123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- /* incbet.c
- *
- * Incomplete beta integral
- *
- *
- * SYNOPSIS:
- *
- * double a, b, x, y, incbet();
- *
- * y = incbet( a, b, x );
- *
- *
- * DESCRIPTION:
- *
- * Returns incomplete beta integral of the arguments, evaluated
- * from zero to x. The function is defined as
- *
- * x
- * - -
- * | (a+b) | | a-1 b-1
- * ----------- | t (1-t) dt.
- * - - | |
- * | (a) | (b) -
- * 0
- *
- * The domain of definition is 0 <= x <= 1. In this
- * implementation a and b are restricted to positive values.
- * The integral from x to 1 may be obtained by the symmetry
- * relation
- *
- * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
- *
- * The integral is evaluated by a continued fraction expansion
- * or, when b*x is small, by a power series.
- *
- * ACCURACY:
- *
- * Tested at uniformly distributed random points (a,b,x) with a and b
- * in "domain" and x between 0 and 1.
- * Relative error
- * arithmetic domain # trials peak rms
- * IEEE 0,5 10000 6.9e-15 4.5e-16
- * IEEE 0,85 250000 2.2e-13 1.7e-14
- * IEEE 0,1000 30000 5.3e-12 6.3e-13
- * IEEE 0,10000 250000 9.3e-11 7.1e-12
- * IEEE 0,100000 10000 8.7e-10 4.8e-11
- * Outputs smaller than the IEEE gradual underflow threshold
- * were excluded from these statistics.
- *
- * ERROR MESSAGES:
- * message condition value returned
- * incbet domain x<0, x>1 0.0
- * incbet underflow 0.0
- */
- /*
- Cephes Math Library, Release 2.8: June, 2000
- Copyright 1984, 1995, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef DEC
- #define MAXGAM 34.84425627277176174
- #else
- #define MAXGAM 171.624376956302725
- #endif
- extern double MACHEP, MINLOG, MAXLOG;
- #ifdef ANSIPROT
- extern double gamma ( double );
- extern double lgam ( double );
- extern double exp ( double );
- extern double log ( double );
- extern double pow ( double, double );
- extern double fabs ( double );
- static double incbcf(double, double, double);
- static double incbd(double, double, double);
- static double pseries(double, double, double);
- #else
- double gamma(), lgam(), exp(), log(), pow(), fabs();
- static double incbcf(), incbd(), pseries();
- #endif
- static double big = 4.503599627370496e15;
- static double biginv = 2.22044604925031308085e-16;
- double incbet( aa, bb, xx )
- double aa, bb, xx;
- {
- double a, b, t, x, xc, w, y;
- int flag;
- if( aa <= 0.0 || bb <= 0.0 )
- goto domerr;
- if( (xx <= 0.0) || ( xx >= 1.0) )
- {
- if( xx == 0.0 )
- return(0.0);
- if( xx == 1.0 )
- return( 1.0 );
- domerr:
- mtherr( "incbet", DOMAIN );
- return( 0.0 );
- }
- flag = 0;
- if( (bb * xx) <= 1.0 && xx <= 0.95)
- {
- t = pseries(aa, bb, xx);
- goto done;
- }
- w = 1.0 - xx;
- /* Reverse a and b if x is greater than the mean. */
- if( xx > (aa/(aa+bb)) )
- {
- flag = 1;
- a = bb;
- b = aa;
- xc = xx;
- x = w;
- }
- else
- {
- a = aa;
- b = bb;
- xc = w;
- x = xx;
- }
- if( flag == 1 && (b * x) <= 1.0 && x <= 0.95)
- {
- t = pseries(a, b, x);
- goto done;
- }
- /* Choose expansion for better convergence. */
- y = x * (a+b-2.0) - (a-1.0);
- if( y < 0.0 )
- w = incbcf( a, b, x );
- else
- w = incbd( a, b, x ) / xc;
- /* Multiply w by the factor
- a b _ _ _
- x (1-x) | (a+b) / ( a | (a) | (b) ) . */
- y = a * log(x);
- t = b * log(xc);
- if( (a+b) < MAXGAM && fabs(y) < MAXLOG && fabs(t) < MAXLOG )
- {
- t = pow(xc,b);
- t *= pow(x,a);
- t /= a;
- t *= w;
- t *= gamma(a+b) / (gamma(a) * gamma(b));
- goto done;
- }
- /* Resort to logarithms. */
- y += t + lgam(a+b) - lgam(a) - lgam(b);
- y += log(w/a);
- if( y < MINLOG )
- t = 0.0;
- else
- t = exp(y);
- done:
- if( flag == 1 )
- {
- if( t <= MACHEP )
- t = 1.0 - MACHEP;
- else
- t = 1.0 - t;
- }
- return( t );
- }
- /* Continued fraction expansion #1
- * for incomplete beta integral
- */
- static double incbcf( a, b, x )
- double a, b, x;
- {
- double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
- double k1, k2, k3, k4, k5, k6, k7, k8;
- double r, t, ans, thresh;
- int n;
- k1 = a;
- k2 = a + b;
- k3 = a;
- k4 = a + 1.0;
- k5 = 1.0;
- k6 = b - 1.0;
- k7 = k4;
- k8 = a + 2.0;
- pkm2 = 0.0;
- qkm2 = 1.0;
- pkm1 = 1.0;
- qkm1 = 1.0;
- ans = 1.0;
- r = 1.0;
- n = 0;
- thresh = 3.0 * MACHEP;
- do
- {
-
- xk = -( x * k1 * k2 )/( k3 * k4 );
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- xk = ( x * k5 * k6 )/( k7 * k8 );
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if( qk != 0 )
- r = pk/qk;
- if( r != 0 )
- {
- t = fabs( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
- if( t < thresh )
- goto cdone;
- k1 += 1.0;
- k2 += 1.0;
- k3 += 2.0;
- k4 += 2.0;
- k5 += 1.0;
- k6 -= 1.0;
- k7 += 2.0;
- k8 += 2.0;
- if( (fabs(qk) + fabs(pk)) > big )
- {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- if( (fabs(qk) < biginv) || (fabs(pk) < biginv) )
- {
- pkm2 *= big;
- pkm1 *= big;
- qkm2 *= big;
- qkm1 *= big;
- }
- }
- while( ++n < 300 );
- cdone:
- return(ans);
- }
- /* Continued fraction expansion #2
- * for incomplete beta integral
- */
- static double incbd( a, b, x )
- double a, b, x;
- {
- double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
- double k1, k2, k3, k4, k5, k6, k7, k8;
- double r, t, ans, z, thresh;
- int n;
- k1 = a;
- k2 = b - 1.0;
- k3 = a;
- k4 = a + 1.0;
- k5 = 1.0;
- k6 = a + b;
- k7 = a + 1.0;;
- k8 = a + 2.0;
- pkm2 = 0.0;
- qkm2 = 1.0;
- pkm1 = 1.0;
- qkm1 = 1.0;
- z = x / (1.0-x);
- ans = 1.0;
- r = 1.0;
- n = 0;
- thresh = 3.0 * MACHEP;
- do
- {
-
- xk = -( z * k1 * k2 )/( k3 * k4 );
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- xk = ( z * k5 * k6 )/( k7 * k8 );
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if( qk != 0 )
- r = pk/qk;
- if( r != 0 )
- {
- t = fabs( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
- if( t < thresh )
- goto cdone;
- k1 += 1.0;
- k2 -= 1.0;
- k3 += 2.0;
- k4 += 2.0;
- k5 += 1.0;
- k6 += 1.0;
- k7 += 2.0;
- k8 += 2.0;
- if( (fabs(qk) + fabs(pk)) > big )
- {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- if( (fabs(qk) < biginv) || (fabs(pk) < biginv) )
- {
- pkm2 *= big;
- pkm1 *= big;
- qkm2 *= big;
- qkm1 *= big;
- }
- }
- while( ++n < 300 );
- cdone:
- return(ans);
- }
- /* Power series for incomplete beta integral.
- Use when b*x is small and x not too close to 1. */
- static double pseries( a, b, x )
- double a, b, x;
- {
- double s, t, u, v, n, t1, z, ai;
- ai = 1.0 / a;
- u = (1.0 - b) * x;
- v = u / (a + 1.0);
- t1 = v;
- t = u;
- n = 2.0;
- s = 0.0;
- z = MACHEP * ai;
- while( fabs(v) > z )
- {
- u = (n - b) * x / n;
- t *= u;
- v = t / (a + n);
- s += v;
- n += 1.0;
- }
- s += t1;
- s += ai;
- u = a * log(x);
- if( (a+b) < MAXGAM && fabs(u) < MAXLOG )
- {
- t = gamma(a+b)/(gamma(a)*gamma(b));
- s = s * t * pow(x,a);
- }
- else
- {
- t = lgam(a+b) - lgam(a) - lgam(b) + u + log(s);
- if( t < MINLOG )
- s = 0.0;
- else
- s = exp(t);
- }
- return(s);
- }
|