 0.171650807137553906090869407851972001":float: 1ifloat: 1ildouble: 1ldouble: 1Test "jn (1, 10.0) == 0.0434727461688614366697487680258592883":float: 2ifloat: 2ildouble: 1ldouble: 1Test "jn (1, 2.0) == 0.576724807756873387202448242269137087":double: 1idouble: 1Test "jn (1, 8.0) == 0.234636346853914624381276651590454612":double: 1idouble: 1ildouble: 1ldouble: 1Test "jn (10, -1.0) == 0.263061512368745320699785368779050294e-9":ildouble: 1ldouble: 1Test "jn (10, 0.125) == 0.250543369809369890173993791865771547e-18":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "jn (10, 0.75) == 0.149621713117596814698712483621682835e-10":double: 1float: 1idouble: 1ifloat: 1Test "jn (10, 1.0) == 0.263061512368745320699785368779050294e-9":ildouble: 1ldouble: 1Test "jn (10, 10.0) == 0.207486106633358857697278723518753428":float: 1ifloat: 1ildouble: 4ldouble: 4Test "jn (10, 2.0) == 0.251538628271673670963516093751820639e-6":float: 4ifloat: 4Test "jn (3, -1.0) == -0.0195633539826684059189053216217515083":ildouble: 1ldouble: 1Test "jn (3, 0.125) == 0.406503832554912875023029337653442868e-4":double: 1float: 1idouble: 1ifloat: 1Test "jn (3, 0.75) == 0.848438342327410884392755236884386804e-2":double: 1idouble: 1Test "jn (3, 1.0) == 0.0195633539826684059189053216217515083":ildouble: 1ldouble: 1Test "jn (3, 10.0) == 0.0583793793051868123429354784103409563":double: 3float: 2idouble: 3ifloat: 2ildouble: 2ldouble: 2Test "jn (3, 2.0) == 0.128943249474402051098793332969239835":double: 1float: 2idouble: 1ifloat: 2ildouble: 2ldouble: 2# lgammaTest "lgamma (0.7) == 0.260867246531666514385732417016759578":double: 1float: 1idouble: 1ifloat: 1Test "lgamma (1.2) == -0.853740900033158497197028392998854470e-1":double: 1float: 2idouble: 1ifloat: 2ildouble: 3ldouble: 3# log10Test "log10 (0.75) == -0.124938736608299953132449886193870744":double: 1float: 2idouble: 1ifloat: 2Test "log10 (e) == log10(e)":float: 1ifloat: 1# log1pTest "log1p (-0.25) == -0.287682072451780927439219005993827432":float: 1ifloat: 1# log2Test "log2 (e) == M_LOG2El":ildouble: 1ldouble: 1# sinTest "sin (16.0) == -0.2879033166650652947844562482186175296207"ildouble: 2ldouble: 2# sincosTest "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.5 in cos_res":double: 1float: 1idouble: 1ifloat: 1Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in sin_res":double: 1float: 1idouble: 1ifloat: 1Test "sincos (pi/2, &sin_res, &cos_res) puts 0 in cos_res":double: 1float: 1idouble: 1ifloat: 1Test "sincos (pi/6, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in cos_res":float: 1ifloat: 1# sinhTest "sinh (0.75) == 0.822316731935829980703661634446913849":ildouble: 1ldouble: 1# tanTest "tan (pi/4) == 1":double: 1idouble: 1ildouble: 1ldouble: 1# tanhTest "tanh (-0.75) == -0.635148952387287319214434357312496495":ildouble: 1ldouble: 1Test "tanh (0.75) == 0.635148952387287319214434357312496495":ildouble: 1ldouble: 1# tgammaTest "tgamma (-0.5) == -2 sqrt (pi)":double: 1float: 1idouble: 1ifloat: 1Test "tgamma (0.5) == sqrt (pi)":float: 1ifloat: 1Test "tgamma (0.7) == 1.29805533264755778568117117915281162":double: 1float: 1idouble: 1ifloat: 1# y0Test "y0 (0.125) == -1.38968062514384052915582277745018693":ildouble: 1ldouble: 1Test "y0 (0.75) == -0.137172769385772397522814379396581855":ildouble: 1ldouble: 1Test "y0 (1.0) == 0.0882569642156769579829267660235151628":double: 2float: 1idouble: 2ifloat: 1ildouble: 1ldouble: 1Test "y0 (1.5) == 0.382448923797758843955068554978089862":double: 2float: 1idouble: 2ifloat: 1Test "y0 (10.0) == 0.0556711672835993914244598774101900481":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Test "y0 (2.0) == 0.510375672649745119596606592727157873":double: 1idouble: 1Test "y0 (8.0) == 0.223521489387566220527323400498620359":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1# y1Test "y1 (0.125) == -5.19993611253477499595928744876579921":double: 1idouble: 1Test "y1 (1.5) == -0.412308626973911295952829820633445323":float: 1ifloat: 1Test "y1 (10.0) == 0.249015424206953883923283474663222803":double: 3float: 1idouble: 3ifloat: 1ildouble: 2ldouble: 2Test "y1 (2.0) == -0.107032431540937546888370772277476637":double: 1float: 1idouble: 2ifloat: 2Test "y1 (8.0) == -0.158060461731247494255555266187483550":double: 1float: 2idouble: 1ifloat: 2ildouble: 2ldouble: 2# ynTest "yn (0, 0.125) == -1.38968062514384052915582277745018693":ildouble: 1ldouble: 1Test "yn (0, 0.75) == -0.137172769385772397522814379396581855":ildouble: 1ldouble: 1Test "yn (0, 1.0) == 0.0882569642156769579829267660235151628":double: 2float: 1idouble: 2ifloat: 1ildouble: 2ldouble: 2Test "yn (0, 1.5) == 0.382448923797758843955068554978089862":double: 2float: 1idouble: 2ifloat: 1Test "yn (0, 10.0) == 0.0556711672835993914244598774101900481":double: 1float: 1idouble: 1ifloat: 1ildouble: 2ldouble: 2Test "yn (0, 2.0) == 0.510375672649745119596606592727157873":double: 1idouble: 1Test "yn (0, 8.0) == 0.223521489387566220527323400498620359":double: 1float: 1idouble: 1ifloat: 1ildouble: 2ldouble: 2Test "yn (1, 0.125) == -5.19993611253477499595928744876579921":double: 1idouble: 1Test "yn (1, 1.5) == -0.412308626973911295952829820633445323":float: 2ifloat: 2Test "yn (1, 10.0) == 0.249015424206953883923283474663222803":double: 3float: 1idouble: 3ifloat: 1ildouble: 2ldouble: 2Test "yn (1, 2.0) == -0.107032431540937546888370772277476637":double: 1float: 1idouble: 1ifloat: 1Test "yn (1, 8.0) == -0.158060461731247494255555266187483550":double: 1float: 2idouble: 1ifloat: 2ildouble: 2ldouble: 2Test "yn (3, 0.125) == -2612.69757350066712600220955744091741":double: 1idouble: 1Test "yn (10, 0.125) == -127057845771019398.252538486899753195":double: 1idouble: 1Test "yn (10, 0.75) == -2133501638.90573424452445412893839236":double: 1float: 2idouble: 1ifloat: 2Test "yn (10, 1.0) == -121618014.278689189288130426667971145":float: 2ifloat: 2Test "yn (10, 10.0) == -0.359814152183402722051986577343560609":double: 2float: 2idouble: 2ifloat: 2ildouble: 2ldouble: 2Test "yn (10, 2.0) == -129184.542208039282635913145923304214":double: 3float: 1idouble: 3ifloat: 1ildouble: 2ldouble: 2Test "yn (3, 0.125) == -2612.69757350066712600220955744091741":double: 1idouble: 1Test "yn (3, 0.75) == -12.9877176234475433186319774484809207":float: 1ifloat: 1Test "yn (3, 10.0) == -0.251362657183837329779204747654240998":double: 1float: 1idouble: 1ifloat: 1ildouble: 2ldouble: 2Test "yn (3, 2.0) == -1.12778377684042778608158395773179238":double: 1idouble: 1# Maximal error of functions:Function: "acos":ildouble: 1ldouble: 1Function: "acosh":ildouble: 1ldouble: 1Function: "asin":ildouble: 2ldouble: 2Function: "asinh":ildouble: 1ldouble: 1Function: "atan2":float: 1ifloat: 1ildouble: 1ldouble: 1Function: "atanh":float: 1ifloat: 1Function: "cabs":ildouble: 1ldouble: 1Function: Real part of "cacos":ildouble: 1ldouble: 1Function: Imaginary part of "cacos":ildouble: 1ldouble: 1Function: Real part of "cacosh":double: 1float: 7idouble: 1ifloat: 7ildouble: 1ldouble: 1Function: Imaginary part of "cacosh":double: 1float: 3idouble: 1ifloat: 3Function: Real part of "casin":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Function: Imaginary part of "casin":ildouble: 1ldouble: 1Function: Real part of "casinh":double: 5float: 1idouble: 5ifloat: 1ildouble: 4ldouble: 4Function: Imaginary part of "casinh":double: 3float: 6idouble: 3ifloat: 6ildouble: 1ldouble: 1Function: Real part of "catan":float: 4ifloat: 4ildouble: 1ldouble: 1Function: Imaginary part of "catan":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Function: Real part of "catanh":double: 4idouble: 4Function: Imaginary part of "catanh":float: 6ifloat: 6Function: "cbrt":double: 1idouble: 1ildouble: 1ldouble: 1Function: Real part of "ccos":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Function: Imaginary part of "ccos":float: 1ifloat: 1ildouble: 1ldouble: 1Function: Real part of "ccosh":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Function: Imaginary part of "ccosh":float: 1ifloat: 1ildouble: 2ldouble: 2Function: Real part of "cexp":float: 1ifloat: 1ildouble: 2ldouble: 2Function: Imaginary part of "cexp":float: 1ifloat: 1ildouble: 1ldouble: 1Function: Real part of "clog":float: 1ifloat: 1ildouble: 2ldouble: 2Function: Imaginary part of "clog":float: 3ifloat: 3ildouble: 1ldouble: 1Function: Real part of "clog10":float: 1ifloat: 1ildouble: 3ldouble: 3Function: Imaginary part of "clog10":double: 1float: 5idouble: 1ifloat: 5ildouble: 1ldouble: 1Function: "cos":double: 2float: 1idouble: 2ifloat: 1ildouble: 1ldouble: 1Function: "cosh":ildouble: 1ldouble: 1Function: Real part of "cpow":double: 2float: 5idouble: 2ifloat: 5ildouble: 2ldouble: 2Function: Imaginary part of "cpow":double: 2float: 2idouble: 2ifloat: 2ildouble: 2ldouble: 2Function: Imaginary part of "cproj":ildouble: 1ldouble: 1Function: Real part of "csin":ildouble: 1ldouble: 1Function: Real part of "csinh":float: 1ifloat: 1ildouble: 1ldouble: 1Function: Imaginary part of "csinh":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Function: Real part of "csqrt":float: 1ifloat: 1ildouble: 1ldouble: 1Function: Imaginary part of "csqrt":ildouble: 1ldouble: 1Function: Real part of "ctan":double: 1idouble: 1ildouble: 1ldouble: 1Function: Imaginary part of "ctan":double: 1idouble: 1ildouble: 1ldouble: 1Function: Real part of "ctanh":double: 1float: 2idouble: 1ifloat: 2ildouble: 1ldouble: 1Function: Imaginary part of "ctanh":float: 1ifloat: 1ildouble: 1ldouble: 1Function: "erf":double: 1idouble: 1ildouble: 1ldouble: 1Function: "erfc":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Function: "exp":ildouble: 1ldouble: 1Function: "exp10":double: 6float: 2idouble: 6ifloat: 2ildouble: 8ldouble: 8Function: "exp2":ildouble: 2ldouble: 2Function: "expm1":double: 1float: 1idouble: 1ifloat: 1Function: "gamma":ildouble: 1ldouble: 1Function: "hypot":float: 1ifloat: 1ildouble: 1ldouble: 1Function: "j0":double: 3float: 2idouble: 3ifloat: 2ildouble: 1ldouble: 1Function: "j1":double: 1float: 2idouble: 1ifloat: 2ildouble: 1ldouble: 1Function: "jn":double: 3float: 4idouble: 3ifloat: 4ildouble: 4ldouble: 4Function: "lgamma":double: 1float: 2idouble: 1ifloat: 2ildouble: 3ldouble: 3Function: "log":ildouble: 1ldouble: 1Function: "log10":double: 1float: 2idouble: 1ifloat: 2ildouble: 1ldouble: 1Function: "log1p":float: 1ifloat: 1ildouble: 1ldouble: 1Function: "log2":ildouble: 1ldouble: 1Function: "pow":ildouble: 1ldouble: 1Function: "sin":ildouble: 1ldouble: 1Function: "sincos":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Function: "sinh":ildouble: 1ldouble: 1Function: "tan":double: 1idouble: 1ildouble: 1ldouble: 1Function: "tanh":ildouble: 1ldouble: 1Function: "tgamma":double: 1float: 1idouble: 1ifloat: 1ildouble: 1ldouble: 1Function: "y0":double: 2float: 1idouble: 2ifloat: 1ildouble: 1ldouble: 1Function: "y1":double: 3float: 2idouble: 3ifloat: 2ildouble: 2ldouble: 2Function: "yn":double: 3float: 2idouble: 3ifloat: 2ildouble: 2ldouble: 2# end of automatic generation
 |