123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- /* asin.c
- *
- * Inverse circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, asin();
- *
- * y = asin( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
- *
- * A rational function of the form x + x**3 P(x**2)/Q(x**2)
- * is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is
- * transformed by the identity
- *
- * asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC -1, 1 40000 2.6e-17 7.1e-18
- * IEEE -1, 1 10^6 1.9e-16 5.4e-17
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * asin domain |x| > 1 NAN
- *
- */
- /* acos()
- *
- * Inverse circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, acos();
- *
- * y = acos( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between 0 and pi whose cosine
- * is x.
- *
- * Analytically, acos(x) = pi/2 - asin(x). However if |x| is
- * near 1, there is cancellation error in subtracting asin(x)
- * from pi/2. Hence if x < -0.5,
- *
- * acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) );
- *
- * or if x > +0.5,
- *
- * acos(x) = 2.0 * asin( sqrt((1-x)/2) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC -1, 1 50000 3.3e-17 8.2e-18
- * IEEE -1, 1 10^6 2.2e-16 6.5e-17
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * asin domain |x| > 1 NAN
- */
- /* asin.c */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1995, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- /* arcsin(x) = x + x^3 P(x^2)/Q(x^2)
- 0 <= x <= 0.625
- Peak relative error = 1.2e-18 */
- #if UNK
- static double P[6] = {
- 4.253011369004428248960E-3,
- -6.019598008014123785661E-1,
- 5.444622390564711410273E0,
- -1.626247967210700244449E1,
- 1.956261983317594739197E1,
- -8.198089802484824371615E0,
- };
- static double Q[5] = {
- /* 1.000000000000000000000E0, */
- -1.474091372988853791896E1,
- 7.049610280856842141659E1,
- -1.471791292232726029859E2,
- 1.395105614657485689735E2,
- -4.918853881490881290097E1,
- };
- #endif
- #if DEC
- static short P[24] = {
- 0036213,0056330,0057244,0053234,
- 0140032,0015011,0114762,0160255,
- 0040656,0035130,0136121,0067313,
- 0141202,0014616,0170474,0101731,
- 0041234,0100076,0151674,0111310,
- 0141003,0025540,0033165,0077246,
- };
- static short Q[20] = {
- /* 0040200,0000000,0000000,0000000, */
- 0141153,0155310,0055360,0072530,
- 0041614,0177001,0027764,0101237,
- 0142023,0026733,0064653,0133266,
- 0042013,0101264,0023775,0176351,
- 0141504,0140420,0050660,0036543,
- };
- #endif
- #if IBMPC
- static short P[24] = {
- 0x8ad3,0x0bd4,0x6b9b,0x3f71,
- 0x5c16,0x333e,0x4341,0xbfe3,
- 0x2dd9,0x178a,0xc74b,0x4015,
- 0x907b,0xde27,0x4331,0xc030,
- 0x9259,0xda77,0x9007,0x4033,
- 0xafd5,0x06ce,0x656c,0xc020,
- };
- static short Q[20] = {
- /* 0x0000,0x0000,0x0000,0x3ff0, */
- 0x0eab,0x0b5e,0x7b59,0xc02d,
- 0x9054,0x25fe,0x9fc0,0x4051,
- 0x76d7,0x6d35,0x65bb,0xc062,
- 0xbf9d,0x84ff,0x7056,0x4061,
- 0x07ac,0x0a36,0x9822,0xc048,
- };
- #endif
- #if MIEEE
- static short P[24] = {
- 0x3f71,0x6b9b,0x0bd4,0x8ad3,
- 0xbfe3,0x4341,0x333e,0x5c16,
- 0x4015,0xc74b,0x178a,0x2dd9,
- 0xc030,0x4331,0xde27,0x907b,
- 0x4033,0x9007,0xda77,0x9259,
- 0xc020,0x656c,0x06ce,0xafd5,
- };
- static short Q[20] = {
- /* 0x3ff0,0x0000,0x0000,0x0000, */
- 0xc02d,0x7b59,0x0b5e,0x0eab,
- 0x4051,0x9fc0,0x25fe,0x9054,
- 0xc062,0x65bb,0x6d35,0x76d7,
- 0x4061,0x7056,0x84ff,0xbf9d,
- 0xc048,0x9822,0x0a36,0x07ac,
- };
- #endif
- /* arcsin(1-x) = pi/2 - sqrt(2x)(1+R(x))
- 0 <= x <= 0.5
- Peak relative error = 4.2e-18 */
- #if UNK
- static double R[5] = {
- 2.967721961301243206100E-3,
- -5.634242780008963776856E-1,
- 6.968710824104713396794E0,
- -2.556901049652824852289E1,
- 2.853665548261061424989E1,
- };
- static double S[4] = {
- /* 1.000000000000000000000E0, */
- -2.194779531642920639778E1,
- 1.470656354026814941758E2,
- -3.838770957603691357202E2,
- 3.424398657913078477438E2,
- };
- #endif
- #if DEC
- static short R[20] = {
- 0036102,0077034,0142164,0174103,
- 0140020,0036222,0147711,0044173,
- 0040736,0177655,0153631,0171523,
- 0141314,0106525,0060015,0055474,
- 0041344,0045422,0003630,0040344,
- };
- static short S[16] = {
- /* 0040200,0000000,0000000,0000000, */
- 0141257,0112425,0132772,0166136,
- 0042023,0010315,0075523,0175020,
- 0142277,0170104,0126203,0017563,
- 0042253,0034115,0102662,0022757,
- };
- #endif
- #if IBMPC
- static short R[20] = {
- 0x9f08,0x988e,0x4fc3,0x3f68,
- 0x290f,0x59f9,0x0792,0xbfe2,
- 0x3e6a,0xbaf3,0xdff5,0x401b,
- 0xab68,0xac01,0x91aa,0xc039,
- 0x081d,0x40f3,0x8962,0x403c,
- };
- static short S[16] = {
- /* 0x0000,0x0000,0x0000,0x3ff0, */
- 0x5d8c,0xb6bf,0xf2a2,0xc035,
- 0x7f42,0xaf6a,0x6219,0x4062,
- 0x63ee,0x9590,0xfe08,0xc077,
- 0x44be,0xb0b6,0x6709,0x4075,
- };
- #endif
- #if MIEEE
- static short R[20] = {
- 0x3f68,0x4fc3,0x988e,0x9f08,
- 0xbfe2,0x0792,0x59f9,0x290f,
- 0x401b,0xdff5,0xbaf3,0x3e6a,
- 0xc039,0x91aa,0xac01,0xab68,
- 0x403c,0x8962,0x40f3,0x081d,
- };
- static short S[16] = {
- /* 0x3ff0,0x0000,0x0000,0x0000, */
- 0xc035,0xf2a2,0xb6bf,0x5d8c,
- 0x4062,0x6219,0xaf6a,0x7f42,
- 0xc077,0xfe08,0x9590,0x63ee,
- 0x4075,0x6709,0xb0b6,0x44be,
- };
- #endif
- /* pi/2 = PIO2 + MOREBITS. */
- #ifdef DEC
- #define MOREBITS 5.721188726109831840122E-18
- #else
- #define MOREBITS 6.123233995736765886130E-17
- #endif
- #ifdef ANSIPROT
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern double sqrt ( double );
- double asin ( double );
- #else
- double sqrt(), polevl(), p1evl();
- double asin();
- #endif
- extern double PIO2, PIO4, NAN;
- double asin(x)
- double x;
- {
- double a, p, z, zz;
- short sign;
- if( x > 0 )
- {
- sign = 1;
- a = x;
- }
- else
- {
- sign = -1;
- a = -x;
- }
- if( a > 1.0 )
- {
- mtherr( "asin", DOMAIN );
- return( NAN );
- }
- if( a > 0.625 )
- {
- /* arcsin(1-x) = pi/2 - sqrt(2x)(1+R(x)) */
- zz = 1.0 - a;
- p = zz * polevl( zz, R, 4)/p1evl( zz, S, 4);
- zz = sqrt(zz+zz);
- z = PIO4 - zz;
- zz = zz * p - MOREBITS;
- z = z - zz;
- z = z + PIO4;
- }
- else
- {
- if( a < 1.0e-8 )
- {
- return(x);
- }
- zz = a * a;
- z = zz * polevl( zz, P, 5)/p1evl( zz, Q, 5);
- z = a * z + a;
- }
- if( sign < 0 )
- z = -z;
- return(z);
- }
- double acos(x)
- double x;
- {
- double z;
- if( (x < -1.0) || (x > 1.0) )
- {
- mtherr( "acos", DOMAIN );
- return( NAN );
- }
- if( x > 0.5 )
- {
- return( 2.0 * asin( sqrt(0.5 - 0.5*x) ) );
- }
- z = PIO4 - asin(x);
- z = z + MOREBITS;
- z = z + PIO4;
- return( z );
- }
|