| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 | /*							igamil() * *      Inverse of complemented imcomplete gamma integral * * * * SYNOPSIS: * * long double a, x, y, igamil(); * * x = igamil( a, y ); * * * * DESCRIPTION: * * Given y, the function finds x such that * *  igamc( a, x ) = y. * * Starting with the approximate value * *         3 *  x = a t * *  where * *  t = 1 - d - ndtri(y) sqrt(d) *  * and * *  d = 1/9a, * * the routine performs up to 10 Newton iterations to find the * root of igamc(a,x) - y = 0. * * * ACCURACY: * * Tested for a ranging from 0.5 to 30 and x from 0 to 0.5. * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0,0.5         3400       8.8e-16     1.3e-16 *    IEEE      0,0.5        10000       1.1e-14     1.0e-15 * *//*Cephes Math Library Release 2.3:  March, 1995Copyright 1984, 1995 by Stephen L. Moshier*/#include <math.h>extern long double MACHEPL, MAXNUML, MAXLOGL, MINLOGL;#ifdef ANSIPROTextern long double ndtril ( long double );extern long double expl ( long double );extern long double fabsl ( long double );extern long double logl ( long double );extern long double sqrtl ( long double );extern long double lgaml ( long double );extern long double igamcl ( long double, long double );#elselong double ndtril(), expl(), fabsl(), logl(), sqrtl(), lgaml();long double igamcl();#endiflong double igamil( a, y0 )long double a, y0;{long double x0, x1, x, yl, yh, y, d, lgm, dithresh;int i, dir;/* bound the solution */x0 = MAXNUML;yl = 0.0L;x1 = 0.0L;yh = 1.0L;dithresh = 4.0 * MACHEPL;/* approximation to inverse function */d = 1.0L/(9.0L*a);y = ( 1.0L - d - ndtril(y0) * sqrtl(d) );x = a * y * y * y;lgm = lgaml(a);for( i=0; i<10; i++ )	{	if( x > x0 || x < x1 )		goto ihalve;	y = igamcl(a,x);	if( y < yl || y > yh )		goto ihalve;	if( y < y0 )		{		x0 = x;		yl = y;		}	else		{		x1 = x;		yh = y;		}/* compute the derivative of the function at this point */	d = (a - 1.0L) * logl(x0) - x0 - lgm;	if( d < -MAXLOGL )		goto ihalve;	d = -expl(d);/* compute the step to the next approximation of x */	d = (y - y0)/d;	x = x - d;	if( i < 3 )		continue;	if( fabsl(d/x) < dithresh )		goto done;	}/* Resort to interval halving if Newton iteration did not converge. */ihalve:d = 0.0625L;if( x0 == MAXNUML )	{	if( x <= 0.0L )		x = 1.0L;	while( x0 == MAXNUML )		{		x = (1.0L + d) * x;		y = igamcl( a, x );		if( y < y0 )			{			x0 = x;			yl = y;			break;			}		d = d + d;		}	}d = 0.5L;dir = 0;for( i=0; i<400; i++ )	{	x = x1  +  d * (x0 - x1);	y = igamcl( a, x );	lgm = (x0 - x1)/(x1 + x0);	if( fabsl(lgm) < dithresh )		break;	lgm = (y - y0)/y0;	if( fabsl(lgm) < dithresh )		break;	if( x <= 0.0L )		break;	if( y > y0 )		{		x1 = x;		yh = y;		if( dir < 0 )			{			dir = 0;			d = 0.5L;			}		else if( dir > 1 )			d = 0.5L * d + 0.5L; 		else			d = (y0 - yl)/(yh - yl);		dir += 1;		}	else		{		x0 = x;		yl = y;		if( dir > 0 )			{			dir = 0;			d = 0.5L;			}		else if( dir < -1 )			d = 0.5L * d;		else			d = (y0 - yl)/(yh - yl);		dir -= 1;		}	}if( x == 0.0L )	mtherr( "igamil", UNDERFLOW );done:return( x );}
 |