| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 | /* Functions to compute SHA256 message digest of files or memory blocks.   according to the definition of SHA256 in FIPS 180-2.   Copyright (C) 2007 Free Software Foundation, Inc.   This file is part of the GNU C Library.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, see   <http://www.gnu.org/licenses/>.  *//* Written by Ulrich Drepper <drepper@redhat.com>, 2007.  */#ifdef HAVE_CONFIG_H# include <config.h>#endif#include <endian.h>#include <stdlib.h>#include <string.h>#include <sys/types.h>#include "sha256.h"#if __BYTE_ORDER == __LITTLE_ENDIAN# ifdef _LIBC#  include <byteswap.h>#  define SWAP(n) bswap_32 (n)# else#  define SWAP(n) \    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))# endif#else# define SWAP(n) (n)#endif/* This array contains the bytes used to pad the buffer to the next   64-byte boundary.  (FIPS 180-2:5.1.1)  */static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };/* Constants for SHA256 from FIPS 180-2:4.2.2.  */static const uint32_t K[64] =  {    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,    0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,    0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,    0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,    0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,    0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,    0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,    0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,    0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2  };/* Process LEN bytes of BUFFER, accumulating context into CTX.   It is assumed that LEN % 64 == 0.  */static voidsha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx){  const uint32_t *words = buffer;  size_t nwords = len / sizeof (uint32_t);  uint32_t a = ctx->H[0];  uint32_t b = ctx->H[1];  uint32_t c = ctx->H[2];  uint32_t d = ctx->H[3];  uint32_t e = ctx->H[4];  uint32_t f = ctx->H[5];  uint32_t g = ctx->H[6];  uint32_t h = ctx->H[7];  /* First increment the byte count.  FIPS 180-2 specifies the possible     length of the file up to 2^64 bits.  Here we only compute the     number of bytes.  Do a double word increment.  */  ctx->total[0] += len;  if (ctx->total[0] < len)    ++ctx->total[1];  /* Process all bytes in the buffer with 64 bytes in each round of     the loop.  */  while (nwords > 0)    {      uint32_t W[64];      uint32_t a_save = a;      uint32_t b_save = b;      uint32_t c_save = c;      uint32_t d_save = d;      uint32_t e_save = e;      uint32_t f_save = f;      uint32_t g_save = g;      uint32_t h_save = h;      /* Operators defined in FIPS 180-2:4.1.2.  */#define _Ch(x, y, z) ((x & y) ^ (~x & z))#define _Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))#define _S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))#define _S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))#define _R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))#define _R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))      /* It is unfortunate that C does not provide an operator for	 cyclic rotation.  Hope the C compiler is smart enough.  */#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))      /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */      for (unsigned int t = 0; t < 16; ++t)	{	  W[t] = SWAP (*words);	  ++words;	}      for (unsigned int t = 16; t < 64; ++t)	W[t] = _R1 (W[t - 2]) + W[t - 7] + _R0 (W[t - 15]) + W[t - 16];      /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */      for (unsigned int t = 0; t < 64; ++t)	{	  uint32_t T1 = h + _S1 (e) + _Ch (e, f, g) + K[t] + W[t];	  uint32_t T2 = _S0 (a) + _Maj (a, b, c);	  h = g;	  g = f;	  f = e;	  e = d + T1;	  d = c;	  c = b;	  b = a;	  a = T1 + T2;	}      /* Add the starting values of the context according to FIPS 180-2:6.2.2	 step 4.  */      a += a_save;      b += b_save;      c += c_save;      d += d_save;      e += e_save;      f += f_save;      g += g_save;      h += h_save;      /* Prepare for the next round.  */      nwords -= 16;    }  /* Put checksum in context given as argument.  */  ctx->H[0] = a;  ctx->H[1] = b;  ctx->H[2] = c;  ctx->H[3] = d;  ctx->H[4] = e;  ctx->H[5] = f;  ctx->H[6] = g;  ctx->H[7] = h;}/* Initialize structure containing state of computation.   (FIPS 180-2:5.3.2)  */void__sha256_init_ctx (struct sha256_ctx *ctx){  ctx->H[0] = 0x6a09e667;  ctx->H[1] = 0xbb67ae85;  ctx->H[2] = 0x3c6ef372;  ctx->H[3] = 0xa54ff53a;  ctx->H[4] = 0x510e527f;  ctx->H[5] = 0x9b05688c;  ctx->H[6] = 0x1f83d9ab;  ctx->H[7] = 0x5be0cd19;  ctx->total[0] = ctx->total[1] = 0;  ctx->buflen = 0;}/* Process the remaining bytes in the internal buffer and the usual   prolog according to the standard and write the result to RESBUF.   IMPORTANT: On some systems it is required that RESBUF is correctly   aligned for a 32 bits value.  */void *__sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf){  /* Take yet unprocessed bytes into account.  */  uint32_t bytes = ctx->buflen;  size_t pad;  /* Now count remaining bytes.  */  ctx->total[0] += bytes;  if (ctx->total[0] < bytes)    ++ctx->total[1];  pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;  memcpy (&ctx->buffer[bytes], fillbuf, pad);  /* Put the 64-bit file length in *bits* at the end of the buffer.  */  *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);  *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |						  (ctx->total[0] >> 29));  /* Process last bytes.  */  sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);  /* Put result from CTX in first 32 bytes following RESBUF.  */  for (unsigned int i = 0; i < 8; ++i)    ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);  return resbuf;}void__sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx){  /* When we already have some bits in our internal buffer concatenate     both inputs first.  */  if (ctx->buflen != 0)    {      size_t left_over = ctx->buflen;      size_t add = 128 - left_over > len ? len : 128 - left_over;      memcpy (&ctx->buffer[left_over], buffer, add);      ctx->buflen += add;      if (ctx->buflen > 64)	{	  sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);	  ctx->buflen &= 63;	  /* The regions in the following copy operation cannot overlap.  */	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],		  ctx->buflen);	}      buffer = (const char *) buffer + add;      len -= add;    }  /* Process available complete blocks.  */  if (len >= 64)    {#if __GNUC__ >= 2# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)#else# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)#endif      if (UNALIGNED_P (buffer))	while (len > 64)	  {	    sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);	    buffer = (const char *) buffer + 64;	    len -= 64;	  }      else	{	  sha256_process_block (buffer, len & ~63, ctx);	  buffer = (const char *) buffer + (len & ~63);	  len &= 63;	}    }  /* Move remaining bytes into internal buffer.  */  if (len > 0)    {      size_t left_over = ctx->buflen;      memcpy (&ctx->buffer[left_over], buffer, len);      left_over += len;      if (left_over >= 64)	{	  sha256_process_block (ctx->buffer, 64, ctx);	  left_over -= 64;	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);	}      ctx->buflen = left_over;    }}
 |