123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756 |
- /* pow.c
- *
- * Power function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, z, pow();
- *
- * z = pow( x, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes x raised to the yth power. Analytically,
- *
- * x**y = exp( y log(x) ).
- *
- * Following Cody and Waite, this program uses a lookup table
- * of 2**-i/16 and pseudo extended precision arithmetic to
- * obtain an extra three bits of accuracy in both the logarithm
- * and the exponential.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -26,26 30000 4.2e-16 7.7e-17
- * DEC -26,26 60000 4.8e-17 9.1e-18
- * 1/26 < x < 26, with log(x) uniformly distributed.
- * -26 < y < 26, y uniformly distributed.
- * IEEE 0,8700 30000 1.5e-14 2.1e-15
- * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * pow overflow x**y > MAXNUM INFINITY
- * pow underflow x**y < 1/MAXNUM 0.0
- * pow domain x<0 and y noninteger 0.0
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1995, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- static char fname[] = {"pow"};
- #define SQRTH 0.70710678118654752440
- #ifdef UNK
- static double P[] = {
- 4.97778295871696322025E-1,
- 3.73336776063286838734E0,
- 7.69994162726912503298E0,
- 4.66651806774358464979E0
- };
- static double Q[] = {
- /* 1.00000000000000000000E0, */
- 9.33340916416696166113E0,
- 2.79999886606328401649E1,
- 3.35994905342304405431E1,
- 1.39995542032307539578E1
- };
- /* 2^(-i/16), IEEE precision */
- static double A[] = {
- 1.00000000000000000000E0,
- 9.57603280698573700036E-1,
- 9.17004043204671215328E-1,
- 8.78126080186649726755E-1,
- 8.40896415253714502036E-1,
- 8.05245165974627141736E-1,
- 7.71105412703970372057E-1,
- 7.38413072969749673113E-1,
- 7.07106781186547572737E-1,
- 6.77127773468446325644E-1,
- 6.48419777325504820276E-1,
- 6.20928906036742001007E-1,
- 5.94603557501360513449E-1,
- 5.69394317378345782288E-1,
- 5.45253866332628844837E-1,
- 5.22136891213706877402E-1,
- 5.00000000000000000000E-1
- };
- static double B[] = {
- 0.00000000000000000000E0,
- 1.64155361212281360176E-17,
- 4.09950501029074826006E-17,
- 3.97491740484881042808E-17,
- -4.83364665672645672553E-17,
- 1.26912513974441574796E-17,
- 1.99100761573282305549E-17,
- -1.52339103990623557348E-17,
- 0.00000000000000000000E0
- };
- static double R[] = {
- 1.49664108433729301083E-5,
- 1.54010762792771901396E-4,
- 1.33335476964097721140E-3,
- 9.61812908476554225149E-3,
- 5.55041086645832347466E-2,
- 2.40226506959099779976E-1,
- 6.93147180559945308821E-1
- };
- #define douba(k) A[k]
- #define doubb(k) B[k]
- #define MEXP 16383.0
- #ifdef DENORMAL
- #define MNEXP -17183.0
- #else
- #define MNEXP -16383.0
- #endif
- #endif
- #ifdef DEC
- static unsigned short P[] = {
- 0037776,0156313,0175332,0163602,
- 0040556,0167577,0052366,0174245,
- 0040766,0062753,0175707,0055564,
- 0040625,0052035,0131344,0155636,
- };
- static unsigned short Q[] = {
- /*0040200,0000000,0000000,0000000,*/
- 0041025,0052644,0154404,0105155,
- 0041337,0177772,0007016,0047646,
- 0041406,0062740,0154273,0020020,
- 0041137,0177054,0106127,0044555,
- };
- static unsigned short A[] = {
- 0040200,0000000,0000000,0000000,
- 0040165,0022575,0012444,0103314,
- 0040152,0140306,0163735,0022071,
- 0040140,0146336,0166052,0112341,
- 0040127,0042374,0145326,0116553,
- 0040116,0022214,0012437,0102201,
- 0040105,0063452,0010525,0003333,
- 0040075,0004243,0117530,0006067,
- 0040065,0002363,0031771,0157145,
- 0040055,0054076,0165102,0120513,
- 0040045,0177326,0124661,0050471,
- 0040036,0172462,0060221,0120422,
- 0040030,0033760,0050615,0134251,
- 0040021,0141723,0071653,0010703,
- 0040013,0112701,0161752,0105727,
- 0040005,0125303,0063714,0044173,
- 0040000,0000000,0000000,0000000
- };
- static unsigned short B[] = {
- 0000000,0000000,0000000,0000000,
- 0021473,0040265,0153315,0140671,
- 0121074,0062627,0042146,0176454,
- 0121413,0003524,0136332,0066212,
- 0121767,0046404,0166231,0012553,
- 0121257,0015024,0002357,0043574,
- 0021736,0106532,0043060,0056206,
- 0121310,0020334,0165705,0035326,
- 0000000,0000000,0000000,0000000
- };
- static unsigned short R[] = {
- 0034173,0014076,0137624,0115771,
- 0035041,0076763,0003744,0111311,
- 0035656,0141766,0041127,0074351,
- 0036435,0112533,0073611,0116664,
- 0037143,0054106,0134040,0152223,
- 0037565,0176757,0176026,0025551,
- 0040061,0071027,0173721,0147572
- };
- /*
- static double R[] = {
- 0.14928852680595608186e-4,
- 0.15400290440989764601e-3,
- 0.13333541313585784703e-2,
- 0.96181290595172416964e-2,
- 0.55504108664085595326e-1,
- 0.24022650695909537056e0,
- 0.69314718055994529629e0
- };
- */
- #define douba(k) (*(double *)&A[(k)<<2])
- #define doubb(k) (*(double *)&B[(k)<<2])
- #define MEXP 2031.0
- #define MNEXP -2031.0
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {
- 0x5cf0,0x7f5b,0xdb99,0x3fdf,
- 0xdf15,0xea9e,0xddef,0x400d,
- 0xeb6f,0x7f78,0xccbd,0x401e,
- 0x9b74,0xb65c,0xaa83,0x4012,
- };
- static unsigned short Q[] = {
- /*0x0000,0x0000,0x0000,0x3ff0,*/
- 0x914e,0x9b20,0xaab4,0x4022,
- 0xc9f5,0x41c1,0xffff,0x403b,
- 0x6402,0x1b17,0xccbc,0x4040,
- 0xe92e,0x918a,0xffc5,0x402b,
- };
- static unsigned short A[] = {
- 0x0000,0x0000,0x0000,0x3ff0,
- 0x90da,0xa2a4,0xa4af,0x3fee,
- 0xa487,0xdcfb,0x5818,0x3fed,
- 0x529c,0xdd85,0x199b,0x3fec,
- 0xd3ad,0x995a,0xe89f,0x3fea,
- 0xf090,0x82a3,0xc491,0x3fe9,
- 0xa0db,0x422a,0xace5,0x3fe8,
- 0x0187,0x73eb,0xa114,0x3fe7,
- 0x3bcd,0x667f,0xa09e,0x3fe6,
- 0x5429,0xdd48,0xab07,0x3fe5,
- 0x2a27,0xd536,0xbfda,0x3fe4,
- 0x3422,0x4c12,0xdea6,0x3fe3,
- 0xb715,0x0a31,0x06fe,0x3fe3,
- 0x6238,0x6e75,0x387a,0x3fe2,
- 0x517b,0x3c7d,0x72b8,0x3fe1,
- 0x890f,0x6cf9,0xb558,0x3fe0,
- 0x0000,0x0000,0x0000,0x3fe0
- };
- static unsigned short B[] = {
- 0x0000,0x0000,0x0000,0x0000,
- 0x3707,0xd75b,0xed02,0x3c72,
- 0xcc81,0x345d,0xa1cd,0x3c87,
- 0x4b27,0x5686,0xe9f1,0x3c86,
- 0x6456,0x13b2,0xdd34,0xbc8b,
- 0x42e2,0xafec,0x4397,0x3c6d,
- 0x82e4,0xd231,0xf46a,0x3c76,
- 0x8a76,0xb9d7,0x9041,0xbc71,
- 0x0000,0x0000,0x0000,0x0000
- };
- static unsigned short R[] = {
- 0x937f,0xd7f2,0x6307,0x3eef,
- 0x9259,0x60fc,0x2fbe,0x3f24,
- 0xef1d,0xc84a,0xd87e,0x3f55,
- 0x33b7,0x6ef1,0xb2ab,0x3f83,
- 0x1a92,0xd704,0x6b08,0x3fac,
- 0xc56d,0xff82,0xbfbd,0x3fce,
- 0x39ef,0xfefa,0x2e42,0x3fe6
- };
- #define douba(k) (*(double *)&A[(k)<<2])
- #define doubb(k) (*(double *)&B[(k)<<2])
- #define MEXP 16383.0
- #ifdef DENORMAL
- #define MNEXP -17183.0
- #else
- #define MNEXP -16383.0
- #endif
- #endif
- #ifdef MIEEE
- static unsigned short P[] = {
- 0x3fdf,0xdb99,0x7f5b,0x5cf0,
- 0x400d,0xddef,0xea9e,0xdf15,
- 0x401e,0xccbd,0x7f78,0xeb6f,
- 0x4012,0xaa83,0xb65c,0x9b74
- };
- static unsigned short Q[] = {
- 0x4022,0xaab4,0x9b20,0x914e,
- 0x403b,0xffff,0x41c1,0xc9f5,
- 0x4040,0xccbc,0x1b17,0x6402,
- 0x402b,0xffc5,0x918a,0xe92e
- };
- static unsigned short A[] = {
- 0x3ff0,0x0000,0x0000,0x0000,
- 0x3fee,0xa4af,0xa2a4,0x90da,
- 0x3fed,0x5818,0xdcfb,0xa487,
- 0x3fec,0x199b,0xdd85,0x529c,
- 0x3fea,0xe89f,0x995a,0xd3ad,
- 0x3fe9,0xc491,0x82a3,0xf090,
- 0x3fe8,0xace5,0x422a,0xa0db,
- 0x3fe7,0xa114,0x73eb,0x0187,
- 0x3fe6,0xa09e,0x667f,0x3bcd,
- 0x3fe5,0xab07,0xdd48,0x5429,
- 0x3fe4,0xbfda,0xd536,0x2a27,
- 0x3fe3,0xdea6,0x4c12,0x3422,
- 0x3fe3,0x06fe,0x0a31,0xb715,
- 0x3fe2,0x387a,0x6e75,0x6238,
- 0x3fe1,0x72b8,0x3c7d,0x517b,
- 0x3fe0,0xb558,0x6cf9,0x890f,
- 0x3fe0,0x0000,0x0000,0x0000
- };
- static unsigned short B[] = {
- 0x0000,0x0000,0x0000,0x0000,
- 0x3c72,0xed02,0xd75b,0x3707,
- 0x3c87,0xa1cd,0x345d,0xcc81,
- 0x3c86,0xe9f1,0x5686,0x4b27,
- 0xbc8b,0xdd34,0x13b2,0x6456,
- 0x3c6d,0x4397,0xafec,0x42e2,
- 0x3c76,0xf46a,0xd231,0x82e4,
- 0xbc71,0x9041,0xb9d7,0x8a76,
- 0x0000,0x0000,0x0000,0x0000
- };
- static unsigned short R[] = {
- 0x3eef,0x6307,0xd7f2,0x937f,
- 0x3f24,0x2fbe,0x60fc,0x9259,
- 0x3f55,0xd87e,0xc84a,0xef1d,
- 0x3f83,0xb2ab,0x6ef1,0x33b7,
- 0x3fac,0x6b08,0xd704,0x1a92,
- 0x3fce,0xbfbd,0xff82,0xc56d,
- 0x3fe6,0x2e42,0xfefa,0x39ef
- };
- #define douba(k) (*(double *)&A[(k)<<2])
- #define doubb(k) (*(double *)&B[(k)<<2])
- #define MEXP 16383.0
- #ifdef DENORMAL
- #define MNEXP -17183.0
- #else
- #define MNEXP -16383.0
- #endif
- #endif
- /* log2(e) - 1 */
- #define LOG2EA 0.44269504088896340736
- #define F W
- #define Fa Wa
- #define Fb Wb
- #define G W
- #define Ga Wa
- #define Gb u
- #define H W
- #define Ha Wb
- #define Hb Wb
- #ifdef ANSIPROT
- extern double floor ( double );
- extern double fabs ( double );
- extern double frexp ( double, int * );
- extern double ldexp ( double, int );
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern double powi ( double, int );
- extern int signbit ( double );
- extern int isnan ( double );
- extern int isfinite ( double );
- static double reduc ( double );
- #else
- double floor(), fabs(), frexp(), ldexp();
- double polevl(), p1evl(), powi();
- int signbit(), isnan(), isfinite();
- static double reduc();
- #endif
- extern double MAXNUM;
- #ifdef INFINITIES
- extern double INFINITY;
- #endif
- #ifdef NANS
- extern double NAN;
- #endif
- #ifdef MINUSZERO
- extern double NEGZERO;
- #endif
- double pow( x, y )
- double x, y;
- {
- double w, z, W, Wa, Wb, ya, yb, u;
- /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
- double aw, ay, wy;
- int e, i, nflg, iyflg, yoddint;
- if( y == 0.0 )
- return( 1.0 );
- #ifdef NANS
- if( isnan(x) )
- return( x );
- if( isnan(y) )
- return( y );
- #endif
- if( y == 1.0 )
- return( x );
- #ifdef INFINITIES
- if( !isfinite(y) && (x == 1.0 || x == -1.0) )
- {
- mtherr( "pow", DOMAIN );
- #ifdef NANS
- return( NAN );
- #else
- return( INFINITY );
- #endif
- }
- #endif
- if( x == 1.0 )
- return( 1.0 );
- if( y >= MAXNUM )
- {
- #ifdef INFINITIES
- if( x > 1.0 )
- return( INFINITY );
- #else
- if( x > 1.0 )
- return( MAXNUM );
- #endif
- if( x > 0.0 && x < 1.0 )
- return( 0.0);
- if( x < -1.0 )
- {
- #ifdef INFINITIES
- return( INFINITY );
- #else
- return( MAXNUM );
- #endif
- }
- if( x > -1.0 && x < 0.0 )
- return( 0.0 );
- }
- if( y <= -MAXNUM )
- {
- if( x > 1.0 )
- return( 0.0 );
- #ifdef INFINITIES
- if( x > 0.0 && x < 1.0 )
- return( INFINITY );
- #else
- if( x > 0.0 && x < 1.0 )
- return( MAXNUM );
- #endif
- if( x < -1.0 )
- return( 0.0 );
- #ifdef INFINITIES
- if( x > -1.0 && x < 0.0 )
- return( INFINITY );
- #else
- if( x > -1.0 && x < 0.0 )
- return( MAXNUM );
- #endif
- }
- if( x >= MAXNUM )
- {
- #if INFINITIES
- if( y > 0.0 )
- return( INFINITY );
- #else
- if( y > 0.0 )
- return( MAXNUM );
- #endif
- return(0.0);
- }
- /* Set iyflg to 1 if y is an integer. */
- iyflg = 0;
- w = floor(y);
- if( w == y )
- iyflg = 1;
- /* Test for odd integer y. */
- yoddint = 0;
- if( iyflg )
- {
- ya = fabs(y);
- ya = floor(0.5 * ya);
- yb = 0.5 * fabs(w);
- if( ya != yb )
- yoddint = 1;
- }
- if( x <= -MAXNUM )
- {
- if( y > 0.0 )
- {
- #ifdef INFINITIES
- if( yoddint )
- return( -INFINITY );
- return( INFINITY );
- #else
- if( yoddint )
- return( -MAXNUM );
- return( MAXNUM );
- #endif
- }
- if( y < 0.0 )
- {
- #ifdef MINUSZERO
- if( yoddint )
- return( NEGZERO );
- #endif
- return( 0.0 );
- }
- }
- nflg = 0; /* flag = 1 if x<0 raised to integer power */
- if( x <= 0.0 )
- {
- if( x == 0.0 )
- {
- if( y < 0.0 )
- {
- #ifdef MINUSZERO
- if( signbit(x) && yoddint )
- return( -INFINITY );
- #endif
- #ifdef INFINITIES
- return( INFINITY );
- #else
- return( MAXNUM );
- #endif
- }
- if( y > 0.0 )
- {
- #ifdef MINUSZERO
- if( signbit(x) && yoddint )
- return( NEGZERO );
- #endif
- return( 0.0 );
- }
- return( 1.0 );
- }
- else
- {
- if( iyflg == 0 )
- { /* noninteger power of negative number */
- mtherr( fname, DOMAIN );
- #ifdef NANS
- return(NAN);
- #else
- return(0.0L);
- #endif
- }
- nflg = 1;
- }
- }
- /* Integer power of an integer. */
- if( iyflg )
- {
- i = w;
- w = floor(x);
- if( (w == x) && (fabs(y) < 32768.0) )
- {
- w = powi( x, (int) y );
- return( w );
- }
- }
- if( nflg )
- x = fabs(x);
- /* For results close to 1, use a series expansion. */
- w = x - 1.0;
- aw = fabs(w);
- ay = fabs(y);
- wy = w * y;
- ya = fabs(wy);
- if((aw <= 1.0e-3 && ay <= 1.0)
- || (ya <= 1.0e-3 && ay >= 1.0))
- {
- z = (((((w*(y-5.)/720. + 1./120.)*w*(y-4.) + 1./24.)*w*(y-3.)
- + 1./6.)*w*(y-2.) + 0.5)*w*(y-1.) )*wy + wy + 1.;
- goto done;
- }
- /* These are probably too much trouble. */
- #if 0
- w = y * log(x);
- if (aw > 1.0e-3 && fabs(w) < 1.0e-3)
- {
- z = ((((((
- w/7. + 1.)*w/6. + 1.)*w/5. + 1.)*w/4. + 1.)*w/3. + 1.)*w/2. + 1.)*w + 1.;
- goto done;
- }
- if(ya <= 1.0e-3 && aw <= 1.0e-4)
- {
- z = (((((
- wy*1./720.
- + (-w*1./48. + 1./120.) )*wy
- + ((w*17./144. - 1./12.)*w + 1./24.) )*wy
- + (((-w*5./16. + 7./24.)*w - 1./4.)*w + 1./6.) )*wy
- + ((((w*137./360. - 5./12.)*w + 11./24.)*w - 1./2.)*w + 1./2.) )*wy
- + (((((-w*1./6. + 1./5.)*w - 1./4)*w + 1./3.)*w -1./2.)*w ) )*wy
- + wy + 1.0;
- goto done;
- }
- #endif
- /* separate significand from exponent */
- x = frexp( x, &e );
- #if 0
- /* For debugging, check for gross overflow. */
- if( (e * y) > (MEXP + 1024) )
- goto overflow;
- #endif
- /* Find significand of x in antilog table A[]. */
- i = 1;
- if( x <= douba(9) )
- i = 9;
- if( x <= douba(i+4) )
- i += 4;
- if( x <= douba(i+2) )
- i += 2;
- if( x >= douba(1) )
- i = -1;
- i += 1;
- /* Find (x - A[i])/A[i]
- * in order to compute log(x/A[i]):
- *
- * log(x) = log( a x/a ) = log(a) + log(x/a)
- *
- * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
- */
- x -= douba(i);
- x -= doubb(i/2);
- x /= douba(i);
- /* rational approximation for log(1+v):
- *
- * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
- */
- z = x*x;
- w = x * ( z * polevl( x, P, 3 ) / p1evl( x, Q, 4 ) );
- w = w - ldexp( z, -1 ); /* w - 0.5 * z */
- /* Convert to base 2 logarithm:
- * multiply by log2(e)
- */
- w = w + LOG2EA * w;
- /* Note x was not yet added in
- * to above rational approximation,
- * so do it now, while multiplying
- * by log2(e).
- */
- z = w + LOG2EA * x;
- z = z + x;
- /* Compute exponent term of the base 2 logarithm. */
- w = -i;
- w = ldexp( w, -4 ); /* divide by 16 */
- w += e;
- /* Now base 2 log of x is w + z. */
- /* Multiply base 2 log by y, in extended precision. */
- /* separate y into large part ya
- * and small part yb less than 1/16
- */
- ya = reduc(y);
- yb = y - ya;
- F = z * y + w * yb;
- Fa = reduc(F);
- Fb = F - Fa;
- G = Fa + w * ya;
- Ga = reduc(G);
- Gb = G - Ga;
- H = Fb + Gb;
- Ha = reduc(H);
- w = ldexp( Ga+Ha, 4 );
- /* Test the power of 2 for overflow */
- if( w > MEXP )
- {
- #ifndef INFINITIES
- mtherr( fname, OVERFLOW );
- #endif
- #ifdef INFINITIES
- if( nflg && yoddint )
- return( -INFINITY );
- return( INFINITY );
- #else
- if( nflg && yoddint )
- return( -MAXNUM );
- return( MAXNUM );
- #endif
- }
- if( w < (MNEXP - 1) )
- {
- #ifndef DENORMAL
- mtherr( fname, UNDERFLOW );
- #endif
- #ifdef MINUSZERO
- if( nflg && yoddint )
- return( NEGZERO );
- #endif
- return( 0.0 );
- }
- e = w;
- Hb = H - Ha;
- if( Hb > 0.0 )
- {
- e += 1;
- Hb -= 0.0625;
- }
- /* Now the product y * log2(x) = Hb + e/16.0.
- *
- * Compute base 2 exponential of Hb,
- * where -0.0625 <= Hb <= 0.
- */
- z = Hb * polevl( Hb, R, 6 ); /* z = 2**Hb - 1 */
- /* Express e/16 as an integer plus a negative number of 16ths.
- * Find lookup table entry for the fractional power of 2.
- */
- if( e < 0 )
- i = 0;
- else
- i = 1;
- i = e/16 + i;
- e = 16*i - e;
- w = douba( e );
- z = w + w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
- z = ldexp( z, i ); /* multiply by integer power of 2 */
- done:
- /* Negate if odd integer power of negative number */
- if( nflg && yoddint )
- {
- #ifdef MINUSZERO
- if( z == 0.0 )
- z = NEGZERO;
- else
- #endif
- z = -z;
- }
- return( z );
- }
- /* Find a multiple of 1/16 that is within 1/16 of x. */
- static double reduc(x)
- double x;
- {
- double t;
- t = ldexp( x, 4 );
- t = floor( t );
- t = ldexp( t, -4 );
- return(t);
- }
|