123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- /* ellpk.c
- *
- * Complete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * double m1, y, ellpk();
- *
- * y = ellpk( m1 );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * pi/2
- * -
- * | |
- * | dt
- * K(m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * where m = 1 - m1, using the approximation
- *
- * P(x) - log x Q(x).
- *
- * The argument m1 is used rather than m so that the logarithmic
- * singularity at m = 1 will be shifted to the origin; this
- * preserves maximum accuracy.
- *
- * K(0) = pi/2.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,1 16000 3.5e-17 1.1e-17
- * IEEE 0,1 30000 2.5e-16 6.8e-17
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ellpk domain x<0, x>1 0.0
- *
- */
- /* ellpk.c */
- /*
- Cephes Math Library, Release 2.8: June, 2000
- Copyright 1984, 1987, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef DEC
- static unsigned short P[] =
- {
- 0035020,0127576,0040430,0051544,
- 0036025,0070136,0042703,0153716,
- 0036402,0122614,0062555,0077777,
- 0036441,0102130,0072334,0025172,
- 0036341,0043320,0117242,0172076,
- 0036312,0146456,0077242,0154141,
- 0036420,0003467,0013727,0035407,
- 0036564,0137263,0110651,0020237,
- 0036775,0001330,0144056,0020305,
- 0037305,0144137,0157521,0141734,
- 0040261,0071027,0173721,0147572
- };
- static unsigned short Q[] =
- {
- 0034366,0130371,0103453,0077633,
- 0035557,0122745,0173515,0113016,
- 0036302,0124470,0167304,0074473,
- 0036575,0132403,0117226,0117576,
- 0036703,0156271,0047124,0147733,
- 0036766,0137465,0002053,0157312,
- 0037031,0014423,0154274,0176515,
- 0037107,0177747,0143216,0016145,
- 0037217,0177777,0172621,0074000,
- 0037377,0177777,0177776,0156435,
- 0040000,0000000,0000000,0000000
- };
- static unsigned short ac1[] = {0040261,0071027,0173721,0147572};
- #define C1 (*(double *)ac1)
- #endif
- #ifdef IBMPC
- static unsigned short P[] =
- {
- 0x0a6d,0xc823,0x15ef,0x3f22,
- 0x7afa,0xc8b8,0xae0b,0x3f62,
- 0xb000,0x8cad,0x54b1,0x3f80,
- 0x854f,0x0e9b,0x308b,0x3f84,
- 0x5e88,0x13d4,0x28da,0x3f7c,
- 0x5b0c,0xcfd4,0x59a5,0x3f79,
- 0xe761,0xe2fa,0x00e6,0x3f82,
- 0x2414,0x7235,0x97d6,0x3f8e,
- 0xc419,0x1905,0xa05b,0x3f9f,
- 0x387c,0xfbea,0xb90b,0x3fb8,
- 0x39ef,0xfefa,0x2e42,0x3ff6
- };
- static unsigned short Q[] =
- {
- 0x6ff3,0x30e5,0xd61f,0x3efe,
- 0xb2c2,0xbee9,0xf4bc,0x3f4d,
- 0x8f27,0x1dd8,0x5527,0x3f78,
- 0xd3f0,0x73d2,0xb6a0,0x3f8f,
- 0x99fb,0x29ca,0x7b97,0x3f98,
- 0x7bd9,0xa085,0xd7e6,0x3f9e,
- 0x9faa,0x7b17,0x2322,0x3fa3,
- 0xc38d,0xf8d1,0xfffc,0x3fa8,
- 0x2f00,0xfeb2,0xffff,0x3fb1,
- 0xdba4,0xffff,0xffff,0x3fbf,
- 0x0000,0x0000,0x0000,0x3fe0
- };
- static unsigned short ac1[] = {0x39ef,0xfefa,0x2e42,0x3ff6};
- #define C1 (*(double *)ac1)
- #endif
- #ifdef MIEEE
- static unsigned short P[] =
- {
- 0x3f22,0x15ef,0xc823,0x0a6d,
- 0x3f62,0xae0b,0xc8b8,0x7afa,
- 0x3f80,0x54b1,0x8cad,0xb000,
- 0x3f84,0x308b,0x0e9b,0x854f,
- 0x3f7c,0x28da,0x13d4,0x5e88,
- 0x3f79,0x59a5,0xcfd4,0x5b0c,
- 0x3f82,0x00e6,0xe2fa,0xe761,
- 0x3f8e,0x97d6,0x7235,0x2414,
- 0x3f9f,0xa05b,0x1905,0xc419,
- 0x3fb8,0xb90b,0xfbea,0x387c,
- 0x3ff6,0x2e42,0xfefa,0x39ef
- };
- static unsigned short Q[] =
- {
- 0x3efe,0xd61f,0x30e5,0x6ff3,
- 0x3f4d,0xf4bc,0xbee9,0xb2c2,
- 0x3f78,0x5527,0x1dd8,0x8f27,
- 0x3f8f,0xb6a0,0x73d2,0xd3f0,
- 0x3f98,0x7b97,0x29ca,0x99fb,
- 0x3f9e,0xd7e6,0xa085,0x7bd9,
- 0x3fa3,0x2322,0x7b17,0x9faa,
- 0x3fa8,0xfffc,0xf8d1,0xc38d,
- 0x3fb1,0xffff,0xfeb2,0x2f00,
- 0x3fbf,0xffff,0xffff,0xdba4,
- 0x3fe0,0x0000,0x0000,0x0000
- };
- static unsigned short ac1[] = {
- 0x3ff6,0x2e42,0xfefa,0x39ef
- };
- #define C1 (*(double *)ac1)
- #endif
- #ifdef UNK
- static double P[] =
- {
- 1.37982864606273237150E-4,
- 2.28025724005875567385E-3,
- 7.97404013220415179367E-3,
- 9.85821379021226008714E-3,
- 6.87489687449949877925E-3,
- 6.18901033637687613229E-3,
- 8.79078273952743772254E-3,
- 1.49380448916805252718E-2,
- 3.08851465246711995998E-2,
- 9.65735902811690126535E-2,
- 1.38629436111989062502E0
- };
- static double Q[] =
- {
- 2.94078955048598507511E-5,
- 9.14184723865917226571E-4,
- 5.94058303753167793257E-3,
- 1.54850516649762399335E-2,
- 2.39089602715924892727E-2,
- 3.01204715227604046988E-2,
- 3.73774314173823228969E-2,
- 4.88280347570998239232E-2,
- 7.03124996963957469739E-2,
- 1.24999999999870820058E-1,
- 4.99999999999999999821E-1
- };
- static double C1 = 1.3862943611198906188E0; /* log(4) */
- #endif
- #ifdef ANSIPROT
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern double log ( double );
- #else
- double polevl(), p1evl(), log();
- #endif
- extern double MACHEP, MAXNUM;
- double ellpk(x)
- double x;
- {
- if( (x < 0.0) || (x > 1.0) )
- {
- mtherr( "ellpk", DOMAIN );
- return( 0.0 );
- }
- if( x > MACHEP )
- {
- return( polevl(x,P,10) - log(x) * polevl(x,Q,10) );
- }
- else
- {
- if( x == 0.0 )
- {
- mtherr( "ellpk", SING );
- return( MAXNUM );
- }
- else
- {
- return( C1 - 0.5 * log(x) );
- }
- }
- }
|