123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- /* cbrt.c
- *
- * Cube root
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, cbrt();
- *
- * y = cbrt( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the cube root of the argument, which may be negative.
- *
- * Range reduction involves determining the power of 2 of
- * the argument. A polynomial of degree 2 applied to the
- * mantissa, and multiplication by the cube root of 1, 2, or 4
- * approximates the root to within about 0.1%. Then Newton's
- * iteration is used three times to converge to an accurate
- * result.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC -10,10 200000 1.8e-17 6.2e-18
- * IEEE 0,1e308 30000 1.5e-16 5.0e-17
- *
- */
- /* cbrt.c */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1991, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- static double CBRT2 = 1.2599210498948731647672;
- static double CBRT4 = 1.5874010519681994747517;
- static double CBRT2I = 0.79370052598409973737585;
- static double CBRT4I = 0.62996052494743658238361;
- #ifdef ANSIPROT
- extern double frexp ( double, int * );
- extern double ldexp ( double, int );
- extern int isnan ( double );
- extern int isfinite ( double );
- #else
- double frexp(), ldexp();
- int isnan(), isfinite();
- #endif
- double cbrt(x)
- double x;
- {
- int e, rem, sign;
- double z;
- #ifdef NANS
- if( isnan(x) )
- return x;
- #endif
- #ifdef INFINITIES
- if( !isfinite(x) )
- return x;
- #endif
- if( x == 0 )
- return( x );
- if( x > 0 )
- sign = 1;
- else
- {
- sign = -1;
- x = -x;
- }
- z = x;
- /* extract power of 2, leaving
- * mantissa between 0.5 and 1
- */
- x = frexp( x, &e );
- /* Approximate cube root of number between .5 and 1,
- * peak relative error = 9.2e-6
- */
- x = (((-1.3466110473359520655053e-1 * x
- + 5.4664601366395524503440e-1) * x
- - 9.5438224771509446525043e-1) * x
- + 1.1399983354717293273738e0 ) * x
- + 4.0238979564544752126924e-1;
- /* exponent divided by 3 */
- if( e >= 0 )
- {
- rem = e;
- e /= 3;
- rem -= 3*e;
- if( rem == 1 )
- x *= CBRT2;
- else if( rem == 2 )
- x *= CBRT4;
- }
- /* argument less than 1 */
- else
- {
- e = -e;
- rem = e;
- e /= 3;
- rem -= 3*e;
- if( rem == 1 )
- x *= CBRT2I;
- else if( rem == 2 )
- x *= CBRT4I;
- e = -e;
- }
- /* multiply by power of 2 */
- x = ldexp( x, e );
- /* Newton iteration */
- x -= ( x - (z/(x*x)) )*0.33333333333333333333;
- #ifdef DEC
- x -= ( x - (z/(x*x)) )/3.0;
- #else
- x -= ( x - (z/(x*x)) )*0.33333333333333333333;
- #endif
- if( sign < 0 )
- x = -x;
- return(x);
- }
|