| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 | /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* sin(x) * Return sine function of x. * * kernel function: *	__kernel_sin		... sine function on [-pi/4,pi/4] *	__kernel_cos		... cose function on [-pi/4,pi/4] *	__ieee754_rem_pio2	... argument reduction routine * * Method. *      Let S,C and T denote the sin, cos and tan respectively on *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 *	in [-pi/4 , +pi/4], and let n = k mod 4. *	We have * *          n        sin(x)      cos(x)        tan(x) *     ---------------------------------------------------------- *	    0	       S	   C		 T *	    1	       C	  -S		-1/T *	    2	      -S	  -C		 T *	    3	      -C	   S		-1/T *     ---------------------------------------------------------- * * Special cases: *      Let trig be any of sin, cos, or tan. *      trig(+-INF)  is NaN, with signals; *      trig(NaN)    is that NaN; * * Accuracy: *	TRIG(x) returns trig(x) nearly rounded */#include "math.h"#include "math_private.h"double sin(double x){	double y[2],z=0.0;	int32_t n, ix;    /* High word of x. */	GET_HIGH_WORD(ix,x);    /* |x| ~< pi/4 */	ix &= 0x7fffffff;	if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);    /* sin(Inf or NaN) is NaN */	else if (ix>=0x7ff00000) return x-x;    /* argument reduction needed */	else {	    n = __ieee754_rem_pio2(x,y);	    switch(n&3) {		case 0: return  __kernel_sin(y[0],y[1],1);		case 1: return  __kernel_cos(y[0],y[1]);		case 2: return -__kernel_sin(y[0],y[1],1);		default:			return -__kernel_cos(y[0],y[1]);	    }	}}libm_hidden_def(sin)
 |