123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- /* logl.c
- *
- * Natural logarithm, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, logl();
- *
- * y = logl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the logarithm
- * of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
- *
- * Otherwise, setting z = 2(x-1)/x+1),
- *
- * log(x) = z + z**3 P(z)/Q(z).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20
- * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20
- *
- * In the tests over the interval exp(+-10000), the logarithms
- * of the random arguments were uniformly distributed over
- * [-10000, +10000].
- *
- * ERROR MESSAGES:
- *
- * log singularity: x = 0; returns -INFINITYL
- * log domain: x < 0; returns NANL
- */
- /*
- Cephes Math Library Release 2.7: May, 1998
- Copyright 1984, 1990, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 2.32e-20
- */
- #ifdef UNK
- static long double P[] = {
- 4.5270000862445199635215E-5L,
- 4.9854102823193375972212E-1L,
- 6.5787325942061044846969E0L,
- 2.9911919328553073277375E1L,
- 6.0949667980987787057556E1L,
- 5.7112963590585538103336E1L,
- 2.0039553499201281259648E1L,
- };
- static long double Q[] = {
- /* 1.0000000000000000000000E0,*/
- 1.5062909083469192043167E1L,
- 8.3047565967967209469434E1L,
- 2.2176239823732856465394E2L,
- 3.0909872225312059774938E2L,
- 2.1642788614495947685003E2L,
- 6.0118660497603843919306E1L,
- };
- #endif
- #ifdef IBMPC
- static short P[] = {
- 0x51b9,0x9cae,0x4b15,0xbde0,0x3ff0, XPD
- 0x19cf,0xf0d4,0xc507,0xff40,0x3ffd, XPD
- 0x9942,0xa7d2,0xfa37,0xd284,0x4001, XPD
- 0x4add,0x65ce,0x9c5c,0xef4b,0x4003, XPD
- 0x8445,0x619a,0x75c3,0xf3cc,0x4004, XPD
- 0x81ab,0x3cd0,0xacba,0xe473,0x4004, XPD
- 0x4cbf,0xcc18,0x016c,0xa051,0x4003, XPD
- };
- static short Q[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0xb8b7,0x81f1,0xacf4,0xf101,0x4002, XPD
- 0xbc31,0x09a4,0x5a91,0xa618,0x4005, XPD
- 0xaeec,0xe7da,0x2c87,0xddc3,0x4006, XPD
- 0x2bde,0x4845,0xa2ee,0x9a8c,0x4007, XPD
- 0x3120,0x4703,0x89f2,0xd86d,0x4006, XPD
- 0x7347,0x3224,0x8223,0xf079,0x4004, XPD
- };
- #endif
- #ifdef MIEEE
- static long P[] = {
- 0x3ff00000,0xbde04b15,0x9cae51b9,
- 0x3ffd0000,0xff40c507,0xf0d419cf,
- 0x40010000,0xd284fa37,0xa7d29942,
- 0x40030000,0xef4b9c5c,0x65ce4add,
- 0x40040000,0xf3cc75c3,0x619a8445,
- 0x40040000,0xe473acba,0x3cd081ab,
- 0x40030000,0xa051016c,0xcc184cbf,
- };
- static long Q[] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0x40020000,0xf101acf4,0x81f1b8b7,
- 0x40050000,0xa6185a91,0x09a4bc31,
- 0x40060000,0xddc32c87,0xe7daaeec,
- 0x40070000,0x9a8ca2ee,0x48452bde,
- 0x40060000,0xd86d89f2,0x47033120,
- 0x40040000,0xf0798223,0x32247347,
- };
- #endif
- /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
- * where z = 2(x-1)/(x+1)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 6.16e-22
- */
- #ifdef UNK
- static long double R[4] = {
- 1.9757429581415468984296E-3L,
- -7.1990767473014147232598E-1L,
- 1.0777257190312272158094E1L,
- -3.5717684488096787370998E1L,
- };
- static long double S[4] = {
- /* 1.00000000000000000000E0L,*/
- -2.6201045551331104417768E1L,
- 1.9361891836232102174846E2L,
- -4.2861221385716144629696E2L,
- };
- static long double C1 = 6.9314575195312500000000E-1L;
- static long double C2 = 1.4286068203094172321215E-6L;
- #endif
- #ifdef IBMPC
- static short R[] = {
- 0x6ef4,0xf922,0x7763,0x817b,0x3ff6, XPD
- 0x15fd,0x1af9,0xde8f,0xb84b,0xbffe, XPD
- 0x8b96,0x4f8d,0xa53c,0xac6f,0x4002, XPD
- 0x8932,0xb4e3,0xe8ae,0x8ede,0xc004, XPD
- };
- static short S[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0x7ce4,0x1fc9,0xbdc5,0xd19b,0xc003, XPD
- 0x0af3,0x0d10,0x716f,0xc19e,0x4006, XPD
- 0x4d7d,0x0f55,0x5d06,0xd64e,0xc007, XPD
- };
- static short sc1[] = {0x0000,0x0000,0x0000,0xb172,0x3ffe, XPD};
- #define C1 (*(long double *)sc1)
- static short sc2[] = {0x4f1e,0xcd5e,0x8e7b,0xbfbe,0x3feb, XPD};
- #define C2 (*(long double *)sc2)
- #endif
- #ifdef MIEEE
- static long R[12] = {
- 0x3ff60000,0x817b7763,0xf9226ef4,
- 0xbffe0000,0xb84bde8f,0x1af915fd,
- 0x40020000,0xac6fa53c,0x4f8d8b96,
- 0xc0040000,0x8edee8ae,0xb4e38932,
- };
- static long S[9] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0xc0030000,0xd19bbdc5,0x1fc97ce4,
- 0x40060000,0xc19e716f,0x0d100af3,
- 0xc0070000,0xd64e5d06,0x0f554d7d,
- };
- static long sc1[] = {0x3ffe0000,0xb1720000,0x00000000};
- #define C1 (*(long double *)sc1)
- static long sc2[] = {0x3feb0000,0xbfbe8e7b,0xcd5e4f1e};
- #define C2 (*(long double *)sc2)
- #endif
- #define SQRTH 0.70710678118654752440L
- extern long double MINLOGL;
- #ifdef ANSIPROT
- extern long double frexpl ( long double, int * );
- extern long double ldexpl ( long double, int );
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- extern int isnanl ( long double );
- #else
- long double frexpl(), ldexpl(), polevll(), p1evll(), isnanl();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- #ifdef NANS
- extern long double NANL;
- #endif
- long double logl(x)
- long double x;
- {
- long double y, z;
- int e;
- #ifdef NANS
- if( isnanl(x) )
- return(x);
- #endif
- #ifdef INFINITIES
- if( x == INFINITYL )
- return(x);
- #endif
- /* Test for domain */
- if( x <= 0.0L )
- {
- if( x == 0.0L )
- {
- #ifdef INFINITIES
- return( -INFINITYL );
- #else
- mtherr( "logl", SING );
- return( MINLOGL );
- #endif
- }
- else
- {
- #ifdef NANS
- return( NANL );
- #else
- mtherr( "logl", DOMAIN );
- return( MINLOGL );
- #endif
- }
- }
- /* separate mantissa from exponent */
- /* Note, frexp is used so that denormal numbers
- * will be handled properly.
- */
- x = frexpl( x, &e );
- /* logarithm using log(x) = z + z**3 P(z)/Q(z),
- * where z = 2(x-1)/x+1)
- */
- if( (e > 2) || (e < -2) )
- {
- if( x < SQRTH )
- { /* 2( 2x-1 )/( 2x+1 ) */
- e -= 1;
- z = x - 0.5L;
- y = 0.5L * z + 0.5L;
- }
- else
- { /* 2 (x-1)/(x+1) */
- z = x - 0.5L;
- z -= 0.5L;
- y = 0.5L * x + 0.5L;
- }
- x = z / y;
- z = x*x;
- z = x * ( z * polevll( z, R, 3 ) / p1evll( z, S, 3 ) );
- z = z + e * C2;
- z = z + x;
- z = z + e * C1;
- return( z );
- }
- /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
- if( x < SQRTH )
- {
- e -= 1;
- x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */
- }
- else
- {
- x = x - 1.0L;
- }
- z = x*x;
- y = x * ( z * polevll( x, P, 6 ) / p1evll( x, Q, 6 ) );
- y = y + e * C2;
- z = y - ldexpl( z, -1 ); /* y - 0.5 * z */
- /* Note, the sum of above terms does not exceed x/4,
- * so it contributes at most about 1/4 lsb to the error.
- */
- z = z + x;
- z = z + e * C1; /* This sum has an error of 1/2 lsb. */
- return( z );
- }
|