123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- /* exp10.c
- *
- * Base 10 exponential function
- * (Common antilogarithm)
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, exp10();
- *
- * y = exp10( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns 10 raised to the x power.
- *
- * Range reduction is accomplished by expressing the argument
- * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
- * The Pade' form
- *
- * 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- *
- * is used to approximate 10**f.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -307,+307 30000 2.2e-16 5.5e-17
- * Test result from an earlier version (2.1):
- * DEC -38,+38 70000 3.1e-17 7.0e-18
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp10 underflow x < -MAXL10 0.0
- * exp10 overflow x > MAXL10 MAXNUM
- *
- * DEC arithmetic: MAXL10 = 38.230809449325611792.
- * IEEE arithmetic: MAXL10 = 308.2547155599167.
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1991, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static double P[] = {
- 4.09962519798587023075E-2,
- 1.17452732554344059015E1,
- 4.06717289936872725516E2,
- 2.39423741207388267439E3,
- };
- static double Q[] = {
- /* 1.00000000000000000000E0,*/
- 8.50936160849306532625E1,
- 1.27209271178345121210E3,
- 2.07960819286001865907E3,
- };
- /* static double LOG102 = 3.01029995663981195214e-1; */
- static double LOG210 = 3.32192809488736234787e0;
- static double LG102A = 3.01025390625000000000E-1;
- static double LG102B = 4.60503898119521373889E-6;
- /* static double MAXL10 = 38.230809449325611792; */
- static double MAXL10 = 308.2547155599167;
- #endif
- #ifdef DEC
- static unsigned short P[] = {
- 0037047,0165657,0114061,0067234,
- 0041073,0166243,0123052,0144643,
- 0042313,0055720,0024032,0047443,
- 0043025,0121714,0070232,0050007,
- };
- static unsigned short Q[] = {
- /*0040200,0000000,0000000,0000000,*/
- 0041652,0027756,0071216,0050075,
- 0042637,0001367,0077263,0136017,
- 0043001,0174673,0024157,0133416,
- };
- /*
- static unsigned short L102[] = {0037632,0020232,0102373,0147770};
- #define LOG102 *(double *)L102
- */
- static unsigned short L210[] = {0040524,0115170,0045715,0015613};
- #define LOG210 *(double *)L210
- static unsigned short L102A[] = {0037632,0020000,0000000,0000000,};
- #define LG102A *(double *)L102A
- static unsigned short L102B[] = {0033632,0102373,0147767,0114220,};
- #define LG102B *(double *)L102B
- static unsigned short MXL[] = {0041430,0166131,0047761,0154130,};
- #define MAXL10 ( *(double *)MXL )
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {
- 0x2dd4,0xf306,0xfd75,0x3fa4,
- 0x5934,0x74c5,0x7d94,0x4027,
- 0x49e4,0x0503,0x6b7a,0x4079,
- 0x4a01,0x8e13,0xb479,0x40a2,
- };
- static unsigned short Q[] = {
- /*0x0000,0x0000,0x0000,0x3ff0,*/
- 0xca08,0xce51,0x45fd,0x4055,
- 0x7782,0xefd6,0xe05e,0x4093,
- 0xf6e2,0x650d,0x3f37,0x40a0,
- };
- /*
- static unsigned short L102[] = {0x79ff,0x509f,0x4413,0x3fd3};
- #define LOG102 *(double *)L102
- */
- static unsigned short L210[] = {0xa371,0x0979,0x934f,0x400a};
- #define LOG210 *(double *)L210
- static unsigned short L102A[] = {0x0000,0x0000,0x4400,0x3fd3,};
- #define LG102A *(double *)L102A
- static unsigned short L102B[] = {0xf312,0x79fe,0x509f,0x3ed3,};
- #define LG102B *(double *)L102B
- static double MAXL10 = 308.2547155599167;
- #endif
- #ifdef MIEEE
- static unsigned short P[] = {
- 0x3fa4,0xfd75,0xf306,0x2dd4,
- 0x4027,0x7d94,0x74c5,0x5934,
- 0x4079,0x6b7a,0x0503,0x49e4,
- 0x40a2,0xb479,0x8e13,0x4a01,
- };
- static unsigned short Q[] = {
- /*0x3ff0,0x0000,0x0000,0x0000,*/
- 0x4055,0x45fd,0xce51,0xca08,
- 0x4093,0xe05e,0xefd6,0x7782,
- 0x40a0,0x3f37,0x650d,0xf6e2,
- };
- /*
- static unsigned short L102[] = {0x3fd3,0x4413,0x509f,0x79ff};
- #define LOG102 *(double *)L102
- */
- static unsigned short L210[] = {0x400a,0x934f,0x0979,0xa371};
- #define LOG210 *(double *)L210
- static unsigned short L102A[] = {0x3fd3,0x4400,0x0000,0x0000,};
- #define LG102A *(double *)L102A
- static unsigned short L102B[] = {0x3ed3,0x509f,0x79fe,0xf312,};
- #define LG102B *(double *)L102B
- static double MAXL10 = 308.2547155599167;
- #endif
- #ifdef ANSIPROT
- extern double floor ( double );
- extern double ldexp ( double, int );
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern int isnan ( double );
- extern int isfinite ( double );
- #else
- double floor(), ldexp(), polevl(), p1evl();
- int isnan(), isfinite();
- #endif
- extern double MAXNUM;
- #ifdef INFINITIES
- extern double INFINITY;
- #endif
- double exp10(x)
- double x;
- {
- double px, xx;
- short n;
- #ifdef NANS
- if( isnan(x) )
- return(x);
- #endif
- if( x > MAXL10 )
- {
- #ifdef INFINITIES
- return( INFINITY );
- #else
- mtherr( "exp10", OVERFLOW );
- return( MAXNUM );
- #endif
- }
- if( x < -MAXL10 ) /* Would like to use MINLOG but can't */
- {
- #ifndef INFINITIES
- mtherr( "exp10", UNDERFLOW );
- #endif
- return(0.0);
- }
- /* Express 10**x = 10**g 2**n
- * = 10**g 10**( n log10(2) )
- * = 10**( g + n log10(2) )
- */
- px = floor( LOG210 * x + 0.5 );
- n = px;
- x -= px * LG102A;
- x -= px * LG102B;
- /* rational approximation for exponential
- * of the fractional part:
- * 10**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- */
- xx = x * x;
- px = x * polevl( xx, P, 3 );
- x = px/( p1evl( xx, Q, 3 ) - px );
- x = 1.0 + ldexp( x, 1 );
- /* multiply by power of 2 */
- x = ldexp( x, n );
- return(x);
- }
|