123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- /* drand.c
- *
- * Pseudorandom number generator
- *
- *
- *
- * SYNOPSIS:
- *
- * double y, drand();
- *
- * drand( &y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Yields a random number 1.0 <= y < 2.0.
- *
- * The three-generator congruential algorithm by Brian
- * Wichmann and David Hill (BYTE magazine, March, 1987,
- * pp 127-8) is used. The period, given by them, is
- * 6953607871644.
- *
- * Versions invoked by the different arithmetic compile
- * time options DEC, IBMPC, and MIEEE, produce
- * approximately the same sequences, differing only in the
- * least significant bits of the numbers. The UNK option
- * implements the algorithm as recommended in the BYTE
- * article. It may be used on all computers. However,
- * the low order bits of a double precision number may
- * not be adequately random, and may vary due to arithmetic
- * implementation details on different computers.
- *
- * The other compile options generate an additional random
- * integer that overwrites the low order bits of the double
- * precision number. This reduces the period by a factor of
- * two but tends to overcome the problems mentioned.
- *
- */
- #include "mconf.h"
- /* Three-generator random number algorithm
- * of Brian Wichmann and David Hill
- * BYTE magazine, March, 1987 pp 127-8
- *
- * The period, given by them, is (p-1)(q-1)(r-1)/4 = 6.95e12.
- */
- static int sx = 1;
- static int sy = 10000;
- static int sz = 3000;
- static union {
- double d;
- unsigned short s[4];
- } unkans;
- /* This function implements the three
- * congruential generators.
- */
-
- int ranwh()
- {
- int r, s;
- /* sx = sx * 171 mod 30269 */
- r = sx/177;
- s = sx - 177 * r;
- sx = 171 * s - 2 * r;
- if( sx < 0 )
- sx += 30269;
- /* sy = sy * 172 mod 30307 */
- r = sy/176;
- s = sy - 176 * r;
- sy = 172 * s - 35 * r;
- if( sy < 0 )
- sy += 30307;
- /* sz = 170 * sz mod 30323 */
- r = sz/178;
- s = sz - 178 * r;
- sz = 170 * s - 63 * r;
- if( sz < 0 )
- sz += 30323;
- /* The results are in static sx, sy, sz. */
- return 0;
- }
- /* drand.c
- *
- * Random double precision floating point number between 1 and 2.
- *
- * C callable:
- * drand( &x );
- */
- int drand( a )
- double *a;
- {
- unsigned short r;
- #ifdef DEC
- unsigned short s, t;
- #endif
- /* This algorithm of Wichmann and Hill computes a floating point
- * result:
- */
- ranwh();
- unkans.d = sx/30269.0 + sy/30307.0 + sz/30323.0;
- r = unkans.d;
- unkans.d -= r;
- unkans.d += 1.0;
- /* if UNK option, do nothing further.
- * Otherwise, make a random 16 bit integer
- * to overwrite the least significant word
- * of unkans.
- */
- #ifdef UNK
- /* do nothing */
- #else
- ranwh();
- r = sx * sy + sz;
- #endif
- #ifdef DEC
- /* To make the numbers as similar as possible
- * in all arithmetics, the random integer has
- * to be inserted 3 bits higher up in a DEC number.
- * An alternative would be put it 3 bits lower down
- * in all the other number types.
- */
- s = unkans.s[2];
- t = s & 07; /* save these bits to put in at the bottom */
- s &= 0177770;
- s |= (r >> 13) & 07;
- unkans.s[2] = s;
- t |= r << 3;
- unkans.s[3] = t;
- #endif
- #ifdef IBMPC
- unkans.s[0] = r;
- #endif
- #ifdef MIEEE
- unkans.s[3] = r;
- #endif
- *a = unkans.d;
- return 0;
- }
|