| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 | /*							elliel.c * *	Incomplete elliptic integral of the second kind * * * * SYNOPSIS: * * long double phi, m, y, elliel(); * * y = elliel( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * *                phi *                 - *                | | *                |                   2 * E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt *                | *              | |     *               - *                0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * ACCURACY: * * Tested at random arguments with phi in [-10, 10] and m in * [0, 1]. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -10,10       50000       2.7e-18     2.3e-19 * * *//*Cephes Math Library Release 2.3:  November, 1995Copyright 1984, 1987, 1993, 1995 by Stephen L. Moshier*//*	Incomplete elliptic integral of second kind	*/#include <math.h>#ifdef ANSIPROTextern long double sqrtl ( long double );extern long double fabsl ( long double );extern long double logl ( long double );extern long double sinl ( long double );extern long double tanl ( long double );extern long double atanl ( long double );extern long double floorl ( long double );extern long double ellpel ( long double );extern long double ellpkl ( long double );long double elliel ( long double, long double );#elselong double sqrtl(), fabsl(), logl(), sinl(), tanl(), atanl(), floorl();long double ellpel(), ellpkl(), elliel();#endifextern long double PIL, PIO2L, MACHEPL;long double elliel( phi, m )long double phi, m;{long double a, b, c, e, temp, lphi, t, E;int d, mod, npio2, sign;if( m == 0.0L )	return( phi );lphi = phi;npio2 = floorl( lphi/PIO2L );if( npio2 & 1 )	npio2 += 1;lphi = lphi - npio2 * PIO2L;if( lphi < 0.0L )	{	lphi = -lphi;	sign = -1;	}else	{	sign = 1;	}a = 1.0L - m;E = ellpel( a );if( a == 0.0L )	{	temp = sinl( lphi );	goto done;	}t = tanl( lphi );b = sqrtl(a);if( fabsl(t) > 10.0L )	{	/* Transform the amplitude */	e = 1.0L/(b*t);	/* ... but avoid multiple recursions.  */	if( fabsl(e) < 10.0L )		{		e = atanl(e);		temp = E + m * sinl( lphi ) * sinl( e ) - elliel( e, m );		goto done;		}	}c = sqrtl(m);a = 1.0L;d = 1;e = 0.0L;mod = 0;while( fabsl(c/a) > MACHEPL )	{	temp = b/a;	lphi = lphi + atanl(t*temp) + mod * PIL;	mod = (lphi + PIO2L)/PIL;	t = t * ( 1.0L + temp )/( 1.0L - temp * t * t );	c = 0.5L*( a - b );	temp = sqrtl( a * b );	a = 0.5L*( a + b );	b = temp;	d += d;	e += c * sinl(lphi);	}temp = E / ellpkl( 1.0L - m );temp *= (atanl(t) + mod * PIL)/(d * a);temp += e;done:if( sign < 0 )	temp = -temp;temp += npio2 * E;return( temp );}
 |