123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430 |
- /* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, write to the Free
- Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
- 02111-1307 USA. */
- /*
- * ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
- */
- #ifndef _TGMATH_H
- #define _TGMATH_H 1
- /* Include the needed headers. */
- #include <math.h>
- #include <complex.h>
- /* Since `complex' is currently not really implemented in most C compilers
- and if it is implemented, the implementations differ. This makes it
- quite difficult to write a generic implementation of this header. We
- do not try this for now and instead concentrate only on GNU CC. Once
- we have more information support for other compilers might follow. */
- #if __GNUC_PREREQ (2, 7)
- # ifdef __NO_LONG_DOUBLE_MATH
- # define __tgml(fct) fct
- # else
- # define __tgml(fct) fct ## l
- # endif
- /* This is ugly but unless gcc gets appropriate builtins we have to do
- something like this. Don't ask how it works. */
- /* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
- Allows for _Bool. Expands to an integer constant expression. */
- # define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
- /* The tgmath real type for T, where E is 0 if T is an integer type and
- 1 for a floating type. */
- # define __tgmath_real_type_sub(T, E) \
- __typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
- : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
- /* The tgmath real type of EXPR. */
- # define __tgmath_real_type(expr) \
- __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))
- /* We have two kinds of generic macros: to support functions which are
- only defined on real valued parameters and those which are defined
- for complex functions as well. */
- # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
- (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
- if (sizeof (Val) == sizeof (double) \
- || __builtin_classify_type (Val) != 8) \
- __tgmres = Fct (Val); \
- else if (sizeof (Val) == sizeof (float)) \
- __tgmres = Fct##f (Val); \
- else \
- __tgmres = __tgml(Fct) (Val); \
- __tgmres; }))
- # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
- (__extension__ ({ __tgmath_real_type (Val1) __tgmres; \
- if (sizeof (Val1) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8) \
- __tgmres = Fct (Val1, Val2); \
- else if (sizeof (Val1) == sizeof (float)) \
- __tgmres = Fct##f (Val1, Val2); \
- else \
- __tgmres = __tgml(Fct) (Val1, Val2); \
- __tgmres; }))
- # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
- (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
- if ((sizeof (Val1) > sizeof (double) \
- || sizeof (Val2) > sizeof (double)) \
- && __builtin_classify_type ((Val1) + (Val2)) == 8) \
- __tgmres = __tgml(Fct) (Val1, Val2); \
- else if (sizeof (Val1) == sizeof (double) \
- || sizeof (Val2) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8 \
- || __builtin_classify_type (Val2) != 8) \
- __tgmres = Fct (Val1, Val2); \
- else \
- __tgmres = Fct##f (Val1, Val2); \
- __tgmres; }))
- # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
- (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
- if ((sizeof (Val1) > sizeof (double) \
- || sizeof (Val2) > sizeof (double)) \
- && __builtin_classify_type ((Val1) + (Val2)) == 8) \
- __tgmres = __tgml(Fct) (Val1, Val2, Val3); \
- else if (sizeof (Val1) == sizeof (double) \
- || sizeof (Val2) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8 \
- || __builtin_classify_type (Val2) != 8) \
- __tgmres = Fct (Val1, Val2, Val3); \
- else \
- __tgmres = Fct##f (Val1, Val2, Val3); \
- __tgmres; }))
- # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
- (__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\
- if ((sizeof (Val1) > sizeof (double) \
- || sizeof (Val2) > sizeof (double) \
- || sizeof (Val3) > sizeof (double)) \
- && __builtin_classify_type ((Val1) + (Val2) \
- + (Val3)) == 8) \
- __tgmres = __tgml(Fct) (Val1, Val2, Val3); \
- else if (sizeof (Val1) == sizeof (double) \
- || sizeof (Val2) == sizeof (double) \
- || sizeof (Val3) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8 \
- || __builtin_classify_type (Val2) != 8 \
- || __builtin_classify_type (Val3) != 8) \
- __tgmres = Fct (Val1, Val2, Val3); \
- else \
- __tgmres = Fct##f (Val1, Val2, Val3); \
- __tgmres; }))
- /* XXX This definition has to be changed as soon as the compiler understands
- the imaginary keyword. */
- # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
- (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
- if (sizeof (__real__ (Val)) > sizeof (double) \
- && __builtin_classify_type (__real__ (Val)) == 8) \
- { \
- if (sizeof (__real__ (Val)) == sizeof (Val)) \
- __tgmres = __tgml(Fct) (Val); \
- else \
- __tgmres = __tgml(Cfct) (Val); \
- } \
- else if (sizeof (__real__ (Val)) == sizeof (double) \
- || __builtin_classify_type (__real__ (Val)) \
- != 8) \
- { \
- if (sizeof (__real__ (Val)) == sizeof (Val)) \
- __tgmres = Fct (Val); \
- else \
- __tgmres = Cfct (Val); \
- } \
- else \
- { \
- if (sizeof (__real__ (Val)) == sizeof (Val)) \
- __tgmres = Fct##f (Val); \
- else \
- __tgmres = Cfct##f (Val); \
- } \
- __tgmres; }))
- /* XXX This definition has to be changed as soon as the compiler understands
- the imaginary keyword. */
- # define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \
- (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
- if (sizeof (Val) == sizeof (__complex__ double) \
- || __builtin_classify_type (__real__ (Val)) != 8) \
- __tgmres = Fct (Val); \
- else if (sizeof (Val) == sizeof (__complex__ float)) \
- __tgmres = Fct##f (Val); \
- else \
- __tgmres = __tgml(Fct) (Val); \
- __tgmres; }))
- /* XXX This definition has to be changed as soon as the compiler understands
- the imaginary keyword. */
- # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
- (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
- if ((sizeof (__real__ (Val1)) > sizeof (double) \
- || sizeof (__real__ (Val2)) > sizeof (double)) \
- && __builtin_classify_type (__real__ (Val1) \
- + __real__ (Val2)) \
- == 8) \
- { \
- if (sizeof (__real__ (Val1)) == sizeof (Val1) \
- && sizeof (__real__ (Val2)) == sizeof (Val2)) \
- __tgmres = __tgml(Fct) (Val1, Val2); \
- else \
- __tgmres = __tgml(Cfct) (Val1, Val2); \
- } \
- else if (sizeof (__real__ (Val1)) == sizeof (double) \
- || sizeof (__real__ (Val2)) == sizeof(double) \
- || (__builtin_classify_type (__real__ (Val1)) \
- != 8) \
- || (__builtin_classify_type (__real__ (Val2)) \
- != 8)) \
- { \
- if (sizeof (__real__ (Val1)) == sizeof (Val1) \
- && sizeof (__real__ (Val2)) == sizeof (Val2)) \
- __tgmres = Fct (Val1, Val2); \
- else \
- __tgmres = Cfct (Val1, Val2); \
- } \
- else \
- { \
- if (sizeof (__real__ (Val1)) == sizeof (Val1) \
- && sizeof (__real__ (Val2)) == sizeof (Val2)) \
- __tgmres = Fct##f (Val1, Val2); \
- else \
- __tgmres = Cfct##f (Val1, Val2); \
- } \
- __tgmres; }))
- #else
- # error "Unsupported compiler; you cannot use <tgmath.h>"
- #endif
- /* Unary functions defined for real and complex values. */
- /* Trigonometric functions. */
- /* Arc cosine of X. */
- #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
- /* Arc sine of X. */
- #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
- /* Arc tangent of X. */
- #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
- /* Arc tangent of Y/X. */
- #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
- /* Cosine of X. */
- #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
- /* Sine of X. */
- #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
- /* Tangent of X. */
- #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
- /* Hyperbolic functions. */
- /* Hyperbolic arc cosine of X. */
- #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
- /* Hyperbolic arc sine of X. */
- #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
- /* Hyperbolic arc tangent of X. */
- #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
- /* Hyperbolic cosine of X. */
- #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
- /* Hyperbolic sine of X. */
- #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
- /* Hyperbolic tangent of X. */
- #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
- /* Exponential and logarithmic functions. */
- /* Exponential function of X. */
- #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
- /* Break VALUE into a normalized fraction and an integral power of 2. */
- #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
- /* X times (two to the EXP power). */
- #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
- /* Natural logarithm of X. */
- #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
- /* Base-ten logarithm of X. */
- #ifdef __USE_GNU
- # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
- #else
- # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
- #endif
- /* Return exp(X) - 1. */
- #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
- /* Return log(1 + X). */
- #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
- /* Return the base 2 signed integral exponent of X. */
- #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
- /* Compute base-2 exponential of X. */
- #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
- /* Compute base-2 logarithm of X. */
- #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
- /* Power functions. */
- /* Return X to the Y power. */
- #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
- /* Return the square root of X. */
- #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
- /* Return `sqrt(X*X + Y*Y)'. */
- #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
- /* Return the cube root of X. */
- #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
- /* Nearest integer, absolute value, and remainder functions. */
- /* Smallest integral value not less than X. */
- #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
- /* Absolute value of X. */
- #define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)
- /* Largest integer not greater than X. */
- #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
- /* Floating-point modulo remainder of X/Y. */
- #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
- /* Round X to integral valuein floating-point format using current
- rounding direction, but do not raise inexact exception. */
- #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
- /* Round X to nearest integral value, rounding halfway cases away from
- zero. */
- #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
- /* Round X to the integral value in floating-point format nearest but
- not larger in magnitude. */
- #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
- /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
- and magnitude congruent `mod 2^n' to the magnitude of the integral
- quotient x/y, with n >= 3. */
- #define remquo(Val1, Val2, Val3) \
- __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
- /* Round X to nearest integral value according to current rounding
- direction. */
- #define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)
- #define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)
- /* Round X to nearest integral value, rounding halfway cases away from
- zero. */
- #define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)
- #define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)
- /* Return X with its signed changed to Y's. */
- #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
- /* Error and gamma functions. */
- #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
- #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
- #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
- #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
- /* Return the integer nearest X in the direction of the
- prevailing rounding mode. */
- #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
- /* Return X + epsilon if X < Y, X - epsilon if X > Y. */
- #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
- #define nexttoward(Val1, Val2) \
- __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
- /* Return the remainder of integer divison X / Y with infinite precision. */
- #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
- /* Return X times (2 to the Nth power). */
- #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
- # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
- #endif
- /* Return X times (2 to the Nth power). */
- #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
- /* Return X times (2 to the Nth power). */
- #define scalbln(Val1, Val2) \
- __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
- /* Return the binary exponent of X, which must be nonzero. */
- #define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)
- /* Return positive difference between X and Y. */
- #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
- /* Return maximum numeric value from X and Y. */
- #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
- /* Return minimum numeric value from X and Y. */
- #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
- /* Multiply-add function computed as a ternary operation. */
- #define fma(Val1, Val2, Val3) \
- __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
- /* Absolute value, conjugates, and projection. */
- /* Argument value of Z. */
- #define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)
- /* Complex conjugate of Z. */
- #define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)
- /* Projection of Z onto the Riemann sphere. */
- #define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)
- /* Decomposing complex values. */
- /* Imaginary part of Z. */
- #define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)
- /* Real part of Z. */
- #define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)
- #endif /* tgmath.h */
|