123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- /* exp2l.c
- *
- * Base 2 exponential function, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, exp2l();
- *
- * y = exp2l( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns 2 raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- * x k f
- * 2 = 2 2.
- *
- * A Pade' form
- *
- * 1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
- *
- * approximates 2**x in the basic range [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-16300 300000 9.1e-20 2.6e-20
- *
- *
- * See exp.c for comments on error amplification.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp2l underflow x < -16382 0.0
- * exp2l overflow x >= 16384 MAXNUM
- *
- */
- /*
- Cephes Math Library Release 2.7: May, 1998
- Copyright 1984, 1991, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static long double P[] = {
- 6.0614853552242266094567E1L,
- 3.0286971917562792508623E4L,
- 2.0803843631901852422887E6L,
- };
- static long double Q[] = {
- /* 1.0000000000000000000000E0,*/
- 1.7492876999891839021063E3L,
- 3.2772515434906797273099E5L,
- 6.0027204078348487957118E6L,
- };
- #endif
- #ifdef IBMPC
- static short P[] = {
- 0xffd8,0x6ad6,0x9c2b,0xf275,0x4004, XPD
- 0x3426,0x2dc5,0xf19f,0xec9d,0x400d, XPD
- 0x7ec0,0xd041,0x02e7,0xfdf4,0x4013, XPD
- };
- static short Q[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0x575b,0x9b93,0x34d6,0xdaa9,0x4009, XPD
- 0xe38d,0x6d74,0xa4f0,0xa005,0x4011, XPD
- 0xb37e,0xcfba,0x40d0,0xb730,0x4015, XPD
- };
- #endif
- #ifdef MIEEE
- static long P[] = {
- 0x40040000,0xf2759c2b,0x6ad6ffd8,
- 0x400d0000,0xec9df19f,0x2dc53426,
- 0x40130000,0xfdf402e7,0xd0417ec0,
- };
- static long Q[] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0x40090000,0xdaa934d6,0x9b93575b,
- 0x40110000,0xa005a4f0,0x6d74e38d,
- 0x40150000,0xb73040d0,0xcfbab37e,
- };
- #endif
- #define MAXL2L 16384.0L
- #define MINL2L -16382.0L
- extern long double MAXNUML;
- #ifdef ANSIPROT
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- extern long double floorl ( long double );
- extern long double ldexpl ( long double, int );
- extern int isnanl ( long double );
- #else
- long double polevll(), p1evll(), floorl(), ldexpl(), isnanl();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- long double exp2l(x)
- long double x;
- {
- long double px, xx;
- int n;
- #ifdef NANS
- if( isnanl(x) )
- return(x);
- #endif
- if( x > MAXL2L)
- {
- #ifdef INFINITIES
- return( INFINITYL );
- #else
- mtherr( "exp2l", OVERFLOW );
- return( MAXNUML );
- #endif
- }
- if( x < MINL2L )
- {
- #ifndef INFINITIES
- mtherr( "exp2l", UNDERFLOW );
- #endif
- return(0.0L);
- }
- xx = x; /* save x */
- /* separate into integer and fractional parts */
- px = floorl(x+0.5L);
- n = px;
- x = x - px;
- /* rational approximation
- * exp2(x) = 1.0 + 2xP(xx)/(Q(xx) - P(xx))
- * where xx = x**2
- */
- xx = x * x;
- px = x * polevll( xx, P, 2 );
- x = px / ( p1evll( xx, Q, 3 ) - px );
- x = 1.0L + ldexpl( x, 1 );
- /* scale by power of 2 */
- x = ldexpl( x, n );
- return(x);
- }
|