123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- /*
- C
- C ..................................................................
- C
- C SUBROUTINE GELS
- C
- C PURPOSE
- C TO SOLVE A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS WITH
- C SYMMETRIC COEFFICIENT MATRIX UPPER TRIANGULAR PART OF WHICH
- C IS ASSUMED TO BE STORED COLUMNWISE.
- C
- C USAGE
- C CALL GELS(R,A,M,N,EPS,IER,AUX)
- C
- C DESCRIPTION OF PARAMETERS
- C R - M BY N RIGHT HAND SIDE MATRIX. (DESTROYED)
- C ON RETURN R CONTAINS THE SOLUTION OF THE EQUATIONS.
- C A - UPPER TRIANGULAR PART OF THE SYMMETRIC
- C M BY M COEFFICIENT MATRIX. (DESTROYED)
- C M - THE NUMBER OF EQUATIONS IN THE SYSTEM.
- C N - THE NUMBER OF RIGHT HAND SIDE VECTORS.
- C EPS - AN INPUT CONSTANT WHICH IS USED AS RELATIVE
- C TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE.
- C IER - RESULTING ERROR PARAMETER CODED AS FOLLOWS
- C IER=0 - NO ERROR,
- C IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 OR
- C PIVOT ELEMENT AT ANY ELIMINATION STEP
- C EQUAL TO 0,
- C IER=K - WARNING DUE TO POSSIBLE LOSS OF SIGNIFI-
- C CANCE INDICATED AT ELIMINATION STEP K+1,
- C WHERE PIVOT ELEMENT WAS LESS THAN OR
- C EQUAL TO THE INTERNAL TOLERANCE EPS TIMES
- C ABSOLUTELY GREATEST MAIN DIAGONAL
- C ELEMENT OF MATRIX A.
- C AUX - AN AUXILIARY STORAGE ARRAY WITH DIMENSION M-1.
- C
- C REMARKS
- C UPPER TRIANGULAR PART OF MATRIX A IS ASSUMED TO BE STORED
- C COLUMNWISE IN M*(M+1)/2 SUCCESSIVE STORAGE LOCATIONS, RIGHT
- C HAND SIDE MATRIX R COLUMNWISE IN N*M SUCCESSIVE STORAGE
- C LOCATIONS. ON RETURN SOLUTION MATRIX R IS STORED COLUMNWISE
- C TOO.
- C THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS
- C GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS
- C ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN -
- C INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL
- C SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE
- C INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING IS
- C GIVEN IN CASE M=1.
- C ERROR PARAMETER IER=-1 DOES NOT NECESSARILY MEAN THAT
- C MATRIX A IS SINGULAR, AS ONLY MAIN DIAGONAL ELEMENTS
- C ARE USED AS PIVOT ELEMENTS. POSSIBLY SUBROUTINE GELG (WHICH
- C WORKS WITH TOTAL PIVOTING) WOULD BE ABLE TO FIND A SOLUTION.
- C
- C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
- C NONE
- C
- C METHOD
- C SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH
- C PIVOTING IN MAIN DIAGONAL, IN ORDER TO PRESERVE
- C SYMMETRY IN REMAINING COEFFICIENT MATRICES.
- C
- C ..................................................................
- C
- */
- #include <math.h>
- #ifdef ANSIPROT
- extern double fabs ( double );
- #else
- double fabs();
- #endif
- gels( A, R, M, EPS, AUX )
- double A[],R[];
- int M;
- double EPS;
- double AUX[];
- {
- int I, J, K, L, IER;
- int II, LL, LLD, LR, LT, LST, LLST, LEND;
- double tb, piv, tol, pivi;
- if( M <= 0 )
- {
- fatal:
- IER = -1;
- goto done;
- }
- /* SEARCH FOR GREATEST MAIN DIAGONAL ELEMENT */
- /* Diagonal elements are at A(i,i) = 1, 3, 6, 10, ...
- * A(i,j) = A( i(i-1)/2 + j )
- */
- IER = 0;
- piv = 0.0;
- L = 0;
- for( K=1; K<=M; K++ )
- {
- L += K;
- tb = fabs( A[L-1] );
- if( tb > piv )
- {
- piv = tb;
- I = L;
- J = K;
- }
- }
- tol = EPS * piv;
- /*
- C MAIN DIAGONAL ELEMENT A(I)=A(J,J) IS FIRST PIVOT ELEMENT.
- C PIV CONTAINS THE ABSOLUTE VALUE OF A(I).
- */
- /* START ELIMINATION LOOP */
- LST = 0;
- LEND = M - 1;
- for( K=1; K<=M; K++ )
- {
- /* TEST ON USEFULNESS OF SYMMETRIC ALGORITHM */
- if( piv <= 0.0 )
- goto fatal;
- if( IER == 0 )
- {
- if( piv <= tol )
- {
- IER = K - 1;
- }
- }
- LT = J - K;
- LST += K;
- /* PIVOT ROW REDUCTION AND ROW INTERCHANGE IN RIGHT HAND SIDE R */
- pivi = 1.0 / A[I-1];
- L = K;
- LL = L + LT;
- tb = pivi * R[LL-1];
- R[LL-1] = R[L-1];
- R[L-1] = tb;
- /* IS ELIMINATION TERMINATED */
- if( K >= M )
- break;
- /*
- C ROW AND COLUMN INTERCHANGE AND PIVOT ROW REDUCTION IN MATRIX A.
- C ELEMENTS OF PIVOT COLUMN ARE SAVED IN AUXILIARY VECTOR AUX.
- */
- LR = LST + (LT*(K+J-1))/2;
- LL = LR;
- L=LST;
- for( II=K; II<=LEND; II++ )
- {
- L += II;
- LL += 1;
- if( L == LR )
- {
- A[LL-1] = A[LST-1];
- tb = A[L-1];
- goto lab13;
- }
- if( L > LR )
- LL = L + LT;
- tb = A[LL-1];
- A[LL-1] = A[L-1];
- lab13:
- AUX[II-1] = tb;
- A[L-1] = pivi * tb;
- }
- /* SAVE COLUMN INTERCHANGE INFORMATION */
- A[LST-1] = LT;
- /* ELEMENT REDUCTION AND SEARCH FOR NEXT PIVOT */
- piv = 0.0;
- LLST = LST;
- LT = 0;
- for( II=K; II<=LEND; II++ )
- {
- pivi = -AUX[II-1];
- LL = LLST;
- LT += 1;
- for( LLD=II; LLD<=LEND; LLD++ )
- {
- LL += LLD;
- L = LL + LT;
- A[L-1] += pivi * A[LL-1];
- }
- LLST += II;
- LR = LLST + LT;
- tb =fabs( A[LR-1] );
- if( tb > piv )
- {
- piv = tb;
- I = LR;
- J = II + 1;
- }
- LR = K;
- LL = LR + LT;
- R[LL-1] += pivi * R[LR-1];
- }
- }
- /* END OF ELIMINATION LOOP */
- /* BACK SUBSTITUTION AND BACK INTERCHANGE */
- if( LEND <= 0 )
- {
- if( LEND < 0 )
- goto fatal;
- goto done;
- }
- II = M;
- for( I=2; I<=M; I++ )
- {
- LST -= II;
- II -= 1;
- L = A[LST-1] + 0.5;
- J = II;
- tb = R[J-1];
- LL = J;
- K = LST;
- for( LT=II; LT<=LEND; LT++ )
- {
- LL += 1;
- K += LT;
- tb -= A[K-1] * R[LL-1];
- }
- K = J + L;
- R[J-1] = R[K-1];
- R[K-1] = tb;
- }
- done:
- return( IER );
- }
|