123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- /* revers.c
- *
- * Reversion of power series
- *
- *
- *
- * SYNOPSIS:
- *
- * extern int MAXPOL;
- * int n;
- * double x[n+1], y[n+1];
- *
- * polini(n);
- * revers( y, x, n );
- *
- * Note, polini() initializes the polynomial arithmetic subroutines;
- * see polyn.c.
- *
- *
- * DESCRIPTION:
- *
- * If
- *
- * inf
- * - i
- * y(x) = > a x
- * - i
- * i=1
- *
- * then
- *
- * inf
- * - j
- * x(y) = > A y ,
- * - j
- * j=1
- *
- * where
- * 1
- * A = ---
- * 1 a
- * 1
- *
- * etc. The coefficients of x(y) are found by expanding
- *
- * inf inf
- * - - i
- * x(y) = > A > a x
- * - j - i
- * j=1 i=1
- *
- * and setting each coefficient of x , higher than the first,
- * to zero.
- *
- *
- *
- * RESTRICTIONS:
- *
- * y[0] must be zero, and y[1] must be nonzero.
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- extern int MAXPOL; /* initialized by polini() */
- #ifdef ANSIPROT
- /* See polyn.c. */
- void polmov ( double *, int, double * );
- void polclr ( double *, int );
- void poladd ( double *, int, double *, int, double * );
- void polmul ( double *, int, double *, int, double * );
- void * malloc ( long );
- void free ( void * );
- #else
- void polmov(), polclr(), poladd(), polmul();
- void * malloc();
- void free ();
- #endif
- void revers( y, x, n)
- double y[], x[];
- int n;
- {
- double *yn, *yp, *ysum;
- int j;
- if( y[1] == 0.0 )
- mtherr( "revers", DOMAIN );
- /* printf( "revers: y[1] = 0\n" );*/
- j = (MAXPOL + 1) * sizeof(double);
- yn = (double *)malloc(j);
- yp = (double *)malloc(j);
- ysum = (double *)malloc(j);
- polmov( y, n, yn );
- polclr( ysum, n );
- x[0] = 0.0;
- x[1] = 1.0/y[1];
- for( j=2; j<=n; j++ )
- {
- /* A_(j-1) times the expansion of y^(j-1) */
- polmul( &x[j-1], 0, yn, n, yp );
- /* The expansion of the sum of A_k y^k up to k=j-1 */
- poladd( yp, n, ysum, n, ysum );
- /* The expansion of y^j */
- polmul( yn, n, y, n, yn );
- /* The coefficient A_j to make the sum up to k=j equal to zero */
- x[j] = -ysum[j]/yn[j];
- }
- free(yn);
- free(yp);
- free(ysum);
- }
- #if 0
- /* Demonstration program
- */
- #define N 10
- double y[N], x[N];
- double fac();
- main()
- {
- double a, odd;
- int i;
- polini( N-1 );
- a = 1.0;
- y[0] = 0.0;
- odd = 1.0;
- for( i=1; i<N; i++ )
- {
- /* sin(x) */
- /*
- if( i & 1 )
- {
- y[i] = odd/fac(i);
- odd = -odd;
- }
- else
- y[i] = 0.0;
- */
- y[i] = 1.0/fac(i);
- }
- revers( y, x, N-1 );
- for( i=0; i<N; i++ )
- printf( "%2d %.10e %.10e\n", i, x[i], y[i] );
- }
- #endif
|