| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 | /*							asinhl.c * *	Inverse hyperbolic sine, long double precision * * * * SYNOPSIS: * * long double x, y, asinhl(); * * y = asinhl( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic sine of argument. * * If |x| < 0.5, the function is approximated by a rational * form  x + x**3 P(x)/Q(x).  Otherwise, * *     asinh(x) = log( x + sqrt(1 + x*x) ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -3,3         30000       1.7e-19     3.5e-20 * *//*Cephes Math Library Release 2.7:  May, 1998Copyright 1984, 1991, 1998 by Stephen L. Moshier*/#include <math.h>#ifdef UNKstatic long double P[] = {-7.2157234864927687427374E-1L,-1.3005588097490352458918E1L,-5.9112383795679709212744E1L,-9.5372702442289028811361E1L,-4.9802880260861844539014E1L,};static long double Q[] = {/* 1.0000000000000000000000E0L,*/ 2.8754968540389640419671E1L, 2.0990255691901160529390E2L, 5.9265075560893800052658E2L, 7.0670399135805956780660E2L, 2.9881728156517107462943E2L,};#endif#ifdef IBMPCstatic short P[] = {0x8f42,0x2584,0xf727,0xb8b8,0xbffe, XPD0x9d56,0x7f7c,0xe38b,0xd016,0xc002, XPD0xc518,0xdc2d,0x14bc,0xec73,0xc004, XPD0x99fe,0xc18a,0xd2da,0xbebe,0xc005, XPD0xb46c,0x3c05,0x263e,0xc736,0xc004, XPD};static short Q[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/0xdfed,0x33db,0x2cf2,0xe60a,0x4003, XPD0xf109,0x61ee,0x0df8,0xd1e7,0x4006, XPD0xf21e,0xda84,0xa5fa,0x9429,0x4008, XPD0x13fc,0xc4e2,0x0e31,0xb0ad,0x4008, XPD0x485c,0xad04,0x9cae,0x9568,0x4007, XPD};#endif#ifdef MIEEEstatic long P[] = {0xbffe0000,0xb8b8f727,0x25848f42,0xc0020000,0xd016e38b,0x7f7c9d56,0xc0040000,0xec7314bc,0xdc2dc518,0xc0050000,0xbebed2da,0xc18a99fe,0xc0040000,0xc736263e,0x3c05b46c,};static long Q[] = {/*0x3fff0000,0x80000000,0x00000000,*/0x40030000,0xe60a2cf2,0x33dbdfed,0x40060000,0xd1e70df8,0x61eef109,0x40080000,0x9429a5fa,0xda84f21e,0x40080000,0xb0ad0e31,0xc4e213fc,0x40070000,0x95689cae,0xad04485c,};#endifextern long double LOGE2L;#ifdef INFINITIESextern long double INFINITYL;#endif#ifdef ANSIPROTextern long double logl ( long double );extern long double sqrtl ( long double );extern long double polevll ( long double, void *, int );extern long double p1evll ( long double, void *, int );extern int isnanl ( long double );extern int isfinitel ( long double );#elselong double logl(), sqrtl(), polevll(), p1evll(), isnanl(), isfinitel();#endiflong double asinhl(x)long double x;{long double a, z;int sign;#ifdef NANSif( isnanl(x) )	return(x);#endif#ifdef MINUSZEROif( x == 0.0L )	return(x);#endif#ifdef INFINITIES	if( !isfinitel(x) )	    return(x);#endifif( x < 0.0L )	{	sign = -1;	x = -x;	}else	sign = 1;if( x > 1.0e10L )	{	return( sign * (logl(x) + LOGE2L) );	}z = x * x;if( x < 0.5L )	{	a = ( polevll(z, P, 4)/p1evll(z, Q, 5) ) * z;	a = a * x  +  x;	if( sign < 0 )		a = -a;	return(a);	}	a = sqrtl( z + 1.0L );return( sign * logl(x + a) );}
 |